eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
Genetic Algorithm-based Testing of Industrial Elevators under Passenger Uncertainty.pdf (518.3Kb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Genetic Algorithm-based Testing of Industrial Elevators under Passenger Uncertainty
Autor-a
Arrieta, Aitor
Sagardui, Goiuria
Autor-a (de otra institución)
Galarraga Arotzena, Joritz
Ali, Shaukat
Arratibel, Maite
Grupo de investigación
Ingeniería del software y sistemas
Otras instituciones
Orona, S. Coop.
Simula Research Laboratory
Versión
Postprint
Derechos
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Acceso
Acceso abierto
URI
https://hdl.handle.net/20.500.11984/5631
Versión del editor
https://doi.org/10.1109/ISSREW53611.2021.00101
Publicado en
2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)  pp. 353-358, 2021
Editor
IEEE
Palabras clave
Elevators
genetic algorithms
Quality of Service
uncertainty ... [+]
Elevators
genetic algorithms
Quality of Service
uncertainty
passenger data
software in the loop simulation [-]
Resumen
Elevators, as other cyber-physical systems, need to deal with uncertainty during their operation due to several factors such as passengers and hardware. Such uncertainties could affect the quality of ... [+]
Elevators, as other cyber-physical systems, need to deal with uncertainty during their operation due to several factors such as passengers and hardware. Such uncertainties could affect the quality of service promised by elevators and in the worst case lead to safety hazards. Thus, it is important that elevators are extensively tested by considering uncertainty during their development to ensure their safety in operation. To this end, we present an uncertainty testing methodology supported with a tool to test industrial dispatching systems at the Software-in-the-Loop (SiL) test level. In particular, we focus on uncertainties in passenger data and employ a Genetic Algorithm (GA) with specifically designed genetic operators to significantly reduce the quality of service of elevators, thus aiming to find uncertain situations that are difficult to extract by users. An initial experiment with an industrial dispatcher revealed that the GA significantly decreased the quality of service as compared to not considering uncertainties. The results can be used to further improve the implementation of dispatching algorithms to handle various uncertainties. [-]
Sponsorship
Comisión Europea
ID Proyecto
info:eu-repo/grantAgreement/EC/H2020/871319/EU/Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for Cyber-Physical Systems of Systems/ADEPTNESS
Colecciones
  • Congresos - Ingeniería [423]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace