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Abstract

Title: Development and Validation of a Digital Twin Simulation Platform for Li-ion
Batteries.

The adoption of large-scale Lithium-ion Batteries (LIBs) has been growing steadily
and evolving. These installations involve the interconnection of multiple batteries to form
larger and more powerful systems capable of providing megawatt-hours (MWh) of stored
energy. LIBs have emerged as a promising solution for electrical energy storage due to
their decreasing prices and improved manufacturing efficiency. This combination has made
LIBs more accessible, and their demand has rapidly increased in key applications such as
electric vehicles and stationary applications.

In the context of LIBs, specifically in the case of modules, individual heterogeneities
and imbalances among the different cells that compose the module pose a significant
technological challenge. In fact, these disparities can compromise the energy efficiency
and overall lifespan of the battery module. While numerous studies have been conducted
on individual cells, there is a significant gap in understanding and adequately considering
the effects and complexities at the module level.

In this thesis, an innovative methodology is proposed to develop module-level battery
models that include thermal and electrical components, as well as a State of Charge (SoC)
estimator. These module-level models are based on equivalent circuits extrapolated from
widely-used cell-level models. A detailed thermal model is proposed to capture the interac-
tions between each cell within the battery system, and an electrical model is developed to
simulate the behavior of individual cells through co-simulation or parallel execution. Ad-
ditionally, an approach to implement these models in a cloud-based simulation platform
is presented, enabling estimations of each cell’s performance, identification of potential
issues, and providing sufficient computational capacity.

The proposed methodology has been validated at laboratory level by means of a proto-
type specifically built for this purpose. The correct operation of the thermal and electrical
model and the SoC estimator at the cell level has been demonstrated by means of a series
of laboratory tests. These models have then been adapted at module level, taking into
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account the electrical and geometrical characteristics of the module. By means of a series
of laboratory tests carried out on the module prototype, the correct extrapolation of the
cell models to the module level has been demonstrated. In addition, and with the aim of
evaluating the heterogeneity and imbalance detection capacity of the developed models,
two case studies have been conducted. In them, certain anomalies have been introduced
in the laboratory prototype, and it has been proved that the models exhibit these func-
tionalities. In particular, two types of anomalies have been introduced: a) the first one
consists of a voltage unbalance between the cells of the module and b) the second one
consists of a thermal unbalance in the module by means of a thermal blanket. In both
case studies, the ability to detect irregularities in the module has been demonstrated.

The proposed methodology has been validated at the laboratory level using a specif-
ically designed prototype. The correct operation of the thermal and electrical models,
as well as the SoC estimator at the cell level, has been demonstrated through a series
of laboratory tests. Subsequently, these models have been adapted to the module level,
taking into account the corresponding electrical and geometric characteristics. Through
a series of laboratory tests conducted on the module prototype, the proper extrapolation
of cell-level models to the module level has been demonstrated. Furthermore, two case
studies have been conducted to evaluate the capability of the developed models to detect
heterogeneities and imbalances. These case studies involved the introduction of anomalies
in the laboratory prototype, such as voltage imbalances between module cells and thermal
imbalances using a thermal blanket. In both cases, the models showed the ability to detect
irregularities in the module.

In general, the methodology proposed in this thesis allows to have a holistic model of
a LIB at module level, which represents the electrical and thermal behaviour of each of
the cells that compose the module, thus contributes to a better understanding allowing
an adequate monitoring of the system.

Key words: Digital Twin, Cloud computing, Battery models, State of Charge
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Laburpena

Titulua: Litio-ioi Baterietarako Modulu-mailako Modelatze Ikuspegia: Hodeian Oinar-
ritutako Digital Twin Simulazio Plataforma

Eskala handiko Litio-Ioizko Bateriek (LIBek) etengabeko hazkunde eta bilakaera dara-
mate. MWh-rarteko energia biltegiratzeko gai diren instalazio handi eta sendo hauek er-
atzeko bateria askoren arteko konexioa beharrezkoa da. Energia elektrikoaren biltegiratze-
sistemen artean, LIBak etorkizun handiko irtenbide gisa nabarmentzen dira hauen prezioa
jaitsi eta fabrikazioaren eraginkortasuna hobetu den neurrian. Honela, LIBen instalazioa
bideragarriagoa da eta hauen eskaria azkar handitu da energiaren funtsezko aplikazioetan,
hala nola ibilgailu elektrikoetan eta aplikazio geldikorretan.

LIBen testuinguruan, eta bereziki LIBen moduluetan, hauek osatzen dituzten zelulen
arteko heterogeneotasun eta desoreka indibidualak erronka teknologiko esanguratsua dira.
Izan ere, ezberdintasun horiek modulu osoaren eraginkortasun energetikoa eta bizitza
erabilgarria arriskuan jar ditzakete. Banakako zelda horien esparruan ikerketa ugari
egin diren arren, barne-efektu guztien kontsiderazio eta konplexutasunen modulu-mailako
ulermenean gabezia nabarmena dago.

Testuinguru honetan, tesi honek bateriaren ereduak modulu-mailan garatzeko metodolo-
gia berritzailea aurkeztu du. Eredu horiek efektu termiko eta elektrikoak algoritmoen
bidez deskribatzen dituzte. Horrez gain, bateriaren karga-egoera (SoC, ingelesezko siglen
arabera) estimatzen duen algoritmoa proposatu da. Modulu-mailako ereduak zelda-mailan
erabili ohi diren zirkuitu baliokideen estrapolazioan oinarritzen dira. Modu honetan, zelda
guztiak eta hauen elkarrekintzak kontuan hartzen dituen modulu-mailako eredu termikoa
eta zelda bakoitza paraleloan simulatuko duen eredu elektrikoa ere proposatu dira. Jar-
raian, eredu horiek hodeian oinarritutako simulazio-plataforma batean inplementatzeko
estrategia aurkeztu da. Oro har, metodologia honek moduluko zelda bakoitzaren egoera
estimatzeko eta arazo potentzialak identifikatzeko beharrezko konputazio-ahalmena duen
ingurunea eskaintzen du.
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Metodologia honen balioztatzean prototipo bat eraiki eta entseatu da zelda-mailako
eredu termiko, elektriko eta SoC estimatzaileak zuzen funtzionatzen dutela frogatzeko.
Ondoren, eredu horiek modulu-mailara egokitu dira, moduluaren ezaugarri elektriko eta
geometrikoak kontuan hartuta. Moduluaren prototipoa laborategian entseatuz zelda-
mailako ereduak modulu-mailara behar bezala estrapolatu direla frogatu da. Gainera,
garatutako ereduen heterogeneotasunak eta desorekak detektatzeko gaitasuna ebaluatzeko,
bi azterketa-kasu gauzatu dira laborategiko moduluaren prototipoan hainbat anomalia
ezarriz: a) lehenak, moduluko zelden arteko tentsio-desoreka du, eta b) bigarrenak, berriz,
manta termiko baten bidez eragindako desoreka termikoa. Moduluan irregulartasunak de-
tektatzeko gaitasuna bi azterketa-kasuetan frogatu da.

Oro har, tesi honetan proposatutako metodologiak LIBen modulu-mailako eredu holis-
tikoa garatzeko aukera ematen du. Eredu huek modulua osatzen duten zelda bakoitzaren
portaera elektriko eta termikoak irudikatzen dituzte eta, hala, sistema modu egokian mon-
itorizatu daiteke.

Hitz gakoak: Digital Twin, Cloud computing, Bateria-ereduak, Karga-egoera
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Resumen

Título: Enfoque de Modelado a Nivel de Módulo para Baterías de Ión-Litio: una Plataforma
de Simulación de Gemelo Digital Basada en la Nube

La adopción de Baterías de Litio-ion (LIBs) a gran escala ha experimentado un crec-
imiento constante y continuo. Estas instalaciones implican la interconexión de múltiples
baterías para formar sistemas más grandes y potentes, capaces de proporcionar megavatios-
hora (MWh) de energía almacenada. Las LIBs han surgido como una solución prometedora
para el almacenamiento de energía eléctrica debido a su disminución de precios y mejora
en la eficiencia de fabricación. Esta combinación ha hecho que las LIBs sean más acce-
sibles y su demanda haya aumentado rápidamente en aplicaciones clave, como vehículos
eléctricos y aplicaciones estacionarias.

En el contexto de las LIBs, y específicamente en el caso de los módulos, las hetero-
geneidades y desequilibrios individuales entre las diferentes celdas que conforman el mó-
dulo representan un desafío tecnológico significativo. De hecho, estas disparidades pueden
comprometer la eficiencia energética y la vida útil del módulo de la batería en su conjunto.
Aunque se han realizado numerosos estudios en el ámbito de las celdas individuales, existe
una brecha significativa en la comprensión y la consideración adecuada de los efectos y la
complejidad a nivel de módulo.

En esta tesis, se propone una metodología innovadora para desarrollar modelos de
batería a nivel de módulo que incluyen componentes térmicos, eléctricos y un estimador
de SoC. Estos modelos a nivel de módulo se basan en circuitos equivalentes extrapolados de
modelos ampliamente utilizados a nivel de celda. Se propone un modelo térmico que detalla
todas las celda y su interacción en un sistema de baterías, así como un modelo eléctrico
que ejecuta individualmente cada celda mediante co-simulación o ejecución simultánea en
procesos paralelos. Además, se presenta un enfoque para implementar estos modelos en
una plataforma de simulación basada en la nube, lo que permite obtener estimaciones de
cada celda del módulo, identificar problemas potenciales y proporcionar un entorno con
suficiente capacidad computacional.
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La metodología propuesta se ha validado a nivel de laboratorio utilizando un prototipo
específicamente diseñado para este propósito. Se ha demostrado el correcto funcionamiento
del modelo térmico, eléctrico y del estimador de SoC a nivel de celda a través de una se-
rie de ensayos de laboratorio. Luego, estos modelos se han adaptado a nivel de módulo
teniendo en cuenta las características eléctricas y geométricas correspondientes. Mediante
una serie de ensayos de laboratorio realizados en el prototipo del módulo, se ha demostrado
la correcta extrapolación de los modelos de celda a nivel de módulo. Además, se han eje-
cutado dos casos de estudio para evaluar la capacidad de detección de heterogeneidades y
desequilibrios de los modelos desarrollados. Estos casos de estudio involucraron la intro-
ducción de anomalías en el prototipo de laboratorio, como desequilibrios de tensión entre
las celdas del módulo y desequilibrios térmicos mediante el uso de una manta térmica. En
ambos casos, se demostró la capacidad de detección de irregularidades en el módulo.

En general, la metodología propuesta en esta tesis proporciona un modelo holístico de
una LIB a nivel de módulo, que representa los comportamientos eléctricos y térmicos de
cada una de las celdas que lo componen. Esto permite una monitorización adecuada del
sistema y contribuye a un mejor entendimiento y monitorización de las LIBs a gran escala.

Palabras clave: Gemelo Digital, Cloud computing, Modelos de Batería, Estado de
Carga
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Introduction

The use of Lithium-ion Batteries (LIBs) has experienced significant growth in recent
years due to their versatility and energy storage capabilities [1, 2] as can be seen in Figure
1. Energy storage has become a key technology with the potential to transform the way
energy is produced and consumed in society today. LIBs play a key role in this revolution,
allowing electrical energy to be stored efficiently and used when and where it is needed.
Manufacturing efficiency improvements, market competition and increased demand for
batteries for various applications, such as Electric Vehicles (EVs) and energy storage, have
led to a decrease in LIB prices as depicted in Figure 2, making them more affordable and
accessible to a wide range of applications and the general public [3].

Figure 1: Annual LIB demand by application. Adapted from:[2].

LIBs offer an adaptable and efficient solution to meet the energy demands of different
applications, such as EVs and off-grid power supply [1]. With a wide variety of sizes and
chemistry types, these batteries are ideal for various needs, whether that includes higher
power, endurance, range, or even large-scale applications in the Megawatt-Hour (MWh)
range [4–6]. The analysis and optimisation of these installations, which involve a large
number of cells connected in modules and multiple modules forming packs, present sig-
nificant technical and scientific challenges. By researching key aspects such as battery
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Figure 2: Falling Prices for Lithium-Ion Batteries, 2013-2022. Adapted from:[3].

performance, efficiency, thermal management, lifetime and safety of these systems, a deep
understanding of battery technology is being acquired and innovative solutions being de-
veloped for industry. These challenges and possibilities make this field a promising area
of research.

Current deployed battery installations are growing in size and capacity, with an in-
crease in the MWh scale. In large-scale battery systems, thousands of cells or modules
connected in series-parallel configurations are typically used to suit the needs of each ap-
plication. In addition, due to digitalisation and technological advances, these batteries are
increasingly connected to each other. The demand for large-scale energy storage systems
has increased significantly in various sectors, such as renewable energy generation and
electric transportation. To achieve higher capacity and more efficient operation, multiple
batteries are interconnected to form larger and more powerful systems. In addition, ad-
vances in communication technology and digitisation have enabled greater integration and
control of battery systems. Interconnection of batteries facilitates real-time monitoring,
centralised control and intelligent energy management. This results in better coordina-
tion and optimisation of battery performance, maximising battery life and improving the
reliability of the entire system.

These technologies enable the collection of real-time operational data from deployed
batteries. This abundance of data presents opportunities for various applications, includ-
ing data analysis techniques such as machine learning, pattern detection, and anomaly
identification. The interconnection of batteries and the analysis of the collected data of-
fer multiple opportunities in various aspects. This includes analysis of battery efficiency,
development of more sophisticated management algorithms, research into new battery
technologies or customisation of batteries for different applications.
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This data can be used to create digital replicas of batteries, known as Digital Twin (DT)
[7]. In the case of batteries, a DT is a virtual copy that interacts closely with the physical
entity and uses all the data generated over its lifetime to provide additional services and
optimise its performance [8]. DTs can be a very powerful tool to help implement the
benefits of the aforementioned data.

In this context of a large amount of data available, DT algorithms become more capable
and effective, since they can take benefit from data obtained from different cells or battery
packs, overcoming the limitation of using data collected solely in a single Battery Man-
agement System (BMS). The data generated by the different batteries could be stored in
a single database. Thus, the database could store data from new operating conditions and
then recognise degradation patterns of the individual batteries by having more knowledge
to compare. Moreover, remote control is possible due to the incipient connectivity, which
offers the possibility of create new and more advanced strategies and to offer additional
services, such as anomaly detection in operation or predictive maintenance.

Detecting abnormal temperatures in lithium battery modules is crucial to ensure safety
and optimal performance. Temperature sensors are employed to monitor variations and
transmit data to a management system, enabling corrective measures to be taken when
dangerous temperatures are detected. However, due to the cost of these sensors, tem-
perature measurements are typically limited to two or three strategic points within the
module, resulting in a lack of temperature information from the rest of the module. In
large-scale LIBs, it is common to find lithium cells with different SoC and State of Health
(SoH). This variability presents imbalances and heterogeneities in the module as shown in
Figure 3, which can affect its performance and energy efficiency.

Low Hight

Figure 3: Illustration depicting the disparities and heterogeneities among states within
the module.

Optimisation of module performance is achieved by obtaining accurate estimates at the
module level, which improves the performance of the entire module, not just its individ-
ual cells. These accurate estimates also enable early identification of potential problems
within the module, which facilitates predictive maintenance and prevents major failures
before they happen. In addition, by analysing the operating conditions that cause faster
degradation of the module, corrective action can be taken in a timely way to prolong its
lifetime and maximise its efficiency.
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Consideration of the cells in the LIB module is therefore crucial to understand and
address these imbalances, heterogeneities and variations in cell states. In the context of
this thesis, the cell will be considered as the smallest unit, and these cells will be grouped
into battery modules through series and parallel connections. These modules will be
combined to form a complete battery pack or system.

Individual cells have their own SoC or temperature and are subject to non-linear and
coupled phenomena, which have a direct impact on the performance of the module. Such
imbalances can manifest themselves in terms of voltage, SoC, temperature and even SoH
[9–11]. These disparities compromise the simple sum of the cells that compose the module
and can significantly influence the safety of the system. When cells exhibit imbalances in
terms of voltage, SoC or temperature, these imbalances compromise the simple sum of the
cells and can lead to sub-optimal operation or even dangerous situations.

Imbalances in voltage and SoC, for example, can result in uneven load distribution
between cells, which leads to unequal use of cell capacity and can lead to overcharging or
over-discharging of some cells. This can negatively affect the stability and lifetime of the
system as a whole. In addition, temperature imbalances can result in uneven heating of
the cells, which in turn can accelerate degradation and increase the risk of failure or even
fire. Therefore, proper monitoring of the cells that form the module is required. Accurate,
reliable and real-time models need to be developed to obtain up-to-date information on
the state of the LIBs [12–15]. This is essential to optimise energy performance, improve
efficiency and ensure the safety of the system as a whole.

The algorithms used in LIBs play a key role in estimating their X-key States (SoX)
and analysing their behaviour. While some states, such as voltage and temperature, can
be directly measured by sensors, other critical states such as SoC and SoH are difficult
or even unfeasible in practice to measure accurately and non-invasively during normal
battery operation. To address this challenge, battery models have been developed based
on voltage, current and temperature measurements, which are data that can be directly
measured and collected. In the literature, there are several scientific articles proposing
different types of battery models and estimations [16–18]. However, most of these works
focus on the cell-level and do not adequately consider the effects and complexity at the
module-level.

Module-level studies are less common and, in many cases, the information to develop
them is limited or proprietary, belonging to companies in the industry. Information on
technical specifications of the individual cells used, temperature and voltage data, thermal
management information or detailed data on module structure and connections. Lack of
access to this information may limit comprehensive studies at module level. In the limited
cases where module-level work is conducted, the module is generally considered as the
smallest unit to be estimated, which oversimplifies the reality and underestimates the
real effects such as [19]. This effect can be complex interactions between cells within the
module, such as thermal, voltage or SoC imbalances, for example.
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Within the framework of this thesis, a methodology for the development and deploy-
ment of a Digital Twin Simulation Platform (DTSP) is proposed, using simulation tools
known as DT and cloud-based technologies. This platform will focus on module-level mod-
els that consider the characteristics and behaviour of individual cells within the module.
The development of a module-level thermal model to estimate the thermal gradient inside
the module is proposed, as well as a cell-by-cell electric model together with a SoC esti-
mation algorithm. These models and estimator, by considering all the cells in the module,
are computationally intensive and require more processing power. Therefore, a new issue
may arise related to running these heavier algorithms in commercial BMS. These systems
may lack the computational power needed to efficiently run these algorithms or may not
be specifically designed for this type of task. This problem is addressed by taking advan-
tage of the incipient connectivity, that allows the deploying these models in the Cloud.
Additionally, since the DT of LIBs are a medium for broader purposes such as plant or
fleet management strategies, where cloud connectivity is needed, this approach enables
the application of key communication and networking technologies such as virtualisation,
service-oriented architecture, real-time monitoring and opens up the potential of longer
and safer LIBs lifetime.

In the previous paragraphs, the main challenges related to the monitoring of LIBs at
the module-level, considering the states of each cell, have been mentioned. In summary, the
importance of developing module-level models and state estimators to carry out a deeper
and real-time monitoring of the module has been highlighted, as well as the lack of works
addressing this issue in the scientific literature. Therefore, the hypotheses formulated for
this study are as follows:

- H1: Models of modules that consider individual cells provide relevant additional
information to that obtained by module sensors.

- H2: Cloud Computing technologies may offer the computational power and memory
required to the deployment of module-level models, which allows additional services
to be offered compared to local environments.

- H3: The implementation of the advanced algorithms in the Cloud could allow to
detect anomalies and battery failures more efficiently and faster, which will lead to
the mitigation of the computational load of the onboard BMS and improve system
performance.
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To evaluate these hypotheses, the following objectives are formulated. These objectives
will be pursued to verify the validity of the hypotheses after reviewing the State of the
Art (SoA). The main objective of this PhD thesis is to address the identified challenges
and accomplish the following:

Develop, Validate, and Deploy Module Level Models within a Cloud-based
Digital Twin Simulation Platform for Lithium-Ion Battery that incorporate

the SoX variations of individual cells

Besides the main objective, other secondary objectives are defined for the successful
development of this Ph.D. Thesis:

- O1: Develop and validate cell-level models to understand the behaviour and
interactions of basic system characteristics, in order to use them as a basis for ex-
trapolation to more advanced module-level models.

- O2: Develop and validate module-level models to understand and predict the
behaviour of the overall system and the interactions of multiple cells in the module,
using the models developed in the previous objective as a basis.

- O3: Develop a secure and scalable cloud architecture that enables efficient
deployment and execution of models, ensuring proper integration with all the services
and resources comprising the system.

- O4: Select the most appropriate compute and memory resources on the
cloud platform to improve system performance and efficiency, ensuring optimal re-
source utilisation.

- O5: Develop an alarm system for early detection and notification of poten-
tial problems in the BMS, anticipating system failures, improving system efficiency
and security, minimizing interruptions or issues during operation, and empowering
users to take corrective action.

- O6: Develop and assemble a functional prototype, establish and optimize nec-
essary connections and communication channels, and configure the Cloud platform
to enable seamless transmission and reception of real-time data from the prototype.

To achieve this purpose, the thesis document has been organised in six main Chapters
summarised in Figure 4.
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Chapter 1 aims to identify the appropriate modelling framework for the development
of the target simulation platform. To achieve this, firstly, DT-based technologies are
discussed, as well as the basic and more advanced functionalities of current BMSs, which
include monitorisation of physical parameters, estimation of battery states, electrical and
thermal management, communications and fault detection. Following, the main methods
of electrical and thermal modelling of LIB cells are reviewed. Furthermore, a review of
the literature related to extrapolation strategies of these models to module-level is carried
out. Finally, the cloud services offered in the market are analysed, to determine the most
suitable one. Within this comprehensive review, the main shortcomings and possible areas
of improvement in the current SoA will be highlighted. These findings will provide a solid
basis for the definition of the contributions proposed in this Doctoral Thesis.

Chapter 2 introduces the overall methodology designed to guide the research activi-
ties undertaken in this thesis. Four key stages are defined and comprehensively detailed:
i) Parameter estimation of the target cells (Stage 0), ii) Development and validation of the
electrical and thermal models at the cell-level (Stage 1), iii) Module prototype assembly
and data connectivity to the cloud (Stage 2), iv) Extrapolate cell models to the module
level, integrate them effectively, and validate their accuracy (Stage 3), and v) Implementa-
tion of the module-level models in the DTSP (Stage 4). Each stage is discussed in depth,
presenting the anticipated contribution and relating the different hypotheses with each
stage.

Chapter 3 focuses on the development of the electrical and thermal models at the
cell level. First, the sellected cell is presented. Then, the electric and thermal models are
explained in detail. Afterwards, laboratory tests carried out to estimate the parameters
describing the electrical and thermal characteristics of the target cells are described. Fi-
nally, the results obtained after implementing these models are presented. Each model is
validated against slow dynamic profiles and faster, more realistic profiles. In addition, an
exhaustive discussion of these results is carried out.

Chapter 4 focuses on the assembly of the prototype module developed within the
scope of this thesis, as well as on the extrapolation and validation of the models at mod-
ule level. The primary objective of this prototype is to validate the entire simulation
platform (DTSP) and conduct validation tests to gather data for comparative analysis
against estimations made. The chapter begins by providing a comprehensive description
of the module’s characteristics, including its nominal specifications after assembly, as well
as the necessary hardware for cloud connectivity. Next, the additional required tests for
parameter estimation at the module level are detailed. The chapter then outlines the
extrapolation of the thermal and electrical models from the cell level to the module level,
incorporating new geometries for the thermal model and detailing the parallel execution
of individual electric cell-level models, as each cell is assigned a dedicated model for si-
multaneous processing. The results obtained with each of the models are then presented,
evaluating them with both low dynamic profiles and faster dynamic profiles. Finally, the
approach adopted for the integration of these two models at module level is presented.
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Chapter 5 focuses on the description and validation of the DTSP developed in the
cloud. The initial Section provides a comprehensive overview of the diverse Cloud services
employed in the design and establishment of the simulation platform. Two case studies
are then studied: i) anomalies in the operation of the module and ii) the simulation of the
disconnection of the DT from the module. The results obtained in each case are presented
and their relevance and applicability are discussed. Finally, a critical discussion on the
use of DT tools in the battery context is made.

Chapter 6 draws the key conclusions from the various activities carried out in the
framework of this research. It lists the substantial contributions made and outlines the
limitations inherent in the developed models , highlighting prospects for future research.
A rigorous evaluation is made of the hypotheses put forward, and future research lines are
proposed.
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1
State of the Art

Summary
In this first chapter, a comprehensive review of the current state of the art in tech-

nologies relevant to the modelling of battery modules at the module level is presented. This
includes an exploration of the techniques and technologies associated with Industry 4.0 that
hold potential for this application. The analysis covers DT technologies in the context of
lithium-ion batteries, models and state estimators at both the cell and module level (in
particular, those based on equivalent circuits), and the use of Cloud technologies for the
deployment of such models. The main gaps identified in the existing literature are high-
lighted and form the basis for defining key contributions of this PhD thesis and the research
activities.
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1.1 Introduction

In this chapter, the current SoA in LIB modeling at the cell and module levels will be
reviewed. The first section will focus on the advancements and applications of DT tech-
nologies specifically in the context of batteries (Section 1.2). This will provide guidance
on the technologies that will be utilized throughout the thesis and help define the adopted
functionalities. The subsequent sections will delve into the existing literature on cell-level
models (Section 1.3), module-level models (Section 1.4), and the utilization of Cloud com-
puting (1.5) in battery modeling. By examining these four key aspects, a comprehensive
understanding of the current state of the art in LIB modeling will be achieved.

1.2 Digital Twin in the Lithium-Ion Battery Framework

Digitalisation and the incorporation of technologies are transforming industry and daily
life, requiring businesses to adapt to survive [20]. From the Industrial Revolution to the
present day, significant changes have been driven by innovations in energy, communication
and digitalisation [21–23]. Today, we are in the era of the Fourth Industrial Revolution or
Industry 4.0, where hyperdigitisation and cyber-physical concepts are fundamental [24].
This new approach promotes the creation of smart factories and more sophisticated prod-
ucts, supported by technologies such as collaborative robotics, additive manufacturing,
the Internet of Things (IoT), Big Data (BD) and Cloud Computing [25].

In the context of Industry 4.0, batteries play a key role in the evolving energy frame-
work [26]. Over time, advances have been made in the modelling and simulation of electri-
cal storage systems, especially driven by the telecommunications industry [27, 28]. These
approaches have evolved into more sophisticated models that accurately represent the per-
formance of the system and its interaction with the environment. The cutting-edge models
are able to self-manage and understand the state of the system and the environment in
which they operate, known as "Digital Twins" [29].

These virtual copies are intelligent systems that rely on realistic and accurate models
to achieve a deep understanding of the process and environment involved. However, the
concept of LIB modelling has changed over time. The concept of DT is often diffused
with similar terms such as Digital Model or Digital Shadow. In each of these concepts,
however, the level of interaction between the physical object and its virtual counterpart
differs [30]. This is represent in Figure 1.1. The Digital Model lacks data exchange, while
the Digital Shadow receives data from the physical object. The DT surpasses both by
enabling bidirectional data exchange, allowing for mutual control and impact between the
physical and virtual entities.
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Figure 1.1: Data Flow in a) Digital Model; b) Digital Shadow; c) Digital Twin.

1.2.1 Background and evolution of the term

The concept of the "Digital Twin" was introduced in early 2003 and became popular in
2014 with a Whitepaper published by Grieves [31]. He proposed a general and standard 3D
dimension architecture for DT. So, DT was defined as a three-dimensional architecture that
combines the physical and virtual product through data connections represented in Figure
1.2. NASA defined DT in 2010 as "an integrated multiphysics, multi-scale, probabilistic
simulation of an as-built vehicle or system that uses the best available physical models,
sensor updates, fleet history, etc., to mirror the life of its corresponding flying twin" [32].
In the aerospace industry, the concept has been successfully implemented [33].

Connections
Space

Measured and
reported data

Real Space Virtual Space

Model of Battery Pack
Virtual system

Battery Pack
Real system

Control parameters
and reporting

Figure 1.2: 3D Digital Twin System.

Subsequently, the definition of DT has undergone several evolution in each area in
terms of concept, core elements and specific applications [34–36]. However, all agree on
the importance of establishing a synchronous connection between the physical product
and its virtual replica. In 2012, both NASA and the US Air Force identified DT as a key
technology [37]. In 2014, when Grieve published the Whitepaper [31], the idea of DT was
widely disseminated, leading to its introduction in various application domains.

Since 2017, Gartner has listed DT as one of the 10 most promising technology trends
for the coming decades [38–41]. In between, in 2018, a significant change has been made to
the original DT architecture, adding two additional dimensions: DT Services and DT Data
[42, 43]. From 2020 on, the application of DT has been observed in various areas, including
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the field of energy and LIBs. Various studies and reviews have shown exponential growth
in the application of DT, especially from 2019 onwards [44–48]. In the field of batteries,
the use of DT started to appear mainly in 2017 and 2018, and has now experienced a
significant increase [49–52]. The whole evolution of the DT concept is summarised in
Figure 1.3.

2003 2005 2010 2012 2014 2018 20202017

Digital Twin was 
defined by NASA

Whitepaper of Digital
Twin was published
by Grieves

5 dimension Digital Twin 
architecture was proposed   

Digital Twin 
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Digital Twin concept
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NASA and U.S. Air Force
determined the Digital Twin

as a key technology

2023

The first stage
Concept of DT appeared

The second stage
DT was mainly applied
to aerospace industry

The third stage
DT was introduced

in more fields

The fourth stage
Consolidation of DT

concept

Figure 1.3: Digital Twin Concept Timeline from 2003 to Today.

Implementing the DT concept in the battery framework, a 5D simulation tool is de-
veloped as is represented in Figure 1.4 [42]. This innovative approach encompasses five
key dimensions: the physical space, the virtual space, the services, the DT data and the
connection linking them [31, 42, 43]. In the Physical Space, there is the actual battery
and its sensors that collect information such as voltages, currents and temperatures [53].
Meanwhile in the Virtual Space, a precise digital replica of the battery is created in terms
of geometry, properties and behaviour [54–56]. Through this digital replica, services such
as simulation, monitoring, optimisation, fault detection or efficient predictive maintenance
are provided allowing for in-depth analysis and informed decision making to improve bat-
tery performance and efficiency [53, 57]. This improvement of the Services Space benefits
both users and manufacturers by extending the range of control and efficiency in battery
usage, which is especially relevant in key economic sectors such as electromobility, industry
and stationary applications [43, 58].

Digital Twin Data is collected from a variety of sources throughout the life of the bat-
tery and represents a complete picture of the object [59]. This data, along with simulations
and modelling, is used to analyse battery operating conditions and fine-tune battery per-
formance. Managing large volumes of data in real-time involves significant computational
cost. However, through the creation of a DT specific to a battery model, it is possible
to optimise its use in multiple applications. Finally, the Connection Space is crucial to
ensure the active and synchronous interconnection of the other four dimensions mentioned
above. This space ensures real-time data flow and allows the physical, virtual, service and
data dimensions of the DT to interact effectively.

The DT concept has undergone significant developments in various applications in
recent years [59]. In the field of electric batteries, the Digital Battery or Battery Twin
concept has been developed, looking for maximisation of their performance and opera-
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Figure 1.4: 5D Digital Twin System. Adapted from [42].

tional efficiency. These batteries are found in a wide range of electronic devices, including
EVs and stationary applications [60, 61]. The DT allows for complete battery monitoring,
providing an in-depth view of the state of the battery and ensuring its correct operation
[62]. However, the biggest problem that modern batteries still have today is an intrin-
sic inability to measure their internal state, which is addressed by estimation algorithms
implemented in BMSs. The adoption of a Cloud-based DT would offer greater compu-
tational capabilities and increased data storage capacity, thus improving the monitoring
and optimisation of battery performance.

1.2.2 General Functionalities of Actual BMSs

In recent years, there has been an increased adoption of tools such as DT models to
add an additional layer of capabilities to existing BMSs. DTs have been presented as
a solution that enables the development of real-time virtual models of physical systems.
This trend is also reflected in the field of LIBs. In a DT battery, there is a close interaction
between the physical entity, its virtual counterpart and field data collection throughout
its lifetime. Furthermore, it offers a new concept of networked battery management and
service [63].
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A BMS is a electronic entity that primarily aims to guarantee safety and achieve effi-
cient performance in the battery context [64–66]. In order to ensure safety, it is imperative
that the battery operates within its Safe Operating Area (SOA), without exceeding prede-
termined voltage, temperature and current limits. In parallel, performance optimisation
involves the execution of electrical and thermal management functions, with the purpose
of meeting the demands of the application while maximising LIB life. The main functions
of the BMS are listed below and represented in the schematic diagram of Figure 1.5.

- Conversion of physical magnitudes into electric signals by means of sensors and inte-
grated circuits. This continuous collection of physical parameters from the battery
pack is essential for the LIB to operate within the SOA [67]. The data collected
mainly by BMS units are current, voltage, and cell temperature. In addition, they
can also monitor time, location, and ambient temperature, among others.

- Estimation of battery SoX to optimise performance and lifetime such as SoC, SoH,
State of Power (SoP), etc.

- Electrical power management encompasses a number of crucial operations, includ-
ing switching the application on and off, as well as controlling the charging and
discharging processes. Cell balancing is also performed to ensure uniform charging
and discharging in all cells of the battery pack [68].

- Thermal management: fan control, refrigerant fluid pumping, etc. [69].

- Communication with internal elements of the BMS itself as well as with peripheral
elements controlling the LIB such as the power converter or higher level management
systems.

- Detection and analysis of faults in the battery and BMS circuits, and activation of
the corresponding alerts and alarms.

The hardware topology of a BMS for large multi-cell LIBs is generally based on two
types of units [70, 71]: i) slave BMSs that include an Analogue Front-Ends (AFE) respon-
sible for monitoring the physical quantities of the LIBs; and ii) a master BMS responsible
for commanding the slaves, processing the data and performing more advanced manage-
ment, safety and diagnostic functions that require programmable electronic devices with
more processing power such as microcontrollers.

The slave units monitor the battery cells in the pack using sensors at different sam-
pling rates. Accurate measurement of LIB cell voltage is crucial to avoid overcharging and
over-discharging. The protective functions of the BMS do not need a very strict accuracy
requirement for current measurement, but it is necessary to minimise errors in the estima-
tion of battery states. It is also important to measure the temperature of the cells to keep
them within an optimal range. This way, their lifespan is prolonged and their thermal and
chemical stability ensured/guaranteed.
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Figure 1.5: Block diagram of the main functionalities of a generic BMS.

The BMS master unit, on the other hand, performs critical safety functions to ensure
a rapid response in the event that action is required. It can monitor the total current
and voltage of the whole battery module/system/pack, allowing it to communicate with
the charger and perform thermal and electrical functions. It protects the battery from
overcharging and deep discharge, overheating or short circuits through monitoring and
fault detection strategies.

Implementing more advanced functionalities often requires specialised algorithms and
hardware systems technology. Commercial BMSs are generally not designed to run these
functionalities natively, so additional servers and technologies are often required. These
servers can provide more advanced data storage, processing and analysis capabilities, al-
lowing more complex and sophisticated tasks to be performed in the context of the BMS.
An increasingly used option in recent research is the use of Cloud-based technologies, more
detailed in Section 1.5.3. This allows extending the functionalities of the BMS towards
more complex and advanced tasks and facilitates the transfer of data between the BMS
and other external devices or platforms.
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1.2.3 Cloud-based BMS functionalities

In this study, it is proposed to use Cloud-based technologies to implement more robust
and reliable LIB algorithms that perform real-time diagnostics of performance anoma-
lies. Implementing these models in the Cloud releases resources and capabilities of the
embedded BMS so that it can focus on its core LIB functionalities of monitoring and
safety. Furthermore, it should be noted that at no point is it intended to replace the BMS
hardware.

Besides, most of the above-mentioned basic functions of the BMS are not excessively
complex and resource-intensive due to the limited/constrained processing capabilities in-
herent in embedded electronic systems. These functions can be referred to as low-level
tasks since they are related to the monitoring and protection of the LIB. However, one of
the challenges is that the current design of the BMS often limits accessibility for the user
or operator, making it challenging to update implemented algorithms and corresponding
firmware. With an internet connection, new additional functionalities called high-level
tasks are enabled, such as more advanced battery estimation algorithms based on Ar-
tificial Intelligence (AI) with higher computational costs, or optimisation tools for the
operation of several battery systems. They are more related to the power and energy flow
management of the whole system. In other words, tasks that are more related to the end
application. Therefore, smart BMSs with aggregated Cloud-based technologies require, in
addition to those functions mentioned above, monitoring of all cells, more advanced fault
estimation, fault prediction, remote control capability or data visualisation, among other
things. All this is summarised in Figure 1.6.

Advances in technology and the digitisation of batteries enable the connection of de-
ployed and mostly isolated LIBs to date. This is possible by equipping the new BMSs
with additional components needed to establish a connection to the Cloud by incorporat-
ing an IoT device. This will allow for a Cloud infrastructure, an Application Programming
Interface (API) and a User Interface (UI) [49, 63].

The main goal of the IoT is to connect devices to the Internet and enable them to
communicate and interact with other IoT-equipped devices in order to monitor and control
them remotely. Software is developed to convert the physical magnitudes obtained by the
integrated circuits of the slaves into appropriate variables or data values.

Among the different processing units, the Raspberry Pi (RPi) is one of the most
popular devices due to its ability to provide good computational, sensing, connectivity
capabilities and the large online community that provides support and documentation
[72]. Considering the strength of RPi as a compact and inexpensive computer, it has
been one of the most chosen ones for the collection of battery information and establish
communication with the Cloud platform and other related systems. Li et al. [49] used a
RPi to send and receive data from a LIB system to a Cloud DT. They used the RPi as a
gateway to send the measured data from the Nickel Manganese Cobalt (NMC) chemistry
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Figure 1.6: Block diagram of Cloud-based BMS Main Functionalities.

LIB to the Cloud where they calculate the SoX with the acquired data. In another area
of research, Gimeno-Sales et al. [73] used a RPi in the data gateway phase as a low-cost
server for wireless communication collecting data from all connected slave BMS units of a
Photovoltaic (PV) plant.

The data measured by the slaves is sent via Message Queuing Telemetry Transport
(MQTT) protocols to the Cloud to ensure security and privacy [72]. The BMS protocols
can communicate and send all data, measured at each point in time or in batches of
data. For this, various APIs are developed to be able to interact with technologies such as
Python, Structure Query Language (SQL), MQTT to integrate their custom functionalities
[63]. Therefore, a stable and robust internet connection is required to be able to perform
these functions in real time.

Compared to conventional physical BMS, the use of DT tools provides new opportu-
nities for enhanced visualisation, alarm services and the implementation of critical net-
working and communication technologies. DT enable real-time analysis and adaptation
of control strategies, which helps to optimise LIB performance and extend their lifetime,
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as well as to improve reliability and safety. The development of application-based or web-
based UIs allows real-time visualisation of the LIB state, including the internal state of
each cell. In addition, access to historical operating data is provided. By monitoring cell
and battery state in real time, DTs facilitate early detection of faults and enable predictive
maintenance scheduling, reducing downtime and associated costs. DTs can help identify
and correct inefficiencies in energy use, resulting in better resource use.

On the other hand, Cloud Computing-based solutions allow reducing the need for
components such as measurement sensors and local Computing elements, resulting in a
more compact embedded/physical BMS with the extended computational capabilities in
the Cloud. In addition, the unlimited data storage provided by the Cloud facilitates the
handling and analysis of large volumes of information.

However, this Cloud BMS architecture has some limitations to consider. The constant
Internet connection required can be a challenge in environments or applications with con-
nectivity limitations. Disconnection from the network would imply the interruption of the
added services and how this would affect the performance of the LIBs and the integrity
of the collected data in the long term has not yet been fully investigated. In addition,
there are costs involved in developing and building Cloud infrastructure, including the
storage of large amounts of data, which could be a limiting factor for some organisations
or projects. All these aspects are summarized in Table 1.1, where the pros and cons of the
Digital Twin approach are presented.

Table 1.1: Main benefits and drawbacks of the use of DTs in LIBs.

Benefits Drawbacks
- Optimising performance and service life - Dependence on internet connectivity
- Facilitates fault detection and predictive
maintenance

- Implementation and maintenance costs

- Improves energy efficiency - Data security and privacy

1.3 Cell-level Battery Modeling

In electrical applications where the battery is essential, it is necessary to know the
internal state of the battery in the cases that the battery is the main object of the system
or the performance of the application depends in its Electrical Storage System. This is
reflected in applications like electromobility, in which the capacity of the battery defines
its autonomy, or in micro grids in which a good control of the capacity becomes crucial
to avoid leaving a whole community without energy supply. In addition, battery internal
state monitoring helps to avoid the premature degradation of the components.

Current batteries present difficulties in measuring the actual internal state of the cells,
requiring estimation of values such as SoC and SoH. Models and state stimators are used
in the BMS to monitor and protect the LIBs. Over time, batteries experience degradation
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that affects their performance, so SoH estimators and degradation models are used to
determine the remaining life of the LIB. Although there are a large number of studies on
these aspects [15, 74–78], this thesis does not focus specifically on them.

The performance of the estimators depends on the accuracy of the models. However,
having battery models that represent the behaviour with high fidelity and detail infers
in heavy models with high computational cost. The computational power that batteries
have locally (edge computation capability) depends on the processing units integrated in
the BMS. The speed of simulation is also affected as the cost of Computing increases.
For this reason, it has been necessary to find a balance between the accuracy of the
models and their Computing power, usually leading to reduced order models of debatable
accuracy. For this reason, thermal models will be discussed in more detail in Section
1.3.1, the electrical models in Section 1.3.2, and Section 1.3.3 will examine in detail the
SoC estimators that have been proposed in the scientific literature.

1.3.1 Thermal models

This Subsection focuses on the description of thermal models at the cell level that have
been investigated in academia. First, the effect of temperature on LIB cells is examined.
Then, the two main types of thermal models that have been commonly used to estimate
the temperature gradient in the cell and the heat generation in the cell are summarised.
Finally, a detailed analysis is carried out and a specific thermal model is selected for use
in the context of this thesis.

1.3.1.1 Thermal effects in the Lithium-ion Battery

Battery temperature plays a critical role in the safety, performance, and longevity of
LIBs. To address this, researchers and manufacturers have focused on developing Thermal
Management Systems (TMSs) to monitor, control, and mitigate the impact of temperature
on LIBs. The acceptable operational temperature range for LIBs is generally between -
20°C~60°C [79], with optimal performance observed between 15°C~35°C [80]. Maintaining
proper battery temperature is crucial for ensuring efficient and safe operation of LIBs as
is ilustrated in Figure 1.7.

Lithium-ion batteries have an optimal temperature range that varies according to the
approach to functional safety, performance and ageing [81]. Maintaining ambient temper-
ature (around 20°C~25°C) is ideal for normal battery operation [82], while fast charging
can be optimised by pre-heating or pre-cooling the battery [83]. At low temperatures, bat-
tery capacity is reduced and various negative effects appear [84], such as increased internal
resistance [85], limited diffusion of lithium ions at the electrodes [86, 87] and the formation
of lithium plates on the anode [88]. To improve performance at low temperatures, new
materials and electrolytes with high ionic conductivity and low freezing point are being
investigated [69].
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Figure 1.7: Optimal operating temperature range in a Lithium-ion battery. Adapted
from [80].

The heat generated in lithium-ion batteries has a significant impact on their perfor-
mance and must be properly controlled to ensure optimal operation. Temperature dis-
tribution within the cells is a key factor and is influenced by heat generation and heat
transfer. During charging and discharging, heat is produced due to electrochemical reac-
tions and phase changes. The temperature distribution inside the cells depends on the
amount and transfer of heat generated. So, it is essential to manage the heat in lithium-
ion batteries to ensure their optimal performance. Authors like Bandhauer et al. [89] or
Bernardi et al. [90] discussed different main sources of heat inside the modules that are
summarized in the Figure 1.8.
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Figure 1.8: Categories and process of the heat generation within lithium-ion batteries.
Adapted from [79].

The thermal behavior of LIBs is influenced by various heat sources. The reversible
entropic heat reflects the change in lithium ions on the electrodes and can be endothermic
or exothermic depending on the SoC during the charging or discharging process. The Joule
effect, which generates heat due to internal resistance, dominates the thermal performance
of the battery and contributes to irreversible heat generation [91, 92]. Other factors such
as mixture enthalpy, phase change, secondary reactions, and electron movement in current
collectors also generate heat and can impact battery aging and capacity loss [93–95].
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1.3.1.2 Thermal Models of Lithium-ion Battery Cells

In the following Sections two main approaches to modelling the transfer of the heat
generated on each cell to the outside will be analysed: i) Numerical Distributed Models
and ii) LTM. These modelling approaches vary both in accuracy and in the computational
cost of the thermal model.

Numerical Distributed Models.

Numerical models, such as Computational Fluid Dynamics (CFD), are used to ac-
curately monitor battery cell temperature. These models employ simulations based on
the finite element method and CFD techniques to calculate temperature profiles in two or
three dimensions. By considering physical parameters and heat transfer mechanisms, CFD
models provide precise estimations of temperature distribution and heat fluxes within the
system. These models require additional computational resources, but they offer a compre-
hensive understanding of battery thermal behavior. Figure 1.9 demonstrates an example
of a CFD model. Using partial differential equations, the CFD-based model discretises
them by applying the conservation principles in each of the infinitesimal control volumes
of the geometry. The equations perform a systematic count of changes in mass, momen-
tum, and energy due to the flow of fluid around the analysed geometry. For that end, the
corresponding equations are taken into account.

Figure 1.9: Temperature distribution of the battery with 3D numerical model.
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CFD models are utilised in battery system studies for design and analysis purposes [96–
98]. These models simulate fluid flow and heat transfer, providing insights into tempera-
ture distribution, cooling system efficiency, and hot spot identification. They enable anal-
ysis of thermal performance, evaluation of different cooling configurations, optimisation of
designs, and validation against real data. The advantages include accurate temperature
profiles, detailed thermal behavior, and geometrical analysis of batteries. However, draw-
backs include high computational demands, long computation times, additional costs, and
the need for extensive parameter identification. As a result, simplified models are more
commonly employed in BMS and TMS applications.

Lumped Thermal Models (LTM).

Lumped models solve the energy balance to calculate the temperature distribution
across the Lithium-Ion cell based on equivalent electrical circuits. These circuits represent
heat transfer phenomena and heat sources using capacitors, resistors, and current sources.
The model assumes uniform temperatures inside and on the cell surface, with a constant
ambient temperature. The temperature difference is represented by voltage. This simpli-
fied approach allows for 1D heat transfer analysis, which can be extended to three axes.
An illustrative example of an equivalent LTM is shown in Figure 1.10.

Rcond

qgen

Cp

TsT0

Rconv

Rrad
Tamb

Figure 1.10: 1D Analytical Lumped Model for a LIB single cell.

In Figure 1.10, Cth and Rth represent the thermal capacitance and thermal conduc-
tivity of the cell, respectively. T0 denotes the internal temperature of the cell, while Ts

corresponds to the temperature on the cell surface. Additionally, qgen is utilised to char-
acterise the internal volumetric heat generation within the cell. Furthermore, the parallel
resistances qconv and qrad describe the heat diffusion to and from the surroundings. Lastly,
Tamb refers to the ambient temperature.

The LTM is commonly used to estimate the temperature of LIB cells. It provides
accurate temperature profiles and allows for the analysis of heat generation and transfer.
The LTM is an efficient and computationally less demanding alternative to CFD based
models for thermal analysis of LIBs. It has been applied in various studies to assess
thermal behavior, optimise design, and validate results [99–103]. However, LTM models
have limitations, such as their dependency on specific cell parameters and the need for
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application-specific characterisation. Despite these limitations, the LTM remains a valu-
able tool for estimating LIB temperature and providing insights for system design and
thermal management. Additionally, its lower complexity need less computational power
making it suitable for real-time applications.

1.3.1.3 Thermal Model selection for a Digital Twin environment

In the previous section, the two most common approaches to constructing a thermal
model in the field have been reviewed. These include Distributed Numerical Models and
the so-called Lumped Thermal Models. The two types share a common baseline by con-
sidering the heat generated and stored in the LIB cell, as well as the heat transferred by
conduction, convection and radiation. However, their main difference lies in the method
used to calculate the internal heat of the cell.

CFD based models offer detailed analysis of heat and mass transport phenomena in
LIBs, capturing internal processes and providing high accuracy. However, these models
require significant computational power, time, and technical expertise to implement. De-
tailed input data is necessary, making data acquisition challenging and costly. Results
can be sensitive to boundary conditions, and while CFD based models are effective for
small-scale phenomena like battery cells, they may struggle to fully represent larger bat-
tery packs or modules. These models are often used to design battery components, but
their specialised software and limitations meant they were not suitable for use as a thermal
model for the DT battery in this thesis.

LTMs simplify heat distribution using equivalent circuits, treating the battery as a
single entity without particle-level details. Each electrical component represents a ther-
mal phenomenon, and voltage differences indicate temperature variations within the cell.
These models are known for their simplicity, assuming uniform temperature throughout
the cell volume. They require fewer computational resources and offer faster solutions
compared to CFD based models.

However, LTMs may lack accuracy in extreme operating conditions as they oversimplify
the computational problem. While they provide a general understanding of temperature
distribution, they are dependent on the cell or battery module’s geometry. Developing a
new LTM is relatively straightforward by obtaining cell parameters, making them more
versatile than CFD models and applicable to various scenarios.

LTMs offer simplicity, easy interpretation of results than those of CFD based mod-
els, and compatibility with other systems and models. They are suitable for real-time
operation, providing accurate average temperature estimation for cells. LTMs have low
computational cost and integrate well with BMS and TMS. They are the preferred choice
for the simulation platform in this thesis, offering robustness and the ability to calculate
temperature distribution for different current profiles.
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For all these factors, it has been decided to use an LTM of the cell applied in three
dimensions for temperature estimation. By employing these simplified approach, it is
possible to obtain suitable results for the thermal analysis of the battery DT without
the need for complex and expensive software. In addition, the model will consider the
SoC of the battery to correctly choose the parameters to be applied in its mathematical
formulation. The model will also take into consideration the irreversible heat generated
(Joule losses) and the irreversible heat (entropic heat). A detailed description of this
model will be provided in Section 3.3.

1.3.2 Electric Models

The electrical battery models describe their voltage response to certain operating con-
ditions, strongly depending on cell temperature, SoC and current. An important function
of the BMS is to compute the estimation of factors such as SoC, SoH, power or energy avail-
able. Battery electrical models provide a theoretical description of the electrical behaviour
of the battery, while battery state estimators use real-time measurements to estimate the
current state of the battery. By combining both approaches, more accurate monitoring
and effective battery control can be achieved in a variety of applications. A high fidelity
and simultaneously low-cost computational method is required as mathematical equations
or models that represent the input/output (current/voltage) dynamics of the battery [104].

When selecting a battery model for a specific application, important considerations in-
clude accuracy requirements, model complexity, computational cost, data availability, and
ease of implementation. After reviewing various literature sources [105–107], the electric
models have been classified into three main groups: Electrochemical Models, Equivalent
Circuit Models (ECMs), and Data-Driven Models.

Electrochemical models, such as the Simple Particle Model (SPM) [108–110], the
Pseudo-2D Model (P2D) [111–113] and the Doyle Fuller Newman (DFN) model [114–
116], are based on the physics and chemistry of batteries. While these models offer high
accuracy, they require extensive parameter identification and are not suitable for simulat-
ing behaviors at larger scales. Additionally, the complexity of electrochemical processes
[117] and the limitations of current measurement techniques [118] make them impractical
for this research.

Data-driven approaches have gained popularity due to their flexibility and ability to
avoid explicit models [119]. Methods like Artificial Neural Networks (ANN) [120], Deep
Neural Networks (DNN) [121], Adaptive Neuro-Fuzzy Inference Systems (ANFIS) [122],
and Support Vector Machines (SVM) [123] have been used to describe battery behavior.
However, these models heavily rely on the availability of large amounts of experimental
data, which may be limited in this thesis. Moreover, it is important to note that data-
driven algorithms often require significant computational resources and can be associated
with lengthy training times. Considering these factors, both electrochemical models and
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data-driven models have been excluded from the selection of the electrical model for this
research.

When selecting an electrical model for a LIB, several factors must be taken into ac-
count, such as required accuracy, model complexity, computational cost and ease of im-
plementation. In this context, electrical models based on ECM will be considered. This
choice is based on the search for a balance between accuracy and simplicity of the model.
The ECM provides an adequate representation of the battery dynamics, while maintain-
ing the simplicity and ease of implementation needed for this work. In the subsequent
Subsection 1.3.2.1, an analysis will be conducted on the various types of equivalent cir-
cuits documented in the literature, aiming to identify the most appropriate circuit for the
simulation platform addressed in this thesis.

1.3.2.1 Equivalent Circuit Models of Lithium-ion Battery Cells

ECMs of LIBs are models that describe the internal processes of the battery using
electrical approximations. They use electrical circuits with passive elements such as volt-
age sources, resistors and capacitors to represent the physical phenomena occurring inside
the cell [124]. These models require a correct definition of the parameter values, which
vary according to the SoC, temperature and SoH of the battery [125]. After defining the
parameters, the models are validated by dynamic profiling, typically at the cell level [126].
However, they can lose accuracy when different input profiles are applied or when perfor-
mance needs to be extrapolated to the battery module level. There are different models
with different characteristics and complexities, from basic models based on Thevenin’s
theorem to models with multiple Resistor-Capacitor (RC) stages. This Section presents
a broad classification of the discussed ECMs, as illustrated in Figure 1.11, providing an
overview of the classification undertaken in this PhD.

Noshin´s modelPNGV2nd order
and higher1nd orderVoltage source

based model
Enhanced Linear
battery model

Linear
battery model

Complex modelsThevenin based modelsSimple models

Equivalent Circuit
Models

Figure 1.11: Electric Model classification.

The Linear Battery Model, depicted in Figure 1.12a, consists of an ideal voltage source
(Open Circuit Voltage (OCV)) and an internal resistance (Rint) that represents energy
losses [126]. It is suitable for stationary applications but lacks accuracy in capturing
dynamic transient phenomena. The model can be enhanced by incorporating specific
resistors for charging (RCHA) and discharging (RDCH) [106], as shown in Figure 1.12b.
The Enhanced Linear Battery Model considers the variation of internal resistance with
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SoC but lacks dynamism and neglects temperature influence [127]. The Voltage Source-
based Battery Model uses multiple voltage sources to represent battery phenomena but is
not dynamic and doesn’t consider transient effects or temperature influence [128]. This
model is commonly used in traction applications for lead-acid and lithium-ion batteries
[129]. While these models are computationally efficient, they do not accurately capture
high dynamic transient phenomena, especially when applied to battery packs. This simple
models are illustrated in Figure 1.12.
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Figure 1.12: Simple Equivalent Circuit Models. a) Linear Battery Model, b) Linear
Battery Model with diodes for charging and discharging, c) Enhanced Linear Battery
Model, and d) Voltage Source-based Battery Model

The Thevenin First Order Model is a circuit consisting of an OCV voltage source in
series with a resistor representing the internal resistance of the LIB, and an RC circuit in
parallel described in Figure 1.13a. This model accounts for transient phenomena, such as
polarisation, by introducing a slow voltage response after the application or disappearance
of current. This model is widely used in applications such as EV and stationary applica-
tions [82]. In the literature, it has been used to estimate the OCV of LIB packs for EV
and to model the charge/discharge characteristics of LIBs [130].

The Second or Higher Order Thevenin Model incorporates more RC phase pairs in
the ECM, representing the ohmic polarisation and concentration polarisation associated
with electrochemical reactions by ion diffusion in the electrolyte described in Figure 1.13b.
The first RC phase captures the short-term transient effects, while the other RC phases
represent the long-term transient effects. Although more RC phases can be added to
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increase the accuracy, this also increases the computational cost and speed of execution.
In addition, the ECM can be combined with other models to create multidisciplinary
approaches that consider electrical, thermal and battery degradation aspects [131, 132].
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Figure 1.13: Thevenin based Equivalent Circuit Models. a) First Order, and b) Second
and Higher Order

The Partnership for a New Generation of Vehicles (PNGV) or Freedom Car model
[133] is a model developed by the US and major automotive companies (Daimler AG, Ford
and General Motors) for battery simulation in EVs described in Figure 1.14a. This model
extends the Thevenin Model by adding a series capacity. It allows for changes in OCV
during dynamic cycling and scales the battery capacity. It also takes into account the
effects of LIB polarisation and activation [134]. Compared to other models, the PNGV
model has demonstrated good performance in dynamic simulation and SoC estimation,
especially in the long term. However, it has not surpassed the results achieved by the
second-order Thevenin model, which has shown the best performance in simulating LIB
behavior [135].

The Noshin model, described in Figure 1.14b, is a variant of the Thevenin model that
takes into account hysteresis and non-linearity of the internal parameters of a battery
[136]. This model uses different resistors for charge and discharge, as well as resistors that
account for polarization effects in the battery model. It also includes four RC phases to
represent polarisation effects and a resistor for self-discharge. It was proposed to analyse
the performance of LIBs in plug-in hybrid vehicles. However, the authors later had to
modify the complex model to a simpler one for battery SoC estimation [137].

29



State of the Art

Vbatt

Rint

OCV

it R1

C1

C0

(a)

Vbatt

OCV

Rint,CHA (T,SoC,it)

Rint,rest,DCH (T,SoC,it)

Rint,DCH (T,SoC,it)

Rint,rest,CHA (T,SoC,it)

Rdeg,CHA (T,SoC,it)

Rdeg,DCH (T,SoC,it)

C1 C2 C3 C4R1 R2 R3 R4

Rself-dch (T,SoC)

(b)

Figure 1.14: Complex Models. a) PNGV, and b) Noshin´s Model

1.3.2.2 Electric Model selection for a Digital Twin environment

Electric battery models are crucial for BMSs to monitor battery condition accurately
and then, estimate the SoC of the LIB. These models should be simple, computationally
efficient, and accurate simulating battery behavior. However, data-driven models have lim-
itations, such as the need for large amounts of high-quality data, lack of interpretability,
sensitivity to operating conditions and the difficulty in capturing the underlying physics
of the battery. On the other hand, implementing Electrochemical Models is challenging
due to complex process of parameter obtaining and manufacturing variations. In con-
trast, ECMs are simpler, widely used, and suitable for various applications. ECMs use
measurable variables like voltage, current, and temperature to estimate battery behavior,
including thermal effects. The complexity of ECMs varies based on circuit design and
the inclusion of additional elements to capture dynamic processes, such as the non-linear
hysteresis.

An analysis of different types of equivalent circuits has been carried out. The simplest
models, such as the Linear Battery Model, the Enhanced Linear Battery Model and the
Voltage Source Based Model, do not consider all the internal dynamic phenomena of a
battery, which affects their performance and accuracy. Therefore, these models have been
excluded in the development of the DT in this thesis.

In contrast, more complex models such as the one proposed by the PNGV and the
Noshin´s Model significantly increase the complexity and computational burden without
providing significant improvements in model performance. The PNGV model, developed
by several automotive companies, is designed specifically for EV applications. On the
other hand, the Noshin´s model was created to account for more internal phenomena, but
this results in overly complex models that require simplification.
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Therefore, it has been decided to use an intermediate model that balances accuracy
and complexity. Thevenin-based Battery Models are a good choice for this purpose. The
complexity of these models is based on the number of RC phases included in the ECM.
Typically, these circuits contain one or two RC phases. In this case, a Thevenin-based
ECM with three RC phases is selected for simulation, taking into account the hysteresis
phenomenon to capture the electrical behavior of the battery. This model fulfills the re-
quirements of being lightweight, fast, and accurate, making it suitable for implementation
in a DT of an EV.

The model response describes the voltage measured at the cell terminals. It also enables
the determination of the diffusion currents (idiff,t), the hysteresis voltages (ht) and their
instantaneous response in cases where the input current changes the direction, and also
in the estimation of the SoC. The detailed description of this model will be presented in
Section 3.4.

This LIB model will be complemented by a SoC estimator. These models and esti-
mators often work together to obtain more accurate state estimates. The analysis of the
different SoC estimators will be carried out in the corresponding Section 1.3.3.

During this analysis, several methods and algorithms used to accurately estimate the
SoC of the LIB will be examined and compared in next Section. These estimators are
critical to obtain reliable information about the amount of energy stored in the battery at
any given time. The selection of the right estimator is crucial for accurate monitoring and
effective battery management. The objective of this analysis is to provide a comprehensive
evaluation of the available SoC estimators in order to identify the best option in terms of
accuracy and reliability for the system under consideration.

1.3.3 SoC Estimators

An efficient BMS ensures the safety and reliability of LIBs by monitoring battery states
such as SoC, SoH, and SoP. It operates within safe limits, activates cut-off mechanisms if
necessary, and maximizes battery capacity utilization.

LIBs are non-linear electrochemical systems and their behaviour is totally unconscious,
highly complex, variable over time and dependent on various internal and external condi-
tions. Their performance depends on different factors such as charge current, operating
temperature or their SoH. Therefore, the precise estimation of the SoC of the LIB is a
difficult task since it cannot be directly evaluated using any physical sensor, so an estimate
has to be made.
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1.3.3.1 SoC Estimators of Lithium-ion Battery Cells

The SoC is determined using different models/algorithms that are usually stored in
the battery micro controller. These systems use the Read-Only Memory (ROM) to store
basic data such as the amount of discharge or charge/discharge efficiency and the Random
Access Memory (RAM) to store historical data such as the number of charge/discharge
cycles. However, the complexity of some algorithms such as SoC estimation can exceed
the capacity of these micro controllers, so they are executed on a computer or even in the
Cloud in the case of the largest algorithms, as they are required to work in real time.

In this overview of different SoC estimation methods, different reviews in the literature
have been analysed [138–142]. Based on them, some of the most commonly used methods
that follow the classification of Figure 1.15 will be analysed, according to their nature.
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Figure 1.15: SoC estimation classification.

The direct OCV measurement technique is based on the ratio of OCV to the SoC
of a battery, but is not suitable for accurate real-time estimates. It is used as a cali-
bration support technology for other SoC estimation algorithms. The Electrochemical
Impedance Spectroscopy (EIS) technique characterises battery impedance by injecting si-
nusoidal currents [143], but loses accuracy outside the characterised range and requires
specific equipment to generate the excitation signals. Model-based estimates use state
equations to describe battery behaviour, but often require additional supporting methods.

Book-Keeping based estimation is widely used and relies on the Coulomb Counting
technique [144], which consists of integrating the battery current over time to estimate
its SoC. However, this technique requires accurate current measurement and relies on
prior information of the SoC and battery capacity. Cumulative errors caused by current
sensor can affect the accuracy of the estimation. Despite these limitations, it is used in
combination with other recalibration techniques to improve SoC estimation accuracy.

Kalman Filter (KF) and Particle Filter (PF) are adaptive filtering techniques used
to achieve higher accuracy in SoC estimation. Typically, a subset of relevant particles is
selected to approximate the density function in Monte Carlo-based PFs. This selection
process enhances the efficiency of the estimation method. However, to further enhance
performance, PFs are often combined with other techniques. On the other hand, KFs
allow estimating the dynamics and internal state of a battery, but their implementation
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is more complex. KFs utilize noisy measurements of battery inputs and outputs to esti-
mate the unobservable internal states and dynamics of a battery. This noise can originate
from various sources, including inherent model uncertainties and measurement errors. It
is typically assumed to follow a Gaussian distribution, with a mean of zero and indepen-
dence among different sources of noise. To handle the non-linearity of battery models,
techniques derived from Kalman filtering, such as the Extended Kalman Filter (EKF),
are commonly employed. The EKF is utilized to approximate the battery model and
improve the estimation accuracy of battery states [145–147]. However, this increases the
computational cost and there can be linearisation errors in highly nonlinear systems. For
systems up to third order, the Unscented Kalman Filter (UKF) can be used to optimise
and minimise linearisation errors [148]. However, the UKF is less robust and more com-
plex than the EKF. Another variant is the Sigma Point Kalman Filter (SPKF) [149, 150],
which uses a deterministic approach to calculate the covariance and mean, improving the
efficiency of SoC estimation with a better approximation of the covariance matrix and
better estimation of the internal states.

Finally, there are the Data-Driven Methods. While Data-Driven Methods offer the ad-
vantage of pattern extraction and prediction from data, they have limitations such as lack
of interpretability, reliance on data quality and quantity, challenges in generalization and
robustness, and limited extrapolation capabilities. Consideration of specific application
requirements is crucial before relying solely on Data-Driven Methods for estimation tasks.
Among these techniques there are Fuzzy Logic (FL), Neural Network (NN) or SVM, for
example.

To assess the performance of various SoC estimation methods, it is important to an-
alyze the errors associated with each technique. In this study, the mean average error
(MAE), maximum error (MaxE), and minimum error (MinE) of the methods described
in the literature [142] were examined. A summary of these errors is presented in Figure
1.16.
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Figure 1.16: Comparison of SoC Estimation Method Errors in [%].
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1.3.3.2 SoC Estimator selection for a Digital Twin environment

The type of estimator should be carefully selected according to the requirements of
each application. On the one hand, it is necessary to consider the computational capac-
ity available in the BMS, finding a balance between the computational complexity of the
estimator and its conceptual complexity. In general, simpler estimators are preferred. In
addition, the purpose of the SoC estimator must be taken into account. For example,
if the SoC is intended to be used for battery monitoring, adaptive filters offer confidence
limits without a significant increase in computational cost, which makes them more robust
than other estimators. Finally, the accuracy of SoC estimates in a given implementation
depends directly on the accuracy of the used model and, to a large extent, on the type
of estimation algorithm employed. Improving the accuracy of the battery model and SoC
estimator can be achieved by establishing a strong correlation between the battery’s OCV
and its SoC. Additionally, taking into account hysteresis effects in electrode materials,
such as lithium iron phosphate (Lithium Iron Phosphate (LFP)), can further enhance the
accuracy of the estimation process. This involves a trade-off between accuracy and com-
putational complexity that must be selected to meet the requirements of the application.

Direct measurements are a simple and straightforward method for estimating the SoC
of a battery, offering accuracy under ideal conditions. However, they have limitations in
providing accurate estimates under certain conditions, especially during transients, and
are subject to the influence of temperature and battery ageing. On the other hand,
book-keeping estimators offer accuracy over a wide range of conditions and flexibility to
adapt to different battery types, but require accurate initial SoC information, which can
be challenging. In addition, these estimators can have a cumulative error due to the
integration of current over time.

Data-driven estimators possess the advantage of effectively handling non-linear and
intricate relationships, enabling them to capture patterns that may pose challenges for
other estimation methods. With a sufficiently large and high-quality data set, these models
have the potential to provide accurate SoC estimates. However, their implementation
requires a significant amount and quality of data, and they have the limitation of being
difficult to interpret due to a lack of transparency in their internal processes. This makes
it difficult to understand how decisions are made within the model.

In this thesis, the previously mentioned estimators have been discarded and adaptive
filters have been chosen for the estimation of the battery SoC. This choice is based on
the following reasons: adaptive filters provide flexibility in accommodating variations in
operating conditions, allowing for accurate SoC estimates across a wide range of conditions.

In contrast to the EKF, the SPKF offers significant advantages that make it a favoured
choice in certain cases. The SPKF is able to more effectively handle non-linearities by
approximating the probability distribution using Sigma Points (SPs), resulting in more
accurate estimates of the system state. In addition, the SPKF exhibits lower sensitivity to
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modelling errors and uncertainties in the model parameters, as it propagates uncertainty
through the model via the SPs. This makes it more robust in situations where the system
model is uncertain. However, the use of SPKF implies a higher computational complexity
due to the calculations and operations required to generate and propagate the SPs. Based
on the above advantages and features, the SPKF has been selected as the preferred option
due to its ability to handle nonlinearities more effectively, its lower sensitivity to modelling
errors and its higher robustness.

1.3.4 Integration of models

Different electrical and thermal models for LIBs have been analysed. Specific models
and a SoC estimator were selected for design in this thesis. The electrical model is an
equivalent circuit with two or more RC phases and considers battery hysteresis. The
thermal model is a module-level analytical equivalent circuit (LTM) using temperature
measurements and a current profile. Both models require the upstream temperature and
SoC as inputs.

The electrical and thermal models can be used in combination to estimate the SoC and
temperature of LIBs. These models can interact and feed back to improve the accuracy
of estimates and predictions. Feedback between these two models can allow for more
accurate estimation of SoC and battery temperature.

This has been reflected in different works that have been published. Looking at the
review of the literature, different works can be observed where two or more models have
been integrated to monitoring the LIB. In [151] an electrothermal model was used for the
optimisation of the fast charge of the LIB. In this work an ECM with two RC phases
was integrated with an LTM model, all at the cell level. In [152] the similar principle
of integrating both ECMs was used to develop an electrothermal model at the cell level.
In the same way, the authors of [153] integrated an electrochemical model and an LTM
model into one electrochemical model. Examples have also been observed in which, besides
integrating electrical and thermal models, researchers have developed an electrothermal
degradation model capable of estimating the SoH of the LIB cell [154].
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1.4 Module-level Battery Modeling

This section provides a comprehensive review of the This Section covers a compre-
hensive review of the SoA in LIB module modelling and estimators. It is closely related
and continues from the previous Section, Section 1.3, where the importance and utility of
electrical and thermal models of LIB cells, as well as SoC estimators, has been highlighted.
in module-level modeling and estimators for lithium-ion battery (LIB) systems. Building
upon the previous section’s emphasis on the significance of electrical and thermal models
for LIB cells, as well as SOC estimators, this section aims to analyze their implementation
in LIB modules within the scientific community. The objective is to assess the various
approaches employed and identify any potential gaps or limitations in the existing litera-
ture. Additionally, alongside the separate analyses of the models in Sections 1.4.1, 1.4.2
and 1.4.3.

Various kinds of algorithms used in previous research have been analysed, evaluat-
ing their advantages and disadvantages, with the aim of selecting one of each type to be
developed in the context of this thesis. As a result, a LTM capable of estimating the tem-
perature at different points of the cell, taking into account the generation, accumulation
and transmission of heat by conduction, convection and radiation, has been chosen. This
model is applied in three dimensions.

On the other hand, an ECM has been chosen together with a SoC estimator based on
an adaptive SPKF filter. The ECM will incorporate two or more RC phases to estimate
the voltage response of the cell, and will also take into account the hysteresis of the cell
when modelling it. The voltage estimate obtained will then be used by the SPKF to
correct the SoC estimate.

1.4.1 Thermal models

Battery thermal models are essential for the design, management and safe operation of
battery modules. These models allow to estimate and thus control the thermal behaviour
of LIBs. Module temperature is an important factor in the efficient and safe operation of
the module in order to avoid overheating and to keep the temperature within the optimal
range of the SOA. It also directly affects the rate of degradation of the LIB.

These tools allow users to predict the temperature distribution within the module,
which can help optimise the design to ensure efficient heat dissipation. Battery thermal
models are based on the fundamental laws of thermodynamics and heat transfer. These
models consider several factors, such as heat generation during charging and discharg-
ing, thermal conductivity of battery materials, convection and radiation of heat to the
environment, and heat storage within the battery.

There are several types of thermal models, ranging from simplified LTM to more
complex CFD based models as discussed in Section 1.3.1.
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1.4.1.1 Thermal Models of Lithium-ion Battery Modules

A single cell typically functions effectively on its own. However, when this cell works in
coordination with other cells (as modules are made up of more than one cell connected),
the battery module can experience severe temperature changes. Therefore, in order to
monitor the electrical and thermal characteristics of a module, the thermal behaviour of
each individual cell of such module and its thermal interaction with neighbouring cells
must be considered. The cooling of the system, if any, must also be considered.

At this stage, we will reanalyze the two types of models discussed in 1.3.1. This is
because it is intend to extrapolate the cell-level LTM to the module level, while also
employing a CFD-based model to obtain detailed parameters for the entire model. The
utilization of these two models will be presented below.

Numerical Distributed Models.

CFD technology has been used in several research works related to battery TMS. In
the study [155] for example, CFD is used to analyse the thermal effects of different cooling
structures in battery packs. On the other hand, in [156] CFD is used to investigate
air cooling strategies and analyse their impact on the thermal characteristics of battery
modules. Furthermore, in [157] the use of CFD is proposed to study the performance
of an axial cooling system with a bionic surface structure. These works highlight the
importance of CFD in the analysis and design of cooling strategies to improve the thermal
performance of LIBs.

Regarding the optimization of operating conditions, CFD has been employed to op-
timize the cooling plate conditions [158], compare different cooling systems such as air
and liquid [159], and optimize the battery pack structure and design cooling strategies
[160]. In [161], an experimental demonstration of active thermal control of a LIB module
is given. In addition, in [162], a three-dimensional thermal overheat propagation model for
a large-format LIB module is presented. The model can be used to study the mechanisms
of thermal overheating propagation and to design safer battery modules.

In summary, the use of CFD in these research papers highlights its importance in the
analysis and design of cooling strategies, as well as in the optimisation of operating con-
ditions to improve the thermal performance of battery systems. CFD is used to simulate
and predict fluid flow and heat transfer, allowing the evaluation of different cooling designs
and strategies and their impact on the thermal characteristics of batteries.
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Lumped Thermal Models.

In recent research on LIBs, there is a trend in the use of simplified thermal models,
known as LTMs. These models allow the thermal behaviour of batteries to be analysed ef-
ficiently and quickly compared to more complex numerical models. In this way, there have
been observed works [102, 163–166] that use the LTM to simulate the battery temperature.

Some of these works use LTM to estimate the temperature distribution of the module
together with cooling systems such as heat pipes (helped with conduction elements between
battery and heat pipes) [163], cooling flow [164], or a hybrid cooling system (Phase Change
Material (PCM) and liquid cooling) [165]. In [166], PCM and nine aluminium tubes for
liquid coolant circulation are also used as cooling system.

The works also vary in how the model is validated. For example in [102] a Fluent
simulation is used to validate the results. In [165] both CFD model simulation results and
thermocouple measurements at different points in the battery are used.

1.4.1.2 Module-level Thermal Model for a Digital Twin environment

According to the analysis of the scientific publications, there is a wide variety of thermal
modelling work at the module level. All these developments vary in the type of model
used, the purpose for which the model is used and among them the complexity of the
model (Complexity is referred to the technical difficulty required to develop them or the
level of detail they cover).

Thus, it has been observed that CFD-based models are mostly used for the design
phase of the battery module or the design of the LIB TMS. These tools are very powerful
and calculate the temperature distribution of the cells or the cooling components in great
detail. However, all the studies found have in common that the model is used ofline,
meaning that the model is used in an early stage before the module is deployed. No
research has been found where the CFD model is used to estimate the temperature in real
time.

On the other hand, it has been noted that in recent years there is an increasing usage of
LIBs as thermal models for LIB modules. These models provide a simplified representation
of the physical phenomena compared to CFD models. LTMs offer a practical and efficient
solution for real-time battery temperature estimation. Additionally, as discussed in Section
1.3.1, the parameter estimation and development of LTMs are generally less complex
compared to CFD models.

The module level thermal model to be developed in this thesis is based on the LTM
model chosen in Section 1.3.1. This type of model is very adaptable to different geometries
and to the sum of thermal phenomena as just observed [102, 163–166]. However, few
studies have been found where this type of model has been used with LIBs that have
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natural convection. Not having a cooling system means that the radiative heat dissipation
is higher and the convective heat dissipation is smaller.

When radiation heat transfer is taken into account, a non-linearity is introduced into
the model, which makes the energy balance of the model more complex. Furthermore, this
radiative heat transfer is directly related to the visible surface area between two objects.
This means that the amount of radiant heat transferred depends on the surfaces facing
each other and visible to each other. This visible surface is defined by a "view factor"
between the two adjacent cells. In addition, the convection coefficient hconv will also
depend on the distance and the location of each cell in the module.

Therefore, the research aims to integrate both types of models for the development
of the module-level LTM model in this thesis. The development would have two phases.
A preliminary phase involves creating a CFD model of the module, which includes tasks
such as meshing and conducting simulations to obtain important parameters such as hconv

and the "view factor" between the cells. And a second phase where the LTM model is
implemented at the module level together with the parameters obtained from the CFD.

1.4.2 Electric models

ECMs are powerful tools used in the battery industry to simulate and predict the be-
haviour of battery cells. These simplified models use standard circuit elements to represent
the electrical properties of the cells. At the module level, ECMs allow the behaviour of cell
arrays to be modelled, which is useful for predicting module performance and designing
more efficient BMSs.

1.4.2.1 Electric Models of Lithium-ion Battery Modules

The research and development of module-level devices, such as module-level ECMs, re-
mains an active area of research in the field of batteries. These devices have demonstrated
their effectiveness and versatility in various battery applications, offering accurate and
efficient models to predict battery behavior under different operating conditions. They
contribute to optimizing battery design and enhancing energy management. Numerous
studies have explored the development and application of module-level ECMs to improve
the understanding and performance of battery systems [151, 167–175].

In this context, some of the studies focus on battery management in hybrid and EVs
[176, 177], presenting models to analyse the internal resistance, SoC and discharge effi-
ciency of batteries. They also cover aspects related to the variation of resistance as a
function of temperature [169] and highlight the importance of having an accurate model
to be able to propose improvements in SoC estimation algorithms [177]. All these works
have in common that they define the LIB module as the smallest unit to be simulated,
that is, they do not take into account the individual cells.
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Other works focuses on the modelling of large-scale battery packs [151, 178, 179].
These works use ECMs at the pack level. These works evaluate the reliability of the
developed ECMs and analyse the thermal performance of the LIB modules. In the case
of these works, they have as well in common the battery pack as the smallest unit to
be simulated. This means they do not take into account the differences that may exist
between the modules in the system, as well as the states of the individual cells.

A common factor in these works is the use of the ECM as the electrical model of the
LIBs. However, they differ in the level at which the ECM is applied for the estimation of
the LIB terminal voltage. A common limitation observed in the reviewed studies is the
lack of consideration for the state of individual cells within the lithium-ion battery (LIB)
system.

1.4.2.2 Module-level Electric Model for a Digital Twin environment

At the module level, the use of module-level ECMs allows for the modeling of a group
of cells connected in series or parallel. This approach is valuable in predicting the per-
formance of battery modules under different operating conditions and in designing more
effective BMS. However, the existing use of ECMs in previous studies may overlook im-
portant details regarding the electrical behavior of the battery pack. In this thesis, the
focus is on developing an ECM specifically for the LIB module, with a higher level of
detail compared to previous works. By working at the module level, the proposed ECM
aims to capture and analyze the behavior of individual cells within the module, offering
the potential to identify and diagnose problems that may arise in specific cells. This level
of granularity is crucial for ensuring the safety and efficiency of the overall battery system.

When combining ECMs, it is essential to take into account the interaction between cells
and the variability in their properties. If the cells within a module display differences in
internal resistances or capacities, a module-level ECM that does not consider the individual
cells may fail to capture these variations adequately. In such cases, more sophisticated
models capable of accounting for the variability between cells may be necessary. By
incorporating cell-specific characteristics and considering the interplay between cells, these
advanced models can provide a more accurate representation of the module’s behavior and
enable better performance analysis and optimization.

Module-level ECMs that considering all the cells provide an accurate representation
of the battery system as a whole. However, their accuracy may be limited due to the
simplicity of the individual models and the complexity of the interactions between the
cells. In addition, if the cells exhibit variations in properties or degradation, the ECM
may not capture these differences. Development and validation of module-level ECMs can
be more challenging, as they require data from all cells and complex solution algorithms,
which increases cost and development time.
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Based on the aforementioned approaches, several areas for improvement have been
identified. Firstly, the complexity associated with developing an electrical model for LIB
modules is a significant challenge. Additionally, the reviewed studies predominantly treat
the module as a single entity, neglecting the individual cells within it. These simplified
models consider module-level characteristics and parameters without accounting for the
specific behavior of each cell. Consequently, these models may overlook certain phenomena
occurring at the cell level within the module. Enhancements in modeling techniques are
necessary to capture the intricacies of individual cells and accurately represent the dynamic
behavior of the entire module.

The selection of the ECM at the module level in this thesis is based on the electrical
model chosen in Section 1.3.2. The analysis of electric module-level models reveals that
many existing works tend to employ simplistic representations when modeling LIBs in EVs
or large-scale battery systems, lacking in-depth detail. However, among the objectives of
this research is the development of module-level models with more information on the
states of each cell. This identified gap in the literature presents an opportunity for further
research and development in the field of module-level LIB modeling. Section 4.4 of Chapter
4 will focus on the electrical modelling of the battery module.

1.4.3 SoC estimators

In Section 1.3.3, a SPKF has been chosen as the SoC estimator of the LIBs of each
cell. Then, in Section 1.4.2, electrical models have been analysed at the cell level where
the objective is the estimation of the battery terminal voltage (either at the cell level or
at the module level). In addition, the development of an ECM for each cell has been
proposed in order to estimate the SoC of each cell in the module. The main objective of
this Section is to perform a SoA analysis of the SoC estimators for LIBs at the module
level. As the SPKF has already been chosen as estimator, this analysis will focus on this
specific estimator type.

1.4.3.1 SoC Estimators of Lithium-ion Battery Modules

Observing the research works that have been carried out with the SPKF for the esti-
mation of the SoC of LIB modules, few works have been found. Moreover, these works
focus on estimating the SoC of the LIB at module terminals. Individual cell SoC is not
taken into account.

In certain applications, the SPKF has been employed as a SoC estimator, often in
conjunction with Coulomb Counting, as seen in [180] for EV applications. Additionally,
a fusion of the Lagrange multiplier method and SPKF was proposed in [181] for both
LIB model identification and SoC estimation. These studies highlight the versatility and
effectiveness of the SPKF algorithm in SoC estimation for various battery applications.
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The authors in [134] utilised a SPKF SoC estimator together with PNGV ECM, also
for a EV. A comparative study and validation of state estimation algorithms was carried
out in [182] where it was concluded that the SPKF is the most accurate SoC estimator
for the battery module.

1.4.3.2 Module-level SoC Estimator for a Digital Twin environment

All of these SoC estimators are integrated with electrical models based on ECMs, as
it is intended to be done in this doctoral thesis. Similar to the electrical model at module
level (Section 1.4.2), it is proposed to estimate the SoC of each of the cells at each time
step. Thus, the voltage estimated by the ECM of each cell together with the measurements
performed would be used for a correction of the SoC of each cell.

1.5 Cloud Computing Technologies for Batteries

The growing demand for energy and the need to address environmental challenges have
driven the transition to renewable energy sources and EVs. LIBs play a crucial role in
this shift, thanks to their high energy density, durability and versatility in various applica-
tions. In parallel, Cloud Computing has transformed the way data is managed, processed
and analysed, offering efficient and scalable solutions. This SoA aims to investigate the
application of Cloud Computing in LIB management and how the combination of these
technologies can improve battery performance and sustainability.

1.5.1 Cloud Computing Fundamentals

Cloud Computing is based on the supply of Computing services over the Internet,
which allows users to access Computing, storage and data analysis resources in a flexible
and scalable way [183]. This technology, created in 2003, was first cited in 1996 by US
scientist George Favarolo in the journal Technology Review [184]. The services offered
on Cloud platforms are managed by remote data centres, which provide high Computing
speed. The only technical requirement to access the Cloud is an Internet connection. As
a result, companies using the Cloud services have significantly reduced their hardware
infraestructure, which makes them more economically efficient in terms of Computing.

Virtualisation plays a central role in Cloud Computing, as it enables the creation of
virtualised Computing environments shared by multiple users. Scalability and elasticity
are key features of Cloud Computing, as they allow users to adjust Computing resources
according to their needs. In recent years, the use of this technology has experienced
exponential growth. However, Cloud Computing would not have been possible without
the IoT, BD and Cyber Physical System (CPS) technology introduced by Industry 4.0.
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Service models in Cloud Computing encompass Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS) [185]. In addition to these,
Cloud providers sometimes offer a fourth possibility in which the user must design and
develop the Cloud platform from scratch. These models offer different levels of control
and responsibility over Computing resources, from management of hardware and operating
systems in IaaS to access to specific applications in SaaS.

IaaS

PaaS

SaaS
100% Maneged by Vendor

78% Maneged by Vendor

22% Maneged by User

45% Maneged by User

55% Maneged by Vendor

100% Maneged by UserOn Premise

SERVICES MANAGED BY USER

Networking
Storage
Servers

Virtualization

Operating System
Middleware

Runtime

Data

Applications

Figure 1.17: Service models in Cloud Computing.

As shown in Figure 1.17, the SaaS implies that Cloud service providers offer ready-to-
use applications over the Internet, allowing users to access them through a web browser
or a dedicated UI without the necessity to install additional software (e.g. LinkedIn
or Office 365). The user only accesses the application without having to manage it.
PaaS provides a development platform in the Cloud, making it easier for developers to
create and deploy applications without worrying about the underlying infrastructure. The
user focuses on application development, while the provider takes care of the underlying
infrastructure. IaaS provides virtualised Computing resources, such as servers and storage,
which users can configure and manage according to their needs. The user has full control
over the configuration and management of the resources. Finally, "On-premise" refers to
the deployment and management of an organisation’s own on-premise server infrastructure.
In this case, the organisation is responsible for everything from hardware to storage.

Deployment models span public, private and hybrid Cloud, which vary in terms of
control, security and cost. A thorough analysis of the use, modification or authorised
access to information and services by the people or companies involved is necessary. As
shown in Figure 1.18, there are three different types of Cloud [186, 187].
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Figure 1.18: Public, Private and Hybrid Cloud Models.

There are various Cloud Computing models that offer different levels of security and
characteristics. The public Cloud is open access to any people through the Internet, being
inexpensive but presenting greater security risks. On the other hand, the private Cloud
is focused on companies and provides greater security, although it is more complex and
costly to manage. As for the hybrid Cloud, it combines elements of the public and private
Cloud to take advantage of the computational power of both environments. The choice of
the appropriate Cloud model must take into account the specific needs and requirements
of each organisation or application.

Cloud Computing architecture is divided into two parts: the Front End and the Back
End [185, 188]. The Front End, also known as the client platform, is the interface that users
can manipulate and connects to the Back End via the Internet. There are various tools to
access the Front End, such as web browsers, Cloud applications and computer interfaces.
On the other hand, the Back End is the core of the Cloud Computing architecture and
is composed of hardware and storage located on remote servers. Cloud service providers
are responsible for managing and controlling the Back End, which hosts most of the
components of the Cloud infrastructure. The robustness and reliability of the Back End
are critical to ensure a robust and reliable Cloud platform. Cloud architecture composed
of three main elements is ilustrated in Figue 1.19.

44



1.5 Cloud Computing Technologies for Batteries

Interface 
to Cloud
Platform

Cloud Front-End Cloud Back-End

StorageServersServices

Users

Management

Security

Figure 1.19: The architecture of Cloud Computing composed of three main elements:
the Front End, the Back End and the connection between the two via the Internet.

In recent years, Cloud Computing has experienced remarkable growth. According
to Harvard Business Review, 56% of companies use at least three Cloud Computing-
based applications every day, and it is projected that by 2025, 80% of companies will
be using Cloud services databases. This increase in Cloud Computing adoption has led
to an increase in the number of available platforms and vendors. According to research
conducted in 2021, there are 360 providers and 550 different platforms. The main players
in the Cloud services market are Amazon Web Services (AWS), Microsoft Azure (MA)
and Google Cloud Platform (GCP), which offer a wide variety of services and tools for
deploying and managing Cloud-based applications.

AWS, founded in 2002, has positioned itself as a market leader with more than 200
services and multiple areas of utility in Europe [189, 190]. MA, established in 2008,
offers 200 services and products, with a choice of operating systems and programming
languages [191, 192]. GCP, also launched in 2008, is the third largest platform, providing
90 services, although its connectivity is slightly lower than other platforms [193, 194].
Each Cloud provider has free offerings, minimum billing times and guarantees of security
and reliability. All this information gathered from the main Cloud Computing providers
[189, 191, 193] is summarised in Table 1.2.
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Table 1.2: Comparison of the three largest Cloud providers. AWS: Amazon
Web Services, MA: Microsoft Azure, GCP: Google Cloud Platform.

AWS MA GCP
Services 200 200 90
Utility areas 80 54 73
Utility areas in Europe 6 7 7
Operating systems 4 2 2
Programming languages 8 7 7
Free trier 12 months 12 months 3 months
Minimum billing time 1 sec 1 min 1 min
Connectivity 99.95% 99.95% 99.5%
Security and reliability 99.9987% 99.9792% 99.9982%

1.5.2 Current Market Trends in Cloud Computing and Lithium-ion Bat-
teries

Cloud Computing is influencing the LIB industry in a variety of ways, from optimising
battery management to improving supply chain efficiency. Below are some of the key
trends in the LIB Cloud Computing market:

1. Integration of BMS with the Cloud: modern BMSs are being designed to connect to
the Cloud, enabling real-time monitoring and analysis of battery data. This makes
it easier to identify problems and implement solutions more quickly and efficiently.
An example of this is the work of Yang et al. [72], which integrates with the Cloud
to provide detailed information on battery performance.

2. DTs and IoT technologies: DTs are virtual models of physical devices or systems
that can be used to simulate and optimise their performance. In the case of LIBs,
DTs can help predict the degradation and remaining life of batteries, as well as
optimise their performance under different operating conditions. A study by Zhang
et al. [195] presents a DT-based approach for EV battery management using Cloud
Computing.

3. Cloud data analytics and predictive maintenance: Cloud Computing enables the
analysis of large volumes of LIB data, which can be used to predict remaining life and
schedule predictive maintenance. This can reduce maintenance costs and improve
battery reliability [196]. An example of this is the work of Eaty et al. [50], which
proposes a Cloud-based approach for predictive maintenance of LIBs in EVs.
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4. Real-time collaboration and communication: Cloud Computing facilitates real-time
collaboration and communication between the different actors involved in the LIB
supply chain, such as manufacturers, suppliers and customers. This can improve ef-
ficiency in the supply chain and enable faster response to changes in market demand.

5. AIs and machine learning: Cloud Computing enables the use of AIs and machine
learning algorithms to analyse and process data from LIBs. These algorithms can be
used to optimise battery performance, predict failures and improve energy efficiency.
For example, a study by Zhang et al. [197] presents a deep learning-based approach
to predict LIB degradation using Cloud data.

6. Data security and privacy: As the adoption of Cloud Computing in the LIB industry
increases, so does the concern for data security and privacy. Companies are investing
in Cloud security solutions to protect battery data and ensure user privacy. An
example of this is the work of Sheikh et al. [198], which proposes a Cloud-based
approach to ensure data security and privacy in EV battery management.

1.5.3 Use of the Cloud in the framework of this thesis

Section 1.5.2 has identified current market trends in the field of Cloud Computing
applied to LIBs. It has been observed that the Cloud is mainly used for: i) integration of
BMSs with the Cloud, ii) DT and IoT technologies, iii) Cloud data analytics and predictive
maintenance, iv) real-time collaboration and communication, v) AI and machine learning,
and vi) data security and privacy.

During the research carried out in this thesis, some but not all of these trends will be
applied due to scope and time constraints. Firstly, Cloud Computing technology will be
employed to integrate the battery BMS with the Cloud. This will allow battery measure-
ments to be sent to a simulation platform developed in the Cloud, where the necessary
estimations will be carried out. This integration will enable real-time monitoring and
analysis of the system, facilitating early detection of problems or anomalies. It will also
enable decision-making to improve battery efficiency or implement Energy Management
System (EMS) or TMS strategies.

A second utility offered by the Cloud is the opportunity to enable Internet connectivity
between the BMS and the Cloud thanks to IoT technologies. However, this requires
programming and preparation of the communication protocols of the systems. In addition,
a DT of the battery can be created in the Cloud, where more complex and advanced
models that require large amounts of data or more processing power can be deployed.
These models could exceed the capabilities of commercial BMSs. The contribution of the
Cloud to the DT developed in this thesis is to provide the computational power required to
run these models. The Cloud will allow for more sophisticated estimations and additional
information beyond the sensor data.
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As mentioned above, this will be achieved with the support of IoT technologies, which
will enable real-time collaboration and communication. By equipping the BMS with IoT
technologies, it is possible to connect to the Cloud both via wired and wireless connection.
In this work, this technology will be used to send data and perform real-time computations,
as well as to update the BMS with battery SoC estimates. In the event of a Cloud
disconnection, the BMS will perform simpler SoC estimates. Once the connection is re-
established, the DT will perform the corresponding estimates and correct the SoC of the
battery.

Furthermore, the Cloud platform will have a database where both the measurements
and the estimates made for each cell and module will be stored. This database will be
protected with passwords and keys to guarantee the security and privacy of the data.
Initially, it is planned to store all the information obtained for future usage. However, as
this data increases, it may be necessary to perform an analysis and store representative
historical data from the LIB.

Regarding Cloud data analytics and predictive maintenance, this thesis does not ad-
dress this trend commonly associated with the use of the Cloud. As mentioned above, this
DT will serve for a more detailed monitoring of the LIB module and also for the detection
of anomalies on its operation. On the other hand, AI and machine learning will also not
be employed, as the models to be implemented are equivalent circuits together with an
adaptive filter estimator. This estimator requires information from the previous time step,
but does not depend on a large volume of data and does not need to be trained.

1.6 Discussion & Conclusions of the Chapter

The aim of the SoA review has been to outline the previous knowledge related to
the modelling of LIBs at the module-level, as well as the technologies required to deploy
these heavier models in a simulation platform based on Cloud computing technologies.
Therefore, this section aims to identify the challenges present in this field, as well as to
highlight the main shortcomings and possible improvements compared to current research
work. The conclusions obtained serve as a basis for the contributions proposed in this
Doctoral Thesis.

Section 1.2 reviewed the Digital Twin technology and its implementation in the context
of LIBs. The origin of the DT concept and its evolution since its emergence in 2003 has
been explored. The different types of applications in which it has been used have been
analysed, with an emphasis on its usefulness in the field of batteries. For this thesis, DT
has been defined as a 5-dimensional tool, following the definition provided in the reference
[42]. These dimensions include the physical space (the battery module), the virtual space
(where the models and estimators of the LIB are located), the data space (which contains
all the measurements and estimations of the LIB throughout its lifetime), the services space
(which adds value to the module) and finally, the connections space (which is responsible
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1.6 Discussion & Conclusions of the Chapter

for the communication between all the spaces).

In the context of LIBs, these DTs work in combination with the BMS of the batteries,
which are responsible for performing the measurements and can have server or Cloud
connection functions. The basic functionalities of a current BMS have been reviewed and,
in addition, the new functionalities made possible by Cloud Computing based technologies
have been analysed. In this review, the benefits obtained by operating the BMS in parallel
with the Cloud have been highlighted, including: i) optimisation of performance and
lifetime, ii) fault detection and predictive maintenance, and iii) improvement of energy
efficiency. As a result, it has been concluded that the adoption of a Cloud-based DT
would provide greater computational capabilities and increased data storage capacity,
thus improving the monitoring and optimisation of the module performance.

In section 1.3, two types of battery models have been analysed at the cell level, the
electric model and the thermal model, as well as the different types of battery SoC esti-
mators. A classification of each type of algorithm has been made in order to select one
for implementation in the cell selected in this thesis. A wide variety of studies have been
found where thermal and electrical models as well as SoC estimators are applied in LIB
cells. On this basis, those models that do not fit the framework of this thesis have been
discarded.

First, two types of thermal models have been analysed: Numerical Distributed Models
(CFD-based models) and Lumped Thermal Models (LTM). It has been observed that the
former estimate the cell temperature gradient in great detail, but are more commonly used
in the early stages of cell and battery system design. On the other hand, LTMs simplify
the complex calculations of CFD-based models and provide sufficiently accurate estimates
of the temperature in the cells, while being simpler to develop and obtain the necessary
parameters. Therefore, it has been decided to use an LTM model as the thermal model
in this thesis.

Different electrical models of the cells have been analysed, discarding electrochemical
and data-driven models due to their complexity and lack of sufficient data. The simplest
models, such as those based on voltage sources or linear models, did not consider the
influence of SoC or temperature on the model parameters. More complex models were also
not selected due to their higher complexity without significant performance improvement.
Instead, an ECM model based on a Thevenin model has been chosen, which will consider
the non-linear hysteresis of batteries, especially LFP batteries. The choice of the number
of RC branches will be discussed in detail in the corresponding section.

Research on SoC estimators for LIB battery cells has been reviewed, discarding simple
and data-driven approaches due to their limitations. Instead, a Kalman filter, specifically
a SPKF, was chosen, which offers the ability to handle uncertainty, model non-linear
behaviour and achieve adequate computational efficiency. This allows for more accurate
and reliable estimates of battery condition under various operating conditions.
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In Section 1.4, an analysis was conducted on the trends in the literature regarding
module-level battery modelling. It was observed that there is a limited number of studies
that take into account the individual cell state in module-level modelling. The majority
of published studies treat the module as the smallest unit of analysis, leading to a lack
of essential information regarding cell interactions. Therefore, the decision was made to
address this research gap and utilize the cell-level models as a foundation for extrapolating
to the module level.

Finally, in Section 1.5, the application of Cloud computing technologies in the field
of batteries was examined. The different types of Cloud services were defined based on
the level of contract and privacy, as well as Cloud architectures. Additionally, the three
leading providers of this technology (AWS, MA, and GCP) were compared in terms of
services, operating systems, programming languages, security, reliability, cost, and free
tier. After analyzing these characteristics, it was concluded that AWS is the most suitable
platform for DT application in LIBs due to its superior security and reliability.

In order to address the identified challenges and literature gaps, this doctoral research
proposes the development, validation, and implementation of cell-level models in a Cloud-
based Digital Twin Simulation Platform, incorporating the variations of SoC and tem-
peratures in individual cells. The following chapters provide detailed explanations and
validation of the selected cell-level models, along with a proposed methodology for their
extrapolation and implementation in the Cloud-based DTSP. Overall, this research high-
lights the potential benefits of incorporating DTs in battery systems, the importance of
selecting appropriate models at the cell and module levels, and the advantages of leverag-
ing Cloud computing resources. The findings contribute to advancing the understanding
and development of module-level modeling methodologies for battery systems.
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2
Methodology

Summary
The second Chapter of this PhD thesis presents a comprehensive and original design

methodology which is the main contribution of the work. This methodology is intended for
the development of a DTSP using Cloud Computing technologies. This Chapter presents
the formulated hypothesis, and the validation methodology to validate them. To this end,
the designed phases are presented, along with the corresponding objectives of each stage.
An overview of the validation methodology is described, as well as a more detailed analysis
of each stage.
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2.1 Methodology overview

The main objective of this PhD is to develop a DTSP based on Cloud Computing
technologies which contains deployed battery models at module-level considering cell-to-
cell state variations as explained in the introduction. Starting from the well known cell-
level electric and thermal models, this thesis proposes a methodology for the extrapolation
of both models to the module-level. A methodology has been developed in order to guide
the main research activities that were developed in the context of this thesis.

The designed methodology aimed to i) evaluate the different hypotheses raised in
the introduction, ii) develop and implement a DT simulation platform to meet the main
objectives related to battery modules and iii) address the main gaps identified during the
SoA analysis.

The proposed methodology, illustrated in Figure 2.1, is composed by five main stages:

Stage 0: Electric and Thermal Model Parameter Identification.

Stage 1: Cell-level Models Development and Validation.

Stage 2: Built Module Prototype.

Stage 3: Extrapolation of Cell-level Models to Module-level Models.

Stage 4: Design and Development of the Cloud Architecture.

Stage 0 is needed to determine the required parameters to develop the electric and
thermal models both at cell and module-level. These models form an integral part of the
subsequent stages of the methodology. In Stage 1, models are developed and validated at
the cell-level against static tests and then against dynamic and realistic profiles. Stage
2 entails the definition and building of a prototype battery module, which is then used
to perform the tests at module-level. Steps 3 and 4 are the core of the proposed design
methodology, evaluating the technical feasibility of the project. In these two stages, the
module-level models are developed, validated and deployed on the Cloud platform. At the
end of this methodology, all the hypotheses presented in the introduction of this thesis are
verified or refuted.
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2.1 Methodology overview
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Figure 2.1: Methodology designed for the Development and Validation of a DTSP of
LIBs. The solid lines represent the sequential execution process, the dashed lines represent
the possibility to need to repeat a part of the process.
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2.2 Stage 0: Electric and Thermal Model Parameter Iden-
tification

In the context of developing electric and thermal models for LIBs at both cell and
module-levels, Stage 0 aims to identify the necessary parameters for creating such algo-
rithms. The identification of those parameters is crucial for the accuracy and reliability
of the entire simulation platform in the Cloud.

The parameters in an electric model of a LIB represent key characteristics, such as
internal resistance, capacity, and open OCV, which simplify its electrical behavior. On
the other hand, in thermal models, the parameters reflect properties related to the thermal
response of the battery. The parameters may be identified by performing a characterisation
over a wide range of operating conditions of the target cells.

The objective of the stage is to obtain the parameters needed to create the battery
models, which involves specific tests under a wide range of operating conditions, such as
different temperatures, SoC and discharge rates (C-rates). These parameters are carefully
deviased from the tests. The parameters obtained are be introduced then in the selected
models as fickle variables that depend on the battery SoX and temperature. Once the
parameters are introduced into the models, the data from sensors is observed and checked
to determine if the models consistently produce similar outputs. If they do not meet the
desired requirements or do not adequately describe the electrical and thermal behaviour
of the battery, the parameters adjustment must be repeated until the results are accurate
and adequately match the desired characteristics. This is linked to Stage 1, where the
cell-level models that utilize these parameters obtained in Stage 0 will be validated.

2.3 Stage 1: Cell-level Models Development and Validation

The stage 1 covers the development of the algorithms at the cell level. These algorithms
are composed of an electrical model embeded in a SoC estimator and a thermal model.
Cell-level models will be developed and validated to understand and examine the behavior
and interactions of essential system characteristics. These models will be the basis for the
development of more complex models at the module level. Studying cell-level behaviour,
valuable knowledge and understanding will be gained for future application to battery
modules.
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2.3 Stage 1: Cell-level Models Development and Validation

This first stage in its entirety is focused on achieving the first objective (O1) established
in this thesis. A more detailed description of this first stage of the methodology can be
found in Figure 2.2.

O1: Develop and validate cell-level models to understand the behaviour and interac-
tions of basic system characteristics, in order to use them as a basis for extrapolation
to more advanced module-level models.

O1

Voltage estimation
accuracy check

SoC estimation
reliability check

All Validated?

Electric Model
Development

Thermal Model
Development

Temperature estimation
accuracy check

Validated Cell-level Models

Stage 1

Stage 0

Stages 2,3&4

YES

NO NO

Cell Parametrisation

Figure 2.2: Detailed procedure of the Stage 1 of the designed methodology. The solid
lines represent the sequential execution process, the dashed lines represent the possibility
to need to repeat a part of the process.

More specifically, this stage focuses on the coding of the two aforementioned models
and the SoC estimator. For this purpose, an electrical model will be developed to calculate
the voltage at the cell terminals. This voltage will be used as input to the SoC estimator
of the cell, which is the reason why the greatest accuracy of the model will be required .
Once the electrical model is considered accurate, the reliability of the SoC estimator will
be tested.

On the other hand, a thermal model of the cell will also be developed in order to
estimate the temperature distribution in the cell. When evaluating the effectiveness of
this model, the accuracy of the temperature estimation at different points of the cell will
be sought.
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These algorithms describing the cell must be rigorously selected. To this end, a com-
prehensive state-of-the-art review of thermal models, electrical models and SoC estimators
has been performed in Chapter 1. From this review of the SoA, it has been concluded
that the LTM is the type of model that best fits within the framework of this thesis. This
model will be further discussed in Chapter 3 in section 3.3.

For the cell electric model, integration of two algorithms is proposed: an ECM to
estimate the voltage and a SPKF to correct the SoC of the cell. This model will be deeper
analysed in Chapter 3 in Section 3.4 and the estimator in Section 3.5.

These models must be verified against laboratory tests. This step is essential as these
models will be the baseline for future phases of the methodology followed in this PhD. At
the end of this stage of the methodology, objective 1 (O1) of this thesis will have been
met which involves the development and validation of the electrical and thermal models
of the selected cell. Furthermore, in this stage the research advances have been published
in two conferences, as well as in a journal article in a high impact journal.

2.4 Stage 2: Built Module Hardware

Stage 2 of the proposed methodology addresses the physical implementation of the
thesis. This stage, includes the assembly of a physical prototype of a battery module in
relation to fulfilling objective 8 of the thesis. On the other hand, the configuration of this
module to connect it with the Cloud must also be done in relation to objective 7. The
purpose of the prototype module is to have a testing and data collection system, which
will be used later to validate the complete system. To this end, a series of steps have been
followed in this stage summarised in Figure 2.3.

The prototype assembly begins by defining the fundamental characteristics of a LIB
module. These characteristics focus on the configuration and geometry of the module,
which will have a direct impact on the design of the module-level models. Also, location
points for current, voltage and temperature sensors must be carefully selected. These
sensors will play a crucial role in acquiring the data necessary for model development and
validation. This aforementioned process is further detailed in Chapter 4 in Section 4.2.
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Figure 2.3: Detailed procedure of the Stage 2 of the designed methodology.

Once the prototype has been obtained, it will be idem to establish the connection
with the Cloud platform under development. This involves setting the BMS-master tasks,
which will be responsible for communicating with the platform via the Internet. These
tasks must be programmed following the necessary protocols required by the IoT Gateway,
to ensure the correct sending and receiving of data to the Cloud. In addition, extra tasks
will be configured for the BMS-master to accomplish in case the connection to the Cloud
is lost..

After finishing this stage in the methodology, objective 6 of this thesis will have been
accomplished. The former (O6 ) involves building a prototype that will be used for testing
in stages 3 and 4 setting up connections between the BMS and the Cloud.

O6: Develop and assemble a functional prototype, establish and optimize neces-
sary connections and communication channels, and configure the Cloud platform to
enable seamless transmission and reception of real-time data from the prototype.
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2.5 Stage 3: Extrapolation of Cell-level Models to Module-
level Models

Stage 3 of the proposed methodology is the core part of this thesis, as it is where
the major contribution is made in terms of progress and significant contributions. In this
stage, the parameters obtained in Stage 0 and the models developed in stage 1 will be
used as a starting point to propose models at module level. The goal is to develop and
validate the module level extrapolated models (O2 ), which will play a fundamental role in
answering the first hypothesis raised in the thesis (H1). Consequently, this step plays a
crucial role in the methodology and contributes significantly to obtaining reliable results.
A detailed overview of the state 3 procedure is provided in Figure 2.4.

O1

All Validated?

Electric Model
Extrapolation

Thermal Model
Extrapolation

Voltage estimation
accuracy check

SoC estimation
reliability check

Temperature estimation
accuracy check

Stage 3

Stages 4

YES

NO NO

Stage 0&1
Cell Parametrisation

Integration of Module-level Models

St
ag

e 
2

H1

H1

Figure 2.4: Detailed procedure of the Stage 1 of the designed methodology. The solid
lines represent the sequential execution process, the dashed lines represent the possibility
to need to repeat a part of the process.

The cell-level models developed and validated in Stage 1 serve as the foundation of
Stage 3. In this stage, the objective is to extend the individual cell models to a module-
level scale. As mentioned earlier, the module-level models will focus on analyzing each
cell of the prototype constructed in Stage 2 separately. These models should be capable
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of estimating, detecting, and quantifying the interactions between different variables that
impact the current state of the cells of the module. Neglecting them may result in less
accurate model predictions and potentially lead to incorrect conclusions.

To adapt the cell-to-module models, a separate extrapolation approach is proposed.
The electrical cell model developed in Stage 2 will be implemented individually for each
cell, taking into account the specific states of each cell to determine the appropriate pa-
rameters for each calculation. To improve computational efficiency, the module’s electrical
model will execute the cell models in parallel using a multiprocess approach, allowing for
faster calculations across all cells instead of a sequential process.

Concerning the thermal model, it is necessary to consider the interaction between the
cells. Therefore, it is proposed to adapt the cell model to a module model describing each
cell individually. In order to achieve this, the thermal model of the cell developed in step 1
will be utilised. One of these models will be placed at the corresponding position for each
cell in the prototype created during Stage 2, taking into consideration its specific geometry.
Adjacent nodes will be connected to form a single mesh equivalent circuit describing all
cells and their interactions in terms of heat transfer. It is important to note that increasing
the number of cells in the module will require more computational power, as the number
of equations to be solved will also increase.

Stage 3 focuses on the adaptation of the cell models developed in Stage 1 to be applica-
ble at the module level, considering the specific characteristics of the assembled prototype
from Stage 2. This adaptation is crucial for accomplishing the second objective (O2 ) of
this PhD project, which involves the development of module-level models. These mod-
els serve as the foundation for the subsequent implementation of the DTSP in Stage 4,
utilizing Cloud technologies.

O2: Develop and validate module-level models to understand and predict the be-
haviour of the overall system and the interactions of multiple cells in the module,
using the models developed in the previous objective as a basis.

At the end of stage 3, a partial evaluation of the H1 hypothesis related to the models
at the module-level of lithium-ion batteries will be performed. This assessment will be
completed and corroborated at the end of step 4 of the methodology. In addition, it is
planned to disseminate the results obtained through the development of these models at
module level through the publication of a scientific article in a high impact journal.

H1: Models of modules that consider individual cells provide relevant additional
information to that obtained by module sensors.
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2.6 Stage 4: Design and Development of the Cloud Archi-
tecture

In the initial stages of this methodology, models were created and evaluated at the cell
and module level. In addition, a module prototype was built consisting of interconnected
battery cells. This enabled the configuration of the necessary hardware to monitor battery
state and establish connections to the Cloud platform. In the fourth and final stage, the
required services will be selected and the Cloud architecture will be developed, where all
the algorithms developed in the previous stages will be implemented. This stage aims to
address the hypothesis H2 and H3 , to achieve this, the objectives O3, O4 and O5 are
addressed. The fourth stage of this work is shown in Figure 2.5.
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Case Study 2:
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Temperature Unbalances
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Figure 2.5: Detailed procedure of the Stage 1 of the designed methodology. The solid
lines represent the sequential execution process, the dashed lines represent the possibility
to need to repeat a part of the process.

At the begining of Stage 4, an analysis and selection of the Cloud services provider will
be carried out in order to create a simulation platform and deploy the models at module
level. The services offered by the provider will be studied and the necessary services will
be chosen. In addition, connections between the services will be configured, if necessary.
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2.6 Stage 4: Design and Development of the Cloud Architecture

In this process, several objectives are pursued. Objective 3 (O3 ) focuses on creating
a secure and scalable Cloud architecture that enables the efficient implementation and
execution of the algorithms. Objective 4 (O4 ) focuses on properly selecting the resources
of the contracted Cloud services. Finally, objective 5 (O5 ) seeks to develop a visualisation
platform to present the results obtained.

O3: Develop a secure and scalable Cloud architecture that enables efficient deploy-
ment and execution of models, ensuring proper integration with all the services and
resources comprising the system.

O4: Optimise compute and memory resources in the Cloud platform to improve
system performance and efficiency, including appropriate selection of virtual ma-
chine instance and type and constant monitoring of performance and analysis of the
obtained data.

O5: Create an easy-to-use, real-time visualisation tool of module and cell status,
using estimated SoX data, that allows users to monitor system performance, identify
problems in a timely manner, and view historical operation data for further analysis
and optimisation.

Furthermore, step 4 is crucial for the evaluation of hypotheses H2 and H3. In order
to evaluate the hypotheses made, two case studies will be carried out. In the first case
study, an anomaly in temperature will be introduced in the prototype module, while in the
second case, the prototype will be unbalanced. These case studies will allow to analyse
the behaviour of the system in anomalous situations and to evaluate the robustness of
the simulation platform in different scenarios. Hypothesis H2 aims to verify the potential
benefits of deploying these algorithms using Cloud-based technology. It involves assessing
whether the proposed architecture is able to support the processing and storage of data
generated by the battery module and the estimation algorithms. Furthermore, assess
whether it offers adequate scalability and flexibility to adapt to the needs of the system.
Hypothesis H3, on the other hand, refers to the ability of the simulation platform and
its algorithms to detect faults or anomalies in the behaviour of the battery module, and
can be evaluated through the proposed tests of imbalance in the cell states (in terms of
temperature and voltage).

H2: Cloud Computing technologies may offer the computational power and memory
required to the deployment of module-level models, which allows additional services
to be offered compared to local environments.

H3: The implementation of the most advanced algorithms in the Cloud could allow
to detect anomalies and battery failures more efficiently and faster, which will lead
to the mitigation of the computational load of the onboard BMS and improve system
performance.
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3
Cell-level Models

Summary
This Section presents the various cell-level models developed within the scope of this

thesis, specifically focusing on the detailed description of the electrical and thermal models.
Firstly, the cell used in this thesis is presented. Then, each of the model is further de-
tailed by presenting the used equations. The electrical model is a ECM, while the thermal
model is a LTM. Furthermore, the SPKF method employed for correcting the estimation
of SoC estimation of the LIB is presented. In addition, the tests carried out to obtain the
parameters that are used to make the models are presented. Finally, both models and the
estimator are validated against laboratory tests.
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Cell-level Models

3.1 Introduction

The goal of this Chapter is to develop module-level algorithms to estimate the ther-
moelectric aspects of the LIB module. To achieve this objective, this Chapter focuses on
developing the cell-level baseline models, which will serve as the background for extrapo-
lation in later Chapters at the module level.

This Chapter begins by presenting the selected cell and its relevant characteristics for
this work. Then, the mathematical and technical fundamentals of each model selected after
the SoA review are described, as well as the SoC estimator used in this thesis. Next, the
necessary tests to obtain the electrical and thermal parameters of the models are detailed,
following Stage 0 of the proposed methodology. The procedure for each test is described
in detail and the parameters obtained are presented. These parameters are introduced
in the model and their adequacy is evaluated (Stage 1 of the proposed methodology). In
case of unsatisfactory results, the Stage 0 tests are repeated until the desired objectives
are reached.

This Chapter is structured as follows: In Section 3.2, the cell selected for the experi-
mental validation is presented. The thermal model is presented in Section 3.3, while the
electrical model is discussed in Section 3.4. The use of the SPKF filter to support the
electrical model and correct the SoC estimation of the cell is presented in Section 3.5.
Laboratory tests conducted to obtain the necessary parameters for the ECM and LTM
models are described in Section 3.6. The validation of these models through static and
dynamic tests conducted in the laboratory is addressed in Section 3.7. Finally, Section
3.8 provides a summary of the Chapter and highlights the main conclusions derived from
this research.

3.2 Cell selection

Along the whole thesis, cylindrical 2.5 Ah LFP cells from the manufacturer Lithi-
umWerks (LW) have been used, specifically the model ANR26650m1B [199]. The main
characteristics of the selected cells are presented in Table 3.1, and the cell is shown in
Figure 3.1.

Due to their LFP chemistry, similar to the cells used by the company Cegasa Energia,
the ANR26650m1B cells from LW were chosen. In addition, their small capacity enables
tests to be carried out with contained laboratory resources, which has been a determining
factor in their choice.
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3.3 Cell-level Thermal Model: Lumped Thermal Model

LithiumWerks ANR26650m1B
Chemistry LFP
Vnom 3.3 V
Qnom 2.5 Ah
Max. Cha CC Current 10 A (4C)
Max. Dch CC Current 50 A (20C)
Temperature Range 0 to 55 °C
Diameter 26 mm
Length 65 mm
Cell mass 0.076 kg

Table 3.1: Cell main Characteristics. Figure 3.1: Cell Image.

3.3 Cell-level Thermal Model: Lumped Thermal Model

This Section describes in detail the LTM developed in the framework of this thesis,
specifically, the LTM at the cell-level. After a thorough review of the SoA, two types of
thermal models have been identified as the most commonly employed in the battery field:
CFD-based models and LTM based on equivalent electrical circuits. A LTM has been
chosen due to its simplicity and ease of development. The parameters can be obtained
easily, and it provides the option to work in real-time.

Thermal models estimate cell temperature by considering various thermal processes
during operation and rest. They use input current and temperature to estimate the heat
gradient in the battery cell and heat transfer to the cell’s surrounding. LTMs employ
electrical circuits of different complexity to calculate the temperature distribution in LIB
cells. These circuits simulate heat accumulation and transfer using capacitors, resistors,
and a current source. The models assume uniform temperatures within the cell and
constant ambient temperature during simulation. This allows to make simplifications of
CFD based models. The model simplifies heat transfer in 1D model as it is illustrated
in Figure 3.2a. Then, it is implemented in the three axes to observe the temperature at
different points within the cell, illustrated in Figure 3.2b.

In Figure 3.2b, the capacity Cp describes the thermal inertia of the cell. The voltage
source symbolises the heat generation of the cell. The various thermal resistances represent
the diffusion of heat in different directions from the cell core to various surfaces, as well
as along those surfaces. In this study, two primary directions of heat transfer have been
taken into account. The first is the axial direction, which refers to heat transfer along the
main axis or length of the cell, both upwards and downwards. The second is the radial
direction, which involves heat transfer from the center of the cell towards the periphery,
across the cell’s radius. Since a cooling system is not utilised in this study, it is important
to account for heat diffusion through radiation as well.
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Figure 3.2: LTM a) simplified 1D model and b) complete 3D model.

When calculating the different types of thermal resistances, namely conductive, con-
vective, and radiative, specific parameters are considered. The thermal conductivity (k)
is directly related to the material of the cell and represents its resistance to heat flow.
The convective coefficient (h) depends on the properties of the fluid surrounding the cell,
in this case, the air inside the module, which facilitates natural convection. Lastly, the
thermal emissivity (ϵ) is influenced by the characteristics of the two surfaces involved in
radiation and is affected by their relative geometric configuration.

The output of the model is based on an energy balance for which temperature opti-
misation is required. In order to optimise the temperature distribution within the cell
during operation, the model solves a set of equations using initial approximations based
on the principles of thermodynamics. The equations employed are based on the approach
proposed by Bernardi et al. [200]. However, in this study, a simplified version of the
equation presented by Bernardi et al. is utilised, focusing specifically on the processes of
heat generation, heat storage capacity, heat transfer, and heat dissipation. The optimised
equations used in this study are described in detail in the following 3.1 and 3.2 equations.

Q̇accu = Q̇gen −
∑

Q̇cond,i (3.1)

Q̇cond,i = Q̇conv,i + Q̇rad,i (3.2)

The heat generation of each cell (Q̇gen) is calculated, assuming heat generation occurs
at the center of the cell. Additionally, the accumulated heat (Q̇accu) is computed, taking
into account the estimated temperature from the previous step and the thermal dynamics
of the cell. Furthermore, the heat transferred through conduction (Q̇cd,i) from the center
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of the cell to all its surfaces is calculated in all three dimensions. In this study, the analysis
considers the main axes of the cell, including the upward, downward, and radial directions.
The perimeter of the cell surface is divided into four points for radial heat transfer as
depicted in 3.2b. Each transferred heat quantity to the cell surfaces is then dissipated
to the surrounding environment. This dissipation occurs through convection (Q̇cv,i) and
radiation (Q̇rd,i) processes. Convection refers to the heat transfer to the air surrounding
and within the module. Radiation, on the other hand, involves the heat exchange with
neighboring cells. In the upcoming, each of these equations will be examined individually,

Heat Generation

The temperature distribution within the cells depends on the amount of heat generated
per unit volume in the module, and how this heat is transferred in and out of it. The
heat generation (Q̇gen) can be divided into reversible and irreversible heat. The transfer of
electric charges creates irreversible thermal energy loses, and the electro-chemical reactions
generate reversible heat. The reversible entropic heat reflects the change in lithium ions
on the electrodes and can be endothermic or exothermic depending on the SoC during
the charging or discharging process, and the rest of heat generation is irreversible. These
irreversible processes are usually simplified only into heat generated by Joule losses. It is
worth mentioning that within the scope of this thesis the thermal behaviour is assumed
uniform throughout the cell in a lumped approach and thermal diffusion or local effects
are neglected. A simplified form of the approach proposed by Bernardi et al. [200] has
been proposed in [201–203] and it is used in this thesis to describe the heat generation
sources.

Q̇gen = Q̇rev + Q̇irev (3.3)

Q̇gen = (v − Uavg) + i · T · dUavg

dT
= i2 · Rint + i · T · EHC (3.4)

where, i is the current through the cell in Amperes; v is the terminal voltage of the cell
in Volts; Uavg is the average OCV in Volts; T is the temperature of the cell in Kelvin
and dUavg

dT is the Entropic Heat Coefficient (EHC) in (V/K). The term that corresponds
to Rint represents the power dissipated due to the internal resistance of the cell when
current flows through the cell. The EHC must be pre-calculated in the laboratory as well
as the Internal Resistance (Rint) (Section 3.6). Note that the EHC depends on the current
SoC-level, whereas Rint depends on both SoC and T .

Heat Accumulation

The variable Q̇accu denotes the magnitude of the thermal power contained in the cell
at each time interval (accumulated heat). Its sign indicates the variations of the cell
temperature, both in increments and decrements. The accumulated heat is calculated by
equation 3.5:
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Q̇accu = m · cp · ∆T

∆t
(3.5)

where, m is the mass of the cell in [kg], cp is the specific heat of the cell in [ J
kg·K ], and ∆T

is the temperature difference in [K] during the ∆t time interval in [s] between time step n

and the previous time step (n − 1).

Heat Transfer by Conduction

Heat generated by the battery and not accumulated flows through the cell materials
via conduction. Conduction is the transfer of heat through a material medium by direct
contact between particles due to the existence of a temperature gradient. The amount of
heat transferred by conduction is given by Fourier’s law. The resulting heat flow due to
thermal conduction (Q̇cond) in the materials is a function of the location in the cell.

Q̇cond = kxAx
∆T

∆x
+ kyAy

∆T

∆y
+ kzAz

∆T

∆z
(3.6)

where, k = k(x, y, z) is the coefficient of thermal conduction expressed in [ W
m·k ], describing

a specific property of each material used to characterise the heat transport at stationary
rate, A is the area through which heat flows perpendicularly at a stationary rate expressed
in [m2], and ∆T

∆x is the temperature gradient in [K] in x direction. This expression can be
simplified if there is a principal heat diffusion pathway, neglecting the heat losses in the
other directions. However, in this thesis all directions of the main axes will be considered
(x, y, z).

Heat Transfer by Convection

Convection is the resulting process of the thermal energy exchange when a fluid is
in contact with a solid surface at a different temperature. The cooling of the LIB is
accomplished by the removal of heat through the surrounding fluid. This process of heat
removal by convection (Q̇conv) can occur naturally or by forced convection. The first is
generated by the difference in density inside the fluid. In the second case an external
driving force moves a fluid on a surface removing the heat in a more efficient way. In this
case, convection with the cell is a natural process. The amount of heat transferred by
convection is given by Newton’s law of cooling, as expressed in equation 3.7.

Q̇conv = hiAi∆T (3.7)

where, h is the heat transfer coefficient of thermal convection expressed in [ W
m2·K ]. It

describes a specific property of the fluid flow for heat transfer depending on factors such
as natural or forced convection, location, geometry, surface roughness, and the medium
surrounding the battery. The coefficient is also influenced by properties of the fluid,
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including density, viscosity, and speed. A represents the surface area in contact with the
fluid and is expressed in [m2]. ∆T refers to the temperature difference between the surface
of the solid (battery) and the fluid, expressed in [K].

Heat Transfer by Radiation

Heat transfer by radiation is the transfer of thermal energy in the form of electromag-
netic waves. Every solid body transmits energy through the radiation phenomenon from
its surface, and this heat depends directly on the average temperature of the whole body
and the nature of its surface. The rate of heat transfer by radiation (Q̇rad) between two
grey bodies is calculated by applying Stefan-Boltzmann’s law. In this case, the LIB cells
are considered grey bodies.

Q̇rad = εσA(Ts
4 − Te

4) (3.8)

where, ε is the surface emissivity of the considered specific material, being a dimensionless
number (with a value between 0 and 1) and related the ability of a body to radiate thermal
heat, σ term is the Stefan-Boltzmann constant equivalent to 5.67 · 10−8 [ W

m2·K4 ], A is the
surface area of the body expressed in [m2]; and Ts and Te are the surface temperatures of
the two contiguous bodies that transfer heat by radiation between them expressed in [K].

The resulting thermal potential of the cell is the sum of all the heat processes occurring
in and out of it it (generation, accumulation, and dissipation). The heat balance equation
to calculate the evolution of the temperature, considering a uniform temperature of the
batteries, can be defined as:

m · cp · ∆T

∆t
= i2 · Rint + i · T · EHC −

∑
kiAi

∆T

∆i
(3.9)

kiAi
∆T

∆i
= hiAi∆T + εσA(Ts

4 − Te
4) (3.10)

The LTM model provides an initial estimate of the seven temperatures of each cell,
with respect to the inlet current of the cell, depending on the soc and the temperature of
the cell itself at the previous instant (n − 1). These temperatures are then optimised to
find the thermodynamic energy balance defined in equations 3.9 and 3.10.

The model optimises the temperature distribution inside the cell by considering the
heat transfer factors by means of the Newton-Raphson (NR) method. This iterative pro-
cess refines the initial temperature approximations until the desired accuracy is achieved.
The absence of a cooling system forces the consideration of heat dissipation by natural
convection and radiation, resulting in a non-linear system. The NR method iteratively
solves the system by updating the temperature approximations at different points in the
cell.
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The NR follows the following steps:

1. An initial approximation of the roots (z0) is made, in this case temperatures.

z0 =
[
T0, T1, T2, T3, T4, T5, T6

]T

(3.11)

2. Calculate the values of the function matrix (fz) with the initial approximations, in
this case, equation 3.9 and equation 3.10 are applied on each surface of the cell.

fz0 =
[
f0, f1, f2, f3, f4, f5, f6

]T

(3.12)

3. Obtain the Jacobian matrix of the fz matrix.

Jf (z0) =



∂f0
∂z0

∂f0
∂z1

· · · ∂f0
∂zn

∂f1
∂z0

∂f1
∂z1

· · · ∂f1
∂zn

...
... . . . ...

∂fm

∂z0
∂fm

∂z1
· · · ∂fm

∂zn


(3.13)

4. Apply Gaussian elimination to obtain a new temperatures approximation by (3.11).

z1 = z0 + ∆x0 = Jf (z0)−1 · fz0 (3.14)

5. Repeat steps 2-4 until the determined error tolerance is reached.

This model will be validated by applying the obtained parameters described in Section
3.6. The corresponding results are presented in Section 3.7.1.

3.4 Cell-level Electric Model: Equivalent Circuit Model

The electrical model to be implemented in the DTSP is an ECM. Based on the lit-
erature review conducted in Chapter 1, it has been established that the use of an ECM
is the most suitable option with the requirements of this thesis. The ECM offers several
advantages. It accurately represents battery behavior, it can be adapted to various battery
types, is computationally efficient, easy to understand as it uses familiar electrical com-
ponents, and can be easily validated through experiments in the laboratory. This ECM
represents the battery by means of an electrical circuit as an analogue to the behaviour of
the cell. It uses data from laboratory tests and tuned parameters to estimate the terminal
voltage of the cell. Their-level of complexity usually depends on the number of included
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RC pairs. In this work, an ECM with three RC phases is chosen, in addition to an element
to model the battery hysteresis. Three RC phases have been introduced into the electric
ECM cell model to capture the cell’s dynamics, as it was required for validation purposes.
The model schematic implementation is shown in Figure 3.3.

R1

C1

R0 Hyst

OCV v(t)

R3

C3

R2

C2

Figure 3.3: ECM at cell-level to be implemented in the DTSP.

In the model, the constants OCV , R0, R1, C1, R2, C2, R3, and C3, are the param-
eters obtained from laboratory tests that are chosen by interpolation processes generally
according to the SoC and the temperature of the cell (Section 3.6). In addition, the ele-
ment "hyst" encompasses additional parameters related to hysteresis, which will be further
explained in the section covering the acquisition of these parameters. These parameters
are chosen at each time step to obtain the cell voltage calculation (v(t)) from the ECM
model. The equations to calculate the cell voltage based on each ECM element will be
detailed in the following.

The ECM electrical model captures the internal states of the cell, such as hysteresis
state, which are related to the internal processes of the cell. These internal states influence
the electrical behaviour of the cell, such as the voltage and response to current during
charging and discharging. To address the influence of these internal states on the modelling
and estimation of the SoC, the SPKF is used to correct and adjust these states based on
the actual measurements obtained from the system. In this research work, the SPKF
developed by [149, 150] will be employed, and its detailed description will be provided in
Section 3.5. The model is based on state space equations, as this facilitates the integration
with the SPKF. The SPKF, which will be discussed below in Section 3.5, plays a crucial
role in the SoC estimation process. In the context of the SPKF, the augmented state
vector refers to an extended state vector that includes in addition to the model states
(such as diffusion currents or hysteresis), an additional variable state which is the SoC.

The SoC of the battery is defined as 100% when the cell is fully charged and 0% when
the cell is fully discharged. It is used for energy and power calculations for example and
gives an idea of how much energy is available at the moment. The SoC is a unit-less
number and in this thesis is defined by the symbol zn.

There are several ways to estimate this SoC as discussed in Section 1.3.3. In this thesis,
the SoC state is updated by Coulomb Counting method, which estimates the SoC of the
battery by the equation 3.15.
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z(n + 1) = z(n) + η(n)∆t

Q
i(n) (3.15)

where, ∆t is the time interval, Q is the current cell capacity expressed in [Ah], η(n) is cell
efficiency and i(n) is the current through the cell at time n.

The augmented state vector of the ECM model is crucial to the output equation. The
Kalman filter plays a key role in correcting and adjusting the states of the augmented
vector using battery voltage measurements. Therefore, the mentioned states that are part
of the ECM output equation will be defined. The output equation (3.16) is defined as:

v(n) = vOCV (n) + vhn(n) −
∑

iRi(n) − vR0(n) (3.16)

where, v(n) is the cell terminal voltage, vOCV is the OCV in step n, vhn is the cell hysteresis
in time n, −

∑
iRi is the sum of the voltage drops across the three RC phases of the model

and vR0 is the voltage drop in the internal resistance of the cell.

Subsequently, the individual components of the output equation in the ECM will be
defined and analyzed.

Open Circuit voltage (OCV)

The voltage source of the model is called OCV and describes the voltage of the cell
when no load is applied (in a relaxed state). The OCV values of a cell are determined
empirically at many SoC points using the OCV vs SoC test. This element is usually a
function of the SoC and the cell internal temperature (Section 3.6).

vOCV (n) = OCV (n) (3.17)

Internal Resistance (R0)

The series resistance (R0) represents the resistive voltage drop of the cell. This element
is considered to be a function of the SoC and dependent on the temperature of the cell.

vR0(n) = R0 · i(n) (3.18)

where, R0 is the internal resistance of the cell and i(n) is the current through the cell at
time n.

R-C phases (Ri, Ci)

Polarisation refers to any deviation of the cell terminal voltage from the OCV due
to the passage of current through the cell [204, 205]. This phenomenon is due to the
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diffusion processes that exist in the lithium. This diffusion voltage is approximated by the
RC phases in the ECM. The diffusion voltage of the cell is typically influenced by two key
factors: the SoC of the cell and its internal temperature (Section 3.6).

The current trough each Ri and Ci are assumed to be equal, and the sum of these is
the overall current through cell terminal i(n). The current flow through each Ri is used to
calculate the diffusion current of the cell. Then, the diffusion states (iRi(n)) are calculated
with the equation 3.19.

iRi(n + 1) = exp
(−∆t

RiCi

)
iRi(n) +

(
1 − exp

(−∆t

RiCi

))
i(n) (3.19)

where, ∆t is the time interval between the current n and the previous (n − 1), Ri and Ci

are the resistor and capacitor values in the ECM RC phases, iRi(n) is the diffusion current
through the Ri resistor at time n and i(n) is the current through the cell at time n.

Hysteresis ("hyst")

The element labelled as "hyst" represents the hysteresis of the cell. This non-linear
effect causes a difference between the relaxed state voltage and the OCV of the cell, which
varies based on the direction and magnitude of the previously applied currents. The
hysteresis effect is influenced by the recent history of cell use [206], and can lead to errors
in estimating the battery state.

The hysteresis in the cell is represented as vhn(n) which is calculated based on the
hysteresis state h(n). This hysteresis voltage includes cell hysteresis state (vhn) and in-
stantaneous hysteresis (vhn0 .) The hysteresis state is SoC-dependent and only changes
when the cell’s SoC changes, unlike the diffusion voltages which vary with time.

vhn(n) = vhn + vhn0 (3.20)

Hysteresis does not have the same value when charging or discharging the cell. In this
thesis, an average value of hysteresis has been considered and applied for both charging
and discharging processes of the cell. It depends on the SoC of the cell, then it depends on
the current flow. The hysteresis is positive when the battery is charging and negative when
is discharging. This hysteresis is observed in the OCV vs SoC curves that are obtained in
the laboratory (Section 3.6). M is the value of the maximum positive and negative value
of hysteresis at any given SoC. These hysteresis voltages will be used for calculating the
cell terminal voltage, as explained before, by the use of the following equation:

h(n+1) = exp
(

−
∣∣∣∣η(n)i(n)γ∆t

Q

∣∣∣∣)h(n)−
(

1 − exp
(

−
∣∣∣∣η(n)i(n)γ∆t

Q

∣∣∣∣)) sgn(i(n)) (3.21)
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where, η(n) is cell efficiency, i(n) is the current through the cell at time n, γ is a positive
constant that refines the decay rate, ∆t is the time interval between the current n and the
previous (n−1), Q is the current cell capacity, h(n) is the hysteresis voltage and sgn(i(n))
forces the equation to be stable for both charging and discharging.

Therefore, the cell hysteresis voltage will be defined as (M · h(n)). On the other hand,
M0 is the instantaneous hysteresis representing the instantaneous drop of the voltage at
each SoC level, when the cell switches from charging to discharging or vice versa. The
instantaneous drop of the hysteresis voltage is modelled by 3.22:

s(n) =
{

sgn(i(n)), |i(n)| > 0
s(n − 1), otherwise

(3.22)

The instantaneous hysteresis component changes immediately when the sign of input
current changes. s(n) is equal to ±1 depending on the battery is charging or discharging.
When the cell is in a rest condition, it maintains its previous value. Therefore, the cell
instantaneous hysteresis voltage will be defined as (M0 ·s(n)). Thus, the overall hysteresis
voltage is calculated as follows:

vhn(n) = M · h(n) + M0 · s(n) (3.23)

Output Equation

The output equation of the model gathers all the phenomena described above, and it
is defined as:

v(n) = OCV (n) + M0s(n) + Mh(n) − R1iR1(n) − R2iR2(n) − R3iR3(n) − R0i(n) (3.24)

The above explanation covers the interpretation and the meaning of the individual
states in the output equation of the ECM model. However, to obtain a complete picture
of the model, it is important to highlight that these states are combined into a system
of state space equations. It consists of a set of equations that represent the relationships
between the state variables and the inputs of the system. These state space equations will
be discussed in more detail in the next section.
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3.5 Cell-level SoC Estimator: Sigma Point Kalman Filter

Battery state estimation is a challenging task that requires the use of a state estimator.
In this thesis, the implementation of a SPKF estimator developed by Dr. Gregory L. Plett
in [149, 150] is proposed. A SPKF is an algorithm designated to estimate the state of a
dynamic system with noisy measurements. SPKFs to capture the non-linearities in the
system dynamics and measurement functions [207, 208]. The filter combines information
from voltage and current measurements with a mathematical model of the system (us-
ing Equation 3.24) to generate more accurate estimates of the SoC, considering both the
measurements and their associated uncertainties. In this case, the dynamic state being
estimated is the SoC of the battery cell. Additionally, the ECM model requires the esti-
mation of other states for calculating the cell voltage, as discussed in Section 3.4. These
states include the polarisation currents (iR1 , iR2 , and iR3) calculated in Equation 3.19 and
the hysteresis state (hn) calculated in Equation 3.21.

In the previous Section, the states used in the electrical model and the cell’s SoC
estimation method have been defined (augmented state vector). These will be expressed
in a state space. The BMS takes discrete measurements that the SPKF can applied using
discrete equations. The general expressions of a linear state space discrete system are
shown in equations 3.25 and 3.26.

xn+1 = Anxn + Bnun + wn (3.25)
yn = Cnxn + Dnun + vn (3.26)

In those equations, wk represents disturbances or errors introduced by the sensors used
to measure system variables. These errors may include electronic noise, calibration errors
or any other factor affecting the accuracy of the measurements made. Meanwhile, vn

represents modelling errors, that is, deviations between the mathematical model used in
the state space and the true dynamics of the system.

When dealing with nonlinear systems like LIB cells, the state space representation
needs to be linearised to approximate the real system. The SPKF is used for this function.
The objective of the SPKF is to improve the SoC estimation provided by the ECM by
weighting both the predicted and estimated values. Thus, the linearised state space of the
discrete system would be written as the equations 3.27 and 3.28.

xn+1 = f(xn, un) + wn (3.27)
yn = g(xn, un) + vn (3.28)

Equation 3.27 is used to calculate the estate vector, while equation 3.28 represents the
output (models voltage equation 3.24 ). xn represents the states of the battery at time n
defined in equation 3.29. The dimension of this will depend on the number of states of
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the system, in the case of this thesis five states of the cell are observed. un is a known
input signal from the measurements (in the case of the cell the measured current), wn is
an unknown random noise input signal and vn is an unknown input signal from the noise
of the sensors. yn is the system output, in the case of a cell the terminal voltage. The
state vector, denoted by the symbol xn, represents various dynamic effects taking place
within the cell. It encompasses all above-mentioned states and is defined as:

xn =
[
zn iR1n iR2n iR3n hn

]T

(3.29)

The dynamics of the cell are considered in discrete time in order to compute it. In
the implemented model, each time step defined is defined by the index n, while the used
sampling rate (time difference between each step n) will be one second. Therefore, the
ECM will update its state and output values with this time interval. At this point, the
current state becomes the previous state (n → n − 1). For the application of the SPKF,
the following assumption is made:

Sensor noises (wn) and modelling errors (vn) are considered as uncorrelated white Gaussian
random processes. The value of the covariance matrix will be known (∑w and ∑v) and
its mean will be zero.

To define the state space of the SPKF, the following definitions will be considered:

• The sub-circuit rate factor, denoted as RC, is defined as ARCi = exp
(

−∆t
RiCi

)
.

• The hysteresis will be defined as AH = exp
(
−
∣∣∣η(n)i(n)γ∆t

Q

∣∣∣).

So, the state space is defined as:



z(n + 1)

iR1 (n + 1)

iR2 (n + 1)

iR3 (n + 1)

h(n + 1)


=



1 0 0 0 0

0 ARC1 0 0 0

0 0 ARC2 0 0

0 0 0 ARC3 0

0 0 0 0 AH


·



z(n)

iR1 (n)

iR2 (n)

iR3 (n)

h(n)



+



− η(n)∆t
Q

0

− (1 − ARC1 ) 0

− (1 − ARC2 ) 0

− (1 − ARC3 ) 0

0 (AH − 1)


·

 i(n)

sgn(i(n))


(3.30)
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The SPKF is implemented in six fundamental steps, three steps for the estimation of
the states (Step 1a,b&c) and another six steps for the correction of the output estimate
(Step 2a,b&c). In the prediction step, the new state matrix is calculated based on the
initial value (previous step, n − 1). In addition, the uncertainty or covariance matrix is
predicted according to the different noises in the system.

The update step refers to the current time step. In this step, the updates with the
performed measurements (cell terminal voltage yn) are taken into account. The Kalman
gain is calculated and then it is decided which weights to give to each of the values. Finally,
the new state matrix and the new covariance matrix are calculated based on Ln. These
last two matrices will be the estimates made by the SPKF.

This estimator will be validated by applying the obtained parameters described in
Section 3.6. The corresponding results are presented in Section 3.7.2.

The procedure followed by the SPKF is outlined below. Before presenting the overview
of the relevant equations in the SPKF method, Table 3.2 shows all the nomenclature used
in [149, 150].

Table 3.2: List of SPKF symbols

Symbol
" ^ " Predicted or Estimated Quantity
" ∼ " Difference Between a True and Predicted or Estimated Quantity: x̃ = x − x̂

()− Prior Information: Predicted Quantity based only on Past Measurements
()+ Posterior Information: Estimated Quantity based on both Past and Present Measurements
()a Augmented Matrix
xn Model State Vector

χn or Σn Covariance Matrix
wn Process Noise
vn Sensor Noise
un Input: Measured Cell Input Current
yn Output: Measured Cell Terminal Voltage
Ln Kalman Gain Matrix
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Defining:

xa
n =

[
xn, wn, vn+1

]T

(3.31)

χa
n =

χx
n 0 0

0 χw
n 0

0 0 χv
n

 (3.32)

p = 2 · dim(xa
n) (3.33)

Initialisation time (n = 0):

x̂+
0 = E[x0] (3.34)

Σa,+
x̃,0 = E[(xa

0 − x̂a,+
0 )(xa

0 − x̂
(a,+)
0 )T ] = diag(Σ+

x̃,0, Σw, Σv) (3.35)

Σ+
x̃,0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ] (3.36)

x̂a,+
0 = E[xa

0] =
[
(x̂+

0 )T , w̄, v̄

]T

(3.37)

For n = 1, 2, 3...:

Step 1a: State-prediction time update.

χa,+
n−1 =

{
x̂a,+

n−1, x̂a,+
n−1 + γ

√
Σa,+

x̃,n−1, x̂a,+
n−1 − γ

√
Σa,+

x̃,n−1

}
(3.38)

χx,+
n,i = f

(
χx,+

n−1,i, un−1, χw,+
n−1,i, n − 1

)
(3.39)

x̂−
n = Σp

i=1α
(m)
i x̂x,−

n,i (3.40)

Step 1b: Error-covariance time update.

Σ+
x̃,0 = Σp

i=1α
(c)
i (χx,−

n−1,i − x̂+
n )(χx,−

n−1,i − x̂+
n )T (3.41)

Step 1c: Output estimate.

Yn,i = f

(
χx,−

n,i , un−1, χv,+
n−1,i, n

)
(3.42)

ŷn = Σp
i=0α

(m)
i Yn,i (3.43)

Step 2a: Estimator gain matrix.

Σỹ,n = Σp
i=0α

(m)
i (Yn,i − ŷk)(Yn,i − ŷn)T (3.44)
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Σ−
x̃ỹ,n = Σp

i=0α
(c)
i (χ−

n,i − x̂−
n )(χn,i − ŷn)T (3.45)

Lk =
Σ−

x̃ỹ,n

Σỹ,n
(3.46)

Step 2b: State-estimate measurement update.

x̂+
n = x̂−

n + Ln(yn − ŷn) (3.47)

Step 2c: Error-covariance measurement update.

Σ+
x̃,n = Σ−

x̃,n − LnΣỹ,nLT
n (3.48)

3.6 Experimental Characterisation for Cell-level Models Pa-
rameter Identification

In order to develop a comprehensive DTSP of a LIB, it is essential to understand the
characteristics of both the individual cells and the module as a whole. In the following
Section, the LW ANR26650m1B cells, which will be used in the implementation of the
corresponding models, will be analysed in detail.

All the experimental tests will be carried out in the Energy Storage and Smart Build-
ings Laboratories that Ikerlan S.COOP has at its headquarters in Galarreta (Hernani). For
the characterisation of the battery cells and modules the used equipment is described in
Appendix A. In this Section, the results of each of these tests will be described in detail,
outlining the procedures involved in measuring and obtaining the requisite parameters.
These can be divided into two categories: i) electric characterisation tests (i.e. Capacity
Test, OCV vs SoC, Hybrid Pulse Power Test (HPPT), and Hysteresis Test and ii) thermal
characterisation tests (i.e. Open Circuit Potentiometry (OCP) Test and Calorimetry Test)

3.6.1 Electrical Characterisation of the ANR26650m1B Cell

The electrical model, ECM, presented in Section 3.4, is a simplified circuit that rep-
resents the electrical behavior of the battery. It consists of electrical elements, and its
values are derived from conducted laboratory tests . This Subsection describes the results
obtained in the electrical characterisation tests carried out on the LW cells.

Note: This Section briefly describes the testing performed and gives the obtained results.
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Parameter: Cell Capacity and Efficiency.

The Capacity Test was designed to comprehensively evaluate the Ah capacity of the cell
under varying environmental conditions, including temperature and current. Additionally,
the calculation of the cell’s efficiency parameter η, was derived from the measured Ah
discharged and charged during the test at the different temperatures and current rates.

The test were carried out across a temperature range of 10°C to 45°C with three
full charge and discharge cycles performed. The charging and discharging processes were
executed at rates of 0.2C (200 mA), 0.5C (500 mA) and 1C (2.5 A). Figure 3.4 summarises
all the tests performed at different C-rates and different temperatures. A complete charge
and discharge cycle has been sampled from each test and plotted on a voltage vs Ah
charged or discharged curve. The Figure 3.4a illustrates three full charge and discharge
curves at the mentioned C-rates under ambient temperature of 10°C. Similarly, Figure
3.4b represents the cycles at 25°C, and Figure 3.4c shows the cycles at 45°C.
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Figure 3.4: Capacity Test Curves of Cell during Charge and Discharge at 0.2C, 0.5C &
1C at a) 10°C chamber ambient temperature, b) 25°C chamber ambient temperature, and
c) 45°C chamber ambient temperature.

The values obtained in the 1C test will be the capacity parameters to be introduced
in the electrical model of the cell. It has been decided to use this value since the final
application will have this c-rate as the nominal load. The Ah values obtained at the end of
each charge and discharge have been used to obtain the efficiency of the cell. An evaluation
of the cell capacity has been carried out by means of the average Ah discharged during
the capacity test. With the values of Ah charged and discharged, the η parameter was
determined, which represents the cycling efficiency of the cell. This efficiency represents
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the amount of Ah that can be discharged from the cell in relation to the Ah charged. For
this reason, this efficiency only applies when the cell is being charged.

eta = Ahdch

Ahcha
· 100 (3.49)

Parameter: Open Circuit Voltage.

The objective of the test is to acquire charge and discharge curves that establish a
correlation between the SoC and OCV of the battery. The test involves discharging the
fully charged battery at 0.2C, in 5% Depth of Discharge (DoD) increments. After each
5% DoD discharge, the battery is kept at rest for 3 hours to attain the equilibrium voltage
or OCV. Subsequently, the battery is charged at 5% DoD intervals, allowing 3 hours of
rest at each SoC. The OCV vs SoC curves are thus obtained, depicting the relationship
between the resting voltage of the cells and the SoC during both charging and discharging.

Figure 3.5 illustrates the results obtained in the OCV test performed at 25°C. In
addition, the same tests were performed at 10 and 45 °C, obtaining the OCV vs SoC
curves for both charging and discharging. Based on this data, the average OCV was
calculated across the entire SoC range for each temperature. This average OCV was then
used in the model.
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Figure 3.5: OCV vs SoC Curves of Cell during Charge, Discharge and Average and the
at 25°C.

Parameter: Hysteresis.

The hysteresis effect is a fundamental element of battery dynamics, which refers to the
different equilibrium voltages to which the OCV of the battery converges during charge and
discharge cycles. This hysteresis is observed in the OCV vs SoC curves that are obtained
in the laboratory. The ECM model, discussed in Section 3.4, takes into account hysteresis
using the parameter M , which represents the maximum positive and negative hysteresis
values at different SoC levels. Additionally, the instantaneous hysteresis, denoted as M0,
captures the vertical voltage drop specific to each SoC level in the battery.
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The hysteresis of the cells depends on the SoC and the temperature in which the cell
operates. To obtain the different hysteresis related parameters a quasi-OCV test have been
performed. That is, the cell has been charged and discharged to achieve different levels of
SoC with a very low current, i.e. C/25 (100 mA). This minimises the effect of the internal
resistance of the cell, allowing to isolate the hysteresis effect. The test started with the
cell fully charged, and successive charges and discharges were performed with a 5% DoD
reduction at each charge. In this way, the cell was charged to 95% SoC, discharged to 5%
SoC, charged to 90% SoC, and so on until the cell reached 50% SoC. The performed test
is illustrated in Figure 3.6.
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Figure 3.6: Charge and Discharge at C/25 (100 mA) Hysteresis Test to obtain the
Hysteresis Parameters at 25°C.

The data obtained from the test was used in the Parameter Estimator tool in Matlab
Simulink. A specific ECM model, defined in section 3.4, was employed in Simulink for
the optimisation process. Subsequently, the hysteresis values (M , M0 and G) have been
optimised to fit this test. Hysteresis related parameters obtained are temperature and
SoC dependent.

Parameter: Internal Resistances.

The internal resistance of batteries is a crucial parameter for their characterisation. In
the case of LIBs, the internal resistance varies depending on several factors, including i)
SoC, ii) current rate during charging and discharging pulses, iii) operating temperature,
and iv) duration of the charge and discharge pulses. This test allows for the determination
of the internal resistance values under various operating conditions.

To measure the internal resistance, an HPPT test composed of charge and discharge
pulses has been performed for different SoCs and temperatures. Specifically, 0.5C (500
mA) and 1C (2.5 A) pulses have been applied to the battery, covering the range from 0%
to 100% SoC at 5% DoD intervals. Each pulse has had a duration of 30 seconds. Figure
3.7 illustrates an HPPT test performed at 10°C, 25°C, and 45°C.
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Figure 3.7: HPPT carried out to obtain the internal resistance and the RC of the cell
at 25°C.

The electrical ECM, which consists of three RC phases, has been used to obtain the
resistance parameters of the cell . Similar to the cell hysteresis, these parameters have been
estimated with the Parameter Estimator in Matlab Simulink. In the first step, the cell
hysteresis values have been optimised. Once these values were obtained, they were fixed
and the internal resistance (R0) and the parameters of the three RC circuit elements were
adjusted. This involved optimising the values of R1, R2, R3, as well as the time constants
τ1, τ2, and τ3. In an ECM, a RC branch models the battery’s transient response. The
time constants (τ) associated with these branches dictate the charging and discharging
rates of the battery. By adjusting resistor and capacitor values, these time constants have
been customized to fit the cell´s performance in various conditions. This ensures a more
realistic representation of the battery’s transient behavior in the circuit model.

