Izenburua
How Do Deep Learning Faults Affect AI-Enabled Cyber-Physical Systems in Operation? A Preliminary Study Based on DeepCrime Mutation OperatorsArgitalpen data
2023Bertsioa
PostprintaDokumentu-mota
Kongresu-ekarpenaHizkuntza
engEskubideak
© 2023 IEEESarbidea
Sarbide irekiaArgitaratzailearen bertsioa
https://doi.org/10.1109/ESEM56168.2023.10304794Non argitaratua
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM) New Orleans, 26-27 October, 2023Argitaratzailea
IEEEGako-hitzak
Deep learningArtificial Neural Networks
Cyber Physical Systems
ODS 9 Industria, innovación e infraestructura
Gaia (UNESCO Tesauroa)
InformatikaLaburpena
Cyber-Physical Systems (CPSs) combine digital cyber technologies with physical processes. As in any other software system, in the case of CPSs, the use of Artificial Intelligence (AI) techniques in ge ... [+]
Cyber-Physical Systems (CPSs) combine digital cyber technologies with physical processes. As in any other software system, in the case of CPSs, the use of Artificial Intelligence (AI) techniques in general, and Deep Neural Networks (DNNs) in particular, is contantly increasing. While recent studies have considerably advanced the field of testing AI-enabled systems, it has not yet been investigated how different Deep Learning (DL) bugs affect AI-enabled CPSs in operation. This work-in-progress paper presents a preliminary evaluation on how such bugs can affect CPSs in operation by using a mobile robot as a case study system. For that, we generated DL mutants by using operators proposed by Humbatova et al., which are operators based on real-world DL faults. Our preliminary investigation suggests that such bugs are more difficult to detect when they are deployed in operation rather than when testing their DNN in an off-line setup, which contrast with related studies. [-]
Finantzatzailea
Gobierno VascoGobierno Vasco
Gobierno Vasco
Programa
Elkartek 2022Elkartek 2022
Ikertalde Convocatoria 2022-2023
Zenbakia
KK-2022-00119KK-2022-00007
IT1519-22
Laguntzaren URIa
Sin informaciónSin información
Sin información
Proiektua
Edge Technologies for Industrial Distributed AI Applications (EGIA)SIIRSE project (SIIRSE)
Ingeniería de Software y Sistemas (IKERTALDE 2022-2023)