eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
GSMOTE_v2.pdf (275.8Kb)
Registro completo
Impacto
Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Generalized SMOTE: A universal generation oversampling technique for all data types in imbalanced learning
Autor-a
Cernuda, Carlos
Reguera-Bakhache, Daniel
Aguirre, Aitor
Iturbe Urretxa, Mikel
Garitano, Iñaki
Zurutuza, Urko
Grupo de investigación
Análisis de datos y ciberseguridad
Versión
Postprint
Derechos
© Los autores, 2021
Acceso
Acceso abierto
URI
https://hdl.handle.net/20.500.11984/13905
Identificador
https://caepia20-21.uma.es/inicio_files/caepia20-21-actas.pdf
Publicado en
Conference of the Spanish Association for Artificial Intelligence (CAEPIA)  19. Málaga, 2021
Editor
CAEPIA
Palabras clave
Imbalanced Learning
Oversampling Techniques
Resumen
A common problem that arises when facing classification tasks is the class imbalance problem, which happens when one or more classes are heavily underrepresented compared to the rest, being usually th ... [+]
A common problem that arises when facing classification tasks is the class imbalance problem, which happens when one or more classes are heavily underrepresented compared to the rest, being usually those minority classes the ones of interest. A natural solution consists of correcting the imbalance by sampling methods, being Synthetic Minority Oversampling TEchnique (SMOTE) the most widely used method. In the same way as all other oversampling techniques, it relies on using distances/similarities in order to focus on the neighborhoods of minority samples in the synthetic samples generation procedure, thus it is meant for pure numerical data. Nevertheless, it is really common to collect categorical data or to discretize numeric attributes as a preprocessing step, being limited to random sampling approaches to correct imbalance. Some approaches have been proposed to deal with mixed-type data or pure categorical data, but they ignore part of the information of the samples or end up being almost random approaches. We propose GSMOTE, a generalization of SMOTE method, suitable for any data type. For the neighborhoods determination, the distance between samples is obtained by means of a trans formation of Gower’s General Similarity Coefficient into a novel General Distance Coefficient, in which the part corresponding to the way of measuring similarities between categories in categorical variables has been replaced by a recently presented similarity measure called Variable Entropy measure, inspired by Shannon’s Entropy. GSMOTE has been tested on six public imbalanced datasets, with different characteristics and imbalance levels. [-]
Financiador
Gobierno Vasco
Gobierno de España
Programa
Elkartek 2021
Programa Estatal de Investigación, Desarrollo e Innovación orientada a los retos de la sociedad en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016, convocatoria del 2017
Número
KK-2021-00091
TIN2017-84658-C2-2-R
URI de la ayuda
Sin información
Sin información
Proyecto
REal tiME control and embeddeD securitY (REMEDY)
Integración de Conocimiento Semántico para el Filtrado de Spam basado en Contenido (SKI4SPAM)
Colecciones
  • Congresos - Ingeniería [431]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace