eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
High-Speed Material Characterization Using an Instrumented Forging Hammer.pdf (1.134Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
High-Speed Material Characterization Using an Instrumented Forging Hammer
Author
Agirre, Julen
Abedul Moreno, David
Oruna Otalora, Angel
GALDOS, Lander
Research Group
Procesos avanzados de conformación de materiales
Version
Postprint
Rights
© 2021 The Minerals, Metals & Materials Society
Access
Open access
URI
https://hdl.handle.net/20.500.11984/5846
Publisher’s version
https://doi.org/10.1007/978-3-030-75381-8_100
Published at
Forming the Future. The Minerals, Metals & Materials Series  Daehn G., Cao J., Kinsey B., Tekkaya E., Vivek A., Yoshida Y. (eds). Pp. 1201 - 1215. Springer, 2021
Publisher
Springer
Keywords
forging
Material characterization
High-speed testing
Hammer ... [+]
forging
Material characterization
High-speed testing
Hammer
Monitoring [-]
Abstract
Hammer forging is a widely employed manufacturing process to produce parts with excellent mechanical properties. Although the rheological behavior and the microstructural transformation phenomena of m ... [+]
Hammer forging is a widely employed manufacturing process to produce parts with excellent mechanical properties. Although the rheological behavior and the microstructural transformation phenomena of metals under hammer forging conditions are of great industrial interest, few materials have been tested in such intermediate strain rates (10–103 s−1) due to the lack of laboratory machines for intermediate speed testing. With the objective of addressing that gap, this paper presents a novel automatic forging simulator comprising an instrumented forging hammer capable of performing intermediate speed deformations, up to 5 m/s. Three data acquisition approaches were evaluated to select the most appropriate approach and obtain valid rheological data from intermediate strain rate tests performed on the developed hammer. First, the data obtained by both a high-speed camera and a load cell was combined to calculate reference flow curves. Then, two additional data monitoring approaches were then analyzed, employing independently first the high-speed camera and then the load cell data. It was concluded that flow curves obtained utilizing only the load cell data offered accurate results without the need for an expensive and complex high-speed camera. [-]
xmlui.dri2xhtml.METS-1.0.item-sponsorship
Gobierno Vasco-Eusko Jaurlaritza
xmlui.dri2xhtml.METS-1.0.item-projectID
info:eu-repo/grantAgreement/GV/Programa de apoyo a la I+D Empresarial Hazitek 2019/ZL-2019-00161/CAPV/Piezas forjadas de prestaciones extremas para el sector Oil & Gas mediante procesos de forja eficientes optimizados por modelos complejos de evolución microestructural/OGFORGE
Collections
  • Conferences - Engineering [423]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace