eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
s10515-025-00489-6.pdf (1.149Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Enhancing multi-objective test case selection through the mutation operator
Author
Ugarte Querejeta, Miriam
Valle Entrena, Pablo
Illarramendi, Miren
Arrieta, Aitor
Research Group
Ingeniería del software y sistemas
Version
Published version
Rights
© 2025 Springer
Access
Embargoed access
URI
https://hdl.handle.net/20.500.11984/13917
Publisher’s version
https://doi.org/10.1007/s10515-025-00489-6
Published at
Automated Software Engineering  Vol. 32. N. Art. 18, 2025
Publisher
Springer Nature
Abstract
Test case selection has been a widely investigated technique to increase the cost-effectiveness of software testing. Because the search space in this problem is huge, search-based approaches have been ... [+]
Test case selection has been a widely investigated technique to increase the cost-effectiveness of software testing. Because the search space in this problem is huge, search-based approaches have been found effective, where an optimization algorithm (e.g., a genetic algorithm) applies mutation and crossover operators guided by corresponding objective functions with the goal of reducing the test execution cost while maintaining the overall test quality. The de-facto mutation operator is the bit-flip mutation, where a test case is mutated with a probability of 1/N, N being the total number of test cases in the original test suite. This has a core disadvantage: an effective test case and an ineffective one have the same probability of being selected or removed. In this paper, we advocate for a novel mutation operator that promotes selecting cost-effective test cases while removing the ineffective and expensive ones. To this end, instead of applying a probability of 1/N to every single test case in the original test suite, we calculate new selection and removal probabilities. This is carried out based on the adequacy criterion as well as the cost of each test case, determined before executing the algorithm (e.g., based on historical data). We evaluate our approach in 13 case study system, including 3 industrial case studies, in three different application domains (i.e., Cyber-Physical Systems (CPSs), continuous integration systems and industrial control systems). Our results suggests that the proposed approach can increase the cost-effectiveness of search-based test case selection methods, especially when the time budget for executing test cases is low. [-]
Funder
Gobierno Vasco
Program
Ikertalde Convocatoria 2022-2023
Number
IT1519-22
Award URI
Sin información
Project
Ingeniería de Software y Sistemas (IKERTALDE 2022-2023)
Collections
  • Articles - Engineering [753]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace