Erregistro soila

dc.contributor.authorSáez de Cámara Garcia, Xabier
dc.contributor.authorFlores Barroso, Jose Luis
dc.contributor.authorArellano Bartolomé, Cristóbal
dc.contributor.authorUrbieta Artetxe, Aitor
dc.contributor.authorGaritano, Iñaki
dc.contributor.authorZurutuza, Urko
dc.date.accessioned2025-07-08T08:10:00Z
dc.date.available2025-07-08T08:10:00Z
dc.date.issued2025
dc.identifier.isbn978-0-443-29032-9en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=189452en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/13900
dc.description.abstractThe cybersecurity field has been steadily adopting rapid advances in artificial intelligence (AI) and machine learning (ML) techniques for various purposes, such as threat detection and response, with promising results. Obtaining high-quality data for model training is fundamental to creating robust solutions; however, the scarcity of IoT security datasets remains a limiting factor in developing ML-based security systems for IoT scenarios. Broadly, there are two methods for generating datasets: using physical IoT hardware on operational networks and employing virtualization-based systems. The former provides accurate and representative data but can be costly, time-consuming, difficult to adapt, and potentially risky. On the other hand, the latter offers a safer, more flexible, and cost-effective approach for various research purposes, despite not replicating exact hardware conditions. This chapter will delve into the practical process of dataset generation from the point of view of these two approaches. First, regarding the virtualized approach, we will leverage the recently published Gotham testbed, a reproducible, flexible, and extendable security testbed based on emulated nodes that mixes containerization and virtual machine technologies. This testbed can be used to generate various datasets of network traces, including activities from real malware emulated in the platform or real attack activities from the internet interacting with the testbed. Then, based on the VARIoT project, we will explore the platform and methodology to create datasets of IoT traffic under realistic conditions, including both legitimate and malicious traces, using a laboratory set of physical IoT hardware devices.en
dc.format.extent70 p.en
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2025 Elsevier Incen
dc.subjectBotneten
dc.subjectEmulationen
dc.subjectInternet of Thingsen
dc.subjectMachine learningen
dc.subjectNetwork securityen
dc.subjecttestbeden
dc.subjectODS 4 Educación de calidades
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.titlePractical approaches towards IoT dataset generation for security experimentsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceAdvanced Machine Learning for Cyber-Attack Detection in IoT Networksen
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedfalseen
local.description.publicationfirstpage309en
local.description.publicationlastpage373en
local.identifier.doihttps://doi.org/10.1016/B978-0-44-329032-9.00017-8en
local.embargo.enddate2145-12-31
local.contributor.otherinstitutionhttps://ror.org/03hp1m080es
local.source.detailsChapter 12en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_3248en
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bcceen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept1147en
dc.unesco.clasificacionhttp://skos.um.es/unesco6/120903en


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila