eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
Procedure to predict residual stress pattern in spray transfer multipass welding.pdf (2.458Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Procedure to predict residual stress pattern in spray transfer multipass welding
Author
Ulacia, Ibai
Lopez-Jauregi, Arkaitz
Esnaola, Jon Ander
Ugarte, Done
Torca, Ireneo
Research Group
Diseño y mecánica estructural
Version
Postprint
Rights
© 2014, Springer-Verlag London
Access
Open access
URI
https://hdl.handle.net/20.500.11984/5671
Publisher’s version
http://dx.doi.org/10.1007/s00170-014-6424-0
Published at
The International Journal of Advanced Manufacturing Technology  Vol. 76. Nº 9. Pp. 2117-2129. February, 2015
xmlui.dri2xhtml.METS-1.0.item-publicationfirstpage
2117
xmlui.dri2xhtml.METS-1.0.item-publicationlastpage
2129
Publisher
Springer
Keywords
Multipass Welding
Analytic procedure
Finite element method
Abstract
Gas metal arc welding (GMAW) is one of the most used joining method in the industry. However, one of the main problems of this process is the generation of residual stresses which have direct impact o ... [+]
Gas metal arc welding (GMAW) is one of the most used joining method in the industry. However, one of the main problems of this process is the generation of residual stresses which have direct impact on the fatigue life of welded components. Nevertheless, residual stress pattern prediction is complex and requires the simulation of the welding process. Currently, there are different numerical methods to predict the residual stresses generated in GMAW process, being Goldak’s method one of the most widely used model. However, the main limitation of these methods is that they require defining many parameters experimentally and, consequently, this method is not valid during design process. Alternatively, in this work, it is developed a procedure where the heat source is defined based on the welding physics for spray transfer welding. The developed procedure has been validated for a spray transfer multipass butt weld case. Results have shown good correspondence with an average deviation of 9.16 % in thermal field and 42 MPa in the final residual stress field. Thus, the developed procedure has been validated as a cost-effective alternative method to estimate residual stress pattern in spray transfer multipass welding. Furthermore, the developed method does not require any welding experimental characterization once the efficiency of the used welding machine is defined. The proposed method can be used as a valid tool to optimize the welding process in order to minimize the residual stress field and, consequently, improve the fatigue life. [-]
Collections
  • Articles - Engineering [743]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace