Title
Time saving analytical modelling and design of PCBS with through-hole and blind thermal viasAuthor
Publication Date
2025Other institutions
https://ror.org/00wvqgd19Ingeteam (Spain)
Version
PostprintDocument type
Conference ObjectLanguage
EnglishRights
© 2025 IETAccess
Open accessPublisher’s version
https://doi.org/10.1049/icp.2025.2012Publisher
IETKeywords
PCB Thermal Management
Thermal Resistance Modelling
Analytical Thermal Model
ODS 4 Educación de calidad ... [+]
Thermal Resistance Modelling
Analytical Thermal Model
ODS 4 Educación de calidad ... [+]
PCB Thermal Management
Thermal Resistance Modelling
Analytical Thermal Model
ODS 4 Educación de calidad
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura [-]
Thermal Resistance Modelling
Analytical Thermal Model
ODS 4 Educación de calidad
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura [-]
Abstract
High-power-density converters concentrate heat in smaller areas of printed circuit boards (PCBs), a challenge exacerbated by Gallium Nitride (GaN)-based components in surface-mount device (SMD) packag ... [+]
High-power-density converters concentrate heat in smaller areas of printed circuit boards (PCBs), a challenge exacerbated by Gallium Nitride (GaN)-based components in surface-mount device (SMD) packages. While these components reduce parasitic inductance and electromagnetic interference (EMI), they also transfer heat directly to the PCB, increasing local temperatures. Traditionally, PCB thermal design relies on computational fluid dynamics (CFD), which is computationally expensive and requires multiple iterations. This paper presents an analytical thermal model to evaluate and optimise PCB thermal resistance with significantly reduced simulation time. The model examines the influence of design parameters on thermal resistance for through-hole and blind vias, identifying optimal via diameters and spacing to minimise thermal resistance while limiting impacts on copper pouring areas (and parasitic inductance). By addressing both the area beneath the heat source and its surroundings, the model provides a comprehensive understanding of PCB thermal behaviour. Validation against CFD simulations shows a deviation of only 7%, with substantially lower computational time. [-]