3.6.2 Thermal Characterisation of the ANR26650m1B Cell

This Section describes the performed test and obtained results of the thermal charac-
terisation for the LW cells. For the thermal modelling, a LTM has been used. This model
represents the thermal behaviour of the cell using an analog electrical circuit, which in-
cludes components to describe the generation and accumulation of heat, as well as its
dissipation. In addition the specific heat capacity of the cells has been measured. The
required parameters for the developed LTM are detailed below.

Note: This Section briefly describes the testing performed and gives the obtained results.
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Parameter: Entropic Heat Coefficient.

The EHC parameter is defined as the variation of the OCV of a cell in relation to
temperature (equation 3.50). This parameter is directly related to the reversible heat
generated by a cell. The measurement of this coefficient is performed by OCP tests. This
is an experiment in which the temperature of the climatic chamber is varied while keeping
the SoC constant at each step. In other words, the EHC represents the sensitivity of the
cell’s OCV to temperature variations at a given SoC.

EHC(SoC) = dUavg

dT
(3.50)

The test consists of discharging a fully charged battery at 5% DoD intervals at 0.2C.
After each 5% DoD discharge, the battery is allowed to rest for 3 hours to reach the
equilibrium voltage or OCV. When it reaches this OCV voltage, the thermal cycle shown in
Figure 3.8 is applied, and the voltage variation during this profile executuion is measured.
This thermal cycling consists of five different temperature stages (25°C, -5°C, 10°C, 40°C,
25°C). Each of the stages lasts 3 hours, assuring a proper thermal stabilization of the cell.
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Figure 3.8: Example of thermal cycle applied for EHC calculation

Once the test has been performed, the voltage variations within the different SoCs
are analysed, as seen in Figure 3.9a. To determine the temperature coefficient from this
data, the voltage was fitted to the function described by equation 3.51, which includes the
constants A, B, and C, where the constant B corresponds to the EHC dUavg/dT . This
fit can be observed in Figure 3.9b.

V (t, T ) = A + BT + Ct (3.51)
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Figure 3.9: EHC measurement procedure with a) OCV voltage variation measurement
of the EHC test and b) Obtention of the EHC by adjusting the OCV variation to 50% of
the SoC.

Once the EHC is obtained from the fitting equation, the EHC vs SoC curve can be
obtained as a function of the SoC-level of the cell. This curve shows the OCV variation
per degree Kelvin with respect to the SoC of the cell, which will define the reversible heat
behaviour depending on the current applied and the cell temperature. The obtained EHC
values are presented in Figure 3.10.
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Figure 3.10: Obtained EHC values.

Parameter: Specific Heat Capacity.

The Specific Heat Capacity (Cp) is a necessary parameter for the calculation of the
heat storage of the thermal model. This parameter has been obtained by means of an
experimental test where the amount of heat released or absorbed by a cell has been mea-
sured. For this purpose, a calorimetry test has been carried out in the Accelerating Rate
Calorimeter (ARC) (THT, EV Standard Calorimeter) using the setup seen in Figure 3.11.
The aim of this procedure is to measure the heat required by the cell to increase its
temperature by one degree.
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Figure 3.11: Calorimetry test for Cp measurement for LW cylindrical cell.

As explained before, to carry out this text it is necessary to introduce a cell into the
calorimeter which is an adiabatic chamber (no heat exchange between the chamber and
the outside) and contains a thermocouple to measure the temperature differences. In the
calorimeter the cell is heated by means of a thermal resistor applying a known amount
of energy. Examples are given in Table 4.2. Then, the temperature change in the cell is
measured over time. Knowing the mass of the cell, the amount of heat applied and the
temperature variation, the Cp of the cell can be calculated using the formula 3.52.

Q̇ = m · Cp · ∆T

∆t
(3.52)

where Q̇ is the amount of heat applied, m is the mass of the cell, ∆T is the temperature
variation and ∆t is the time interval between time n and the previous time step (n − 1)
in [s].

Table 3.3: Conditioning and Selection of Similar Cells.

P [W] Delta T [ºC] Cp [J/kg*K] Cpavg

Cell sample
4.9 22.7 1161

1163
18.7 22.2 1165

The LTM and ECM models, discussed in Sections 3.3 and 3.4 respectively, rely on the
selection of appropriate parameters. The subsequent Section presents the validation tests
performed on the LW cells in the laboratory. These tests aim to validate the cell-level mod-
els by confirming the accuracy of the parameters obtained from the cell characterisation
tests described earlier in this Section.
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3.7 Results & Discussion of Cell-level Models

This Section aims to validate the cell-level models and estimator, which completes
Stage 1 of the methodology proposed in Chapter 2. At the same time, it fulfils the first
objective set for this thesis, which is to develop and validate cell-level models to understand
the behaviour and interactions of basic system features, in order to use them as a basis
for extrapolation to more advanced module models.

3.7.1 Results & Discussion: Cell-level LTM Validation

The validation of the thermal model (LTM) consisted of testing the cell under different
operating conditions to ensure correct operation. Two types of tests were carried out and
used to characterise the cell, the OCP test and the HPPT test, that were not included in
the parameter estimation process (section 3.6).

Figures 3.12a and 3.12b show the test profiles used to represent cell operation. In
Figure 3.12a, a current profile at 1C consisting of three complete charge and discharge
cycles of the cell is presented. The cell was charged using a constant current-constant
voltage (CC-CV) charging method. This profile, with low dynamics, was performed at
three different temperatures: 10°C, 25°C and 45°C. The objective was to observe whether
the parameters describing the thermal dynamics are adequate.

On the other hand, the current profile shown in Figure 3.12b is dynamic. This was
also used to test variable profiles to assess whether the thermal model is able to cor-
rectly estimate the cell under demanding temperature conditions. These profiles were also
performed at the three temperatures mentioned above.
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Figure 3.12: Applied profiles in the cell level thermal model. a) Capacity test, and b)
Dynamic profile.
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To obtain the cell data during the validation tests, thermocouples were placed at the
six points on the cell surface where the model estimates each temperature as shown in
Figure 3.13a. Each thermocouple was connected to an Agilent temperature meter. These
measurements were then compared with the estimates made by the LTM. Figure 3.13b
shows the measurements collected from a complete charge/discharge cycle of the cell.
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Figure 3.13: Thermocouples in a cell: a) location of thermocouples in the cell and b)
measurements obtained from these thermocouples.

Figure 3.13b illustrate the location in which each thermocouple has been located within
the cell during the test. On the other hand, Figure 3.13a shows the temperature measure-
ments obtained during the test at the points indicated in the Figure 3.13b.

The temperature measurements shown in Figure 3.13b exemplify the results of the
three conducted tests. In Figure 3.14, all the predictions for the points on the cell surface
are shown. The colored lines represent the estimated values, while the black dashed line
represents the measured values for all the points on the surface. Figures 3.14a, 3.14b,
3.14c and 3.14d present the estimation made by the thermal model in the radial surfaces
of the cell. In addition, Figures 3.14e and 3.14f show the estimation and measurement of
the temperatures at the top and bottom of the cells, respectively.
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Figure 3.14: Capacity test at 25°C ambient temperature. The graphs show the temper-
ature measured by the NTC vs. the estimated temperature at the location of a) T1, b)
T2, c) T3, d) T4, e) T5, f) T6.

Figures 3.14a-3.14f show an adequate trend in the estimation of the temperature change
along the cell. In this figure, it can be observed that the temperature gradient within the
cell is minimal since it is measured across six points on the cell’s surface. This indicates
that the temperature dispersion within the same cell is small. Furthermore, the measure-
ment taken at point T1, which corresponds to the radial surface of the cell, will be used
as the reference signal for the LTM system. However, all the errors obtained by the LTM
at each estimated point will still be presented for a comprehensive analysis.

Figure 3.15 shows the results obtained during the same capacity test performed at an
ambient temperature of 25°C in the climatic chamber illustrated in 3.14. Figure 3.15a
shows the SoC profile of the cell, in Figure 3.15b, the temperature measured at point T1
of the cell and the temperature estimation provided by the LTM are depicted. Finally,
in Figure 3.15c six lines represent the errors obtained when comparing the estimated
temperature versus the measured temperature at each specific point on the cell surface.
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Figure 3.15: Capacity test at 25°C ambient temperature. The plots show a) SoC during
the test, b) measured temperature at point T1 on the cell surface versus LTM estimated
temperature, and c) LTM error in °C.

For the temperature estimation points on the radial surfaces, the mean errors of the
estimates are 0.31°C and the maximum absolute error is 0.78°C. For the estimations on
the axial surfaces of the cell (top and bottom surfaces), the mean errors are 0.43°C and
the maximum absolute error is 1.03°C. These results show that the model is able to follow
the slow dynamics of the cell at an ambient temperature of 25°C.

The same type of test was repeated at two other temperatures: 10°C and 40°C ambient
temperature. In these cases, only the results of the temperature estimations and the
corresponding measurement of T1 will be shown to verify that the LTM can also follow
the thermal dynamics at these two temperatures.

Figure 3.16 shows the estimations made by the LTM in the the capacity test performed
at 10°C ambient temperature in the climatic chamber. Following the same procedure as in
the 25°C test, Figure 3.16 show the temperatures estimated by the LTM (coloured curve)
versus the measurements (black discontinuous curve). Figure 3.16c shows all the errors
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obtained.
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Figure 3.16: Capacity test at 10°C ambient temperature. The plots show a) SoC during
the test, b) measured T1 temperature versus LTM estimated temperatures, and c) LTM
error in °C.

When estimating the capacity test at an ambient temperature of 10°C, the LTM
demonstrates a strong ability to capture and track the temperature trends within the
cell, as evidenced by Figure 3.16. The mean errors in the radial surface measurements,
specifically at point T1, are 0.523°C. Similarly, for the axial surface measurements, the
mean error at point T5 is 0.55°C.

The latest capacity test was conducted at an ambient temperature of 45°C. In Figure
3.17, the estimated temperature is presented, following the same logic as the previous
capacity tests. Additionally, Figure 3.17c displays the errors obtained in the temperature
estimates, allowing for a comprehensive analysis of the model’s performance.
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Figure 3.17: Capacity test at 45°C ambient temperature. The plots show a) SoC during
the test, b) measured T1 temperature versus LTM estimated temperatures, and c) LTM
error in °C.

When estimating the capacity test at 45°C ambient temperature, the average errors
in the measurements of the radial surfaces are 0.33°C, while the maximum absolute error
is 0.86°C. As for the estimations on the axial surfaces, the mean error obtained is 0.28°C
and the maximum absolute error is 0.75°C. These results indicate that the LTM cor-
rectly follows the temperature trends during full charges and discharges at 45°C ambient
temperature.

In addition to the capacity tests, more dynamic profiles were also tested, as shown in
Figure 3.12b. These tests aim to verify whether the developed LTM is able to estimate the
cell temperature when the it operates at faster dynamics, applying current with varying
C-rates. In this test, the cell was fully charged using a CC-CV charging cycle and then
discharged to 50% SoC. When the cell reached 50% SoC, the dynamic profile from Figure
3.12b was applied that reaches a C-rate of up to 1.5C. Figure 3.18 shows the dynamic
profile test with the measured data, performed at 25°C ambient temperature.
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Figure 3.18: Dynamic test. The plots show a) SoC during the test, b) voltage measured
during the test, and c) applied current profile.

Figure 3.19a shows the temperature estimation at the T1 surface together with the
measurements made by the cycler. The three tests have been plotted on a single graph.
The curves represented in pink correspond to the dynamic test at 45°C ambient temper-
ature, the green curve represents the test at 25°C and the blue curve represents the test
at 10°C. The same colours are applied to the graph representing the dynamic test at 45°C
ambient temperature. These colours are also applied to the graph showing the errors
obtained in these estimations shown in Figure 3.19b.
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Figure 3.19: Capacity test at 10°C, 25°C and 45°C ambient temperature. The plots
show a) measured T1 temperature versus LTM estimated temperatures in each ambient
temperature, and c) LTM error in °C.

As shown in Figure 3.19, the mean error of the LTM model at the cell level at 10ºC
is 0.45°C. At 25°C this mean error is 0.94°C and at 45°C the error is 0.88°C. The maxi-
mum errors at the three temperatures are 4.18°C, 1.61°C and 1.39°C. The test conducted
at 10 degrees Celsius exhibits a peak temperature rise, which is attributed to external
factors. These errors are within the acceptable range, considering that the error of the
thermocouples is ± 1.5°C. Therefore, the LTM model is considered validated, as well
as the parameters obtained in Section 3.6. This model then, will be the basis for the
extrapolation of the model at module level in Chapter 4.

3.7.2 Results & Discussion: Cell-level ECM and SPKF Validation

The electrical ECM has been validated together with the SPKF SoC estimator. First,
the parameters obtained in Section 3.6 were used to make estimates using only the elec-
trical model. This allowed verifying whether the defined parameters correctly represent
the voltage response of the cell in the tests used to characterise them. Once the electrical
model was validated, simulations were carried out with the dynamic profile and capacity
test using the SPKF estimator. The results obtained at each step to further validate the
ECM together with SPKF are detailed below.
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As mentioned above, estimations were performed with the tests used to obtain the
electrical parameters. The first test used to obtain parameters was the quasi-OCV test
depicted in Figure 3.20b in which the parameters related to hysteresis were optimised.
Figure 3.20a shows the SoC profile when applying the quasi-OCV current profile. Figure
3.20c shows the voltage estimated by the ECM compared to the voltage measured by the
battery cycler. Finally, Figure 3.20d shows the error obtained in the voltage.
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Figure 3.20: Hysteresis test at 25°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) applied current profile,
and d) ECM error in voltage.

Figure 3.20 demonstrates how the hysteresis parameters fit well to be able to estimate
the dynamics in this quasi-OCV test with errors of 0.003 V and max error of 0.65V. Then,
the parameters representing the RC branches were obtained and the R0 was redefined,
as explained in section 3.6. This second parameter optimisation was performed with the
HPPT test. In this case, additional RC phases were incrementally added to the model
until the optimal number of RC phases was determined to accurately capture the behavior
of the cell. After optimization, it was determined that three RC phases provided the most
suitable representation of the cell’s behavior. Figure shows the SoC profile applying
the current profile of Figure . Figure 3.21c shows the voltage estimated by the ECM
compared to the voltage measured by the battery cycler. Finally, Figure 3.21d shows the
error obtained in the voltage.
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Figure 3.21: HPPT test at 25°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) applied current profile,
and d) ECM error in voltage.

Figure 3.21 shows that the parameters fit well in order to estimate the dynamics in this
HPPT test. A higher error is observed when the cell is close to 100% SoC and especially
when it is completely discharged (SoC at 0%), with a maximum error of 0.225 V but the
average error is 0.002 V.

In addition to the optimized parameters at 25°C, it has also been verified that the
parameters at the other two temperatures (10°C and 45°C) have been correctly identified.
With this confirmation, the validation of the ECM at the three temperatures will be
carried out. That validation of the ECM parameters was repeated at temperatures of
10°C and 45°C. Figures 3.22, and 3.23 show the results obtained in the quasi-OCV and
HPPT tests at 10°C ambient temperature.
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Figure 3.22: Hysteresis test at 10°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) applied current profile,
and d) ECM error in voltage.
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Figure 3.23: HPPT test at 10°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) applied current profile,
and d) ECM error in voltage.

The errors obtained in the tests at ambient temperature of 10°C are similar to those
obtained in the tests carried out at 25°C, with 0.003 V and 0.002 V errors on average in
the tests. The maximum errors obtained in these tests were 0.65 V and 0.23 V. Once these
values were obtained, the validated °C at 10°C was selected.
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Similarly, Figures 3.24 and 3.25 show the results obtained in the quasi-OCV and HPPT
tests at 45°C room temperature.
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Figure 3.24: Hysteresis test at 45°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) applied current profile,
and d) ECM error in voltage.
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Figure 3.25: HPPT test at 45°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) applied current profile,
and d) ECM error in voltage.

The average error in those test are 0.004 V and 3.11e-05 V and the maximum errors
are 0.72 V and 0.49 V. This shows that the model is able to correctly estimate the cell
voltage at 45°C ambient temperature.
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Once the electrical model was able to correctly estimate both slow dynamics (quasi-
OCV) and faster dynamics (pulse test), the validation of the SPKF SoC estimator was
performed. The proposed model was integrated into the SPKF, as explained in section
3.5, to achieve a robust SoC estimation. The experimental results used to validate the
algorithm are presented below. Several tests were performed to demonstrate the correct
performance of the SoC estimator, being able to accurately represent a wide range of
different dynamics.

The current profiles used for the validation of the open-loop model were also employed
to assess the performance of the SPKF estimator. Specifically, the HPPT test profile
was utilised, along with the introduction of a dynamic profile to evaluate the estimator
under variable dynamics. The SoC reference used to calculate the error was determined by
an accurate Coulomb Counting estimate obtained under laboratory conditions, using the
current measured in the cell tester. Although this method has some limitations, it can be
considered a good short-term reference and quite reliable when the current measurement
is accurate.

First, the HPPT test was repeated. In this case, apart from executing the ECM, the
state estimator was used to correct the SoC estimation of the cell. The battery was cycled
through the entire SoC range, starting with the cell fully charged and ending when the
minimum operating voltage was reached, and then fully charged again, demonstrating that
an accurate estimate was maintained throughout the test. Figure 3.26 shows the results
of the pulse test over the entire SoC range at 25°C. The actual cell voltage is shown along
with the estimated voltage. The reference SoC and the estimated SoC with the SPKF
integrating the proposed model are also plotted. Finally, the absolute SoC error of the
developed method is shown.
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Figure 3.26: HPPT test at 25°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) SoC error during the test,
and d) test currrent profile.
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The maximum error of the estimator is less than 1% of SoC in the test shown. In this
test, where the cell was subjected to charge and discharge pulses of different C-rates over
the entire SoC range, the SoC RMS error is 0.39 %. Furthermore, when using the SPKF,
the SoC prediction remained within the upper and lower limits at all times, ensuring a
realistic estimation of the state of charge.

The electrical model and the SoC estimator also demonstrated their ability to correctly
estimate faster dynamics. This profile represents more demanding cell dynamics. In this
case, the model was found to be able to accurately estimate the output voltage and SoC
of the cell. Figure 3.27 shows the results obtained with the dynamic test performed in the
climatic chamber at 25°C. Figures 3.27b and 3.27c show the current and voltage measured
in the test, together with the voltage estimated by the model. Figure 3.27a represents the
SoC estimate at 25°C calculated by the proposed SPKF, compared to the reference SoC.
The SoC error achieved is also shown in Figure 3.27d.
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Figure 3.27: Dynamic test at 25°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) SoC error during the test,
and d) test currrent profile.

The SPKF with the ECM model achieves good results in SoC and voltage estimation.
The RMS SoC error in the dynamic profile test is 0.48%.The maximum error of the pro-
posed algorithm is typically less than 5%, which confirm the accurate determination of SoC
in different scenarios and its ability to represent the dynamics under a more demanding
profile excitation.

Both tests were repeated at ambient temperatures of 10°C and 45°C, maintaining the
same characteristics as at 25°C. Figure 3.28 shows the results obtained in the HPPT test
at 10°C, while Figure 3.29 shows the results obtained by the SPKF in the dynamic test
at 10°C.

100



3.7 Results & Discussion of Cell-level Models

0 2000 4000 6000 8000
Time (min)

0

50

100

150

S
O

C
 (

%
)

(a)

0 2000 4000 6000 8000
Time (min)

2

2.4

2.8

3.2

3.6

V
ol

ta
g
e 

(V
)

(b)

0 2000 4000 6000 8000
Time (min)

−0.8

−0.4

0

0.4

0.8

E
rr

or
 (

%
)

(c)

0 2000 4000 6000 8000
Time (min)

−3

0

3

C
u
rr

en
t 

(A
)

(d)

Figure 3.28: HPPT test at 10°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) SoC error during the test,
and d) test currrent profile.
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Figure 3.29: Dynamic test at 10°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) SoC error during the test,
and d) test currrent profile.
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The RMS error of the SoC estimation obtained in the HPPT test is 0.23%. Regarding
the dynamic profile test, the RMS SoC error obtained is 0.22%. In both tests, the SoC
estimate and the actual reference SoC remained within the established limits. In this case,
the SPKF estimator demonstrated its ability to operate in low temperature conditions
(10°C).

Figure 3.30 shows the results obtained in the HPPT test, and Figure 3.31 shows the
results obtained by the SPKF in the dynamic test, both at 45ºC ambient temperature.

0 2000 4000 6000 8000
Time (min)

0

50

100

150

S
O

C
 (

%
)

(a)

0 2000 4000 6000 8000
Time (min)

2

2.4

2.8

3.2

3.6

V
ol

ta
g
e 

(V
)

(b)

0 2000 4000 6000 8000
Time (min)

−0.4

−0.1

0.2

0.5

0.8
1.1

E
rr

or
 (

%
)

(c)

0 2000 4000 6000 8000
Time (min)

−3

0

3

C
u
rr

en
t 

(A
)

(d)

Figure 3.30: Capacity test at 45°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) SoC error during the test,
and d) test currrent profile.
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Figure 3.31: Dynamic test at 45°C ambient temperature. The plots show a) SoC during
the test, b) measured voltage versus ECM estimated voltage, c) SoC error during the test,
and d) test currrent profile.
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Figures 3.30d and 3.31d show that the RMS error of the SoC estimation was 0.51%
in the HPPT test and 0.47% in the dynamic profile test. In both cases, the SoC estima-
tion curve remained within the established limits. Therefore, the SPKF estimator also
demonstrated its ability to operate correctly in 45°C temperature conditions.

3.8 Discussion & Conclusions of the Chapter

During this Chapter, the cell to be used throughout the project has first been intro-
duced (Section 3.2). This is a 2.5 Ah cylindrical cell from the manufacturer LW, with a
voltage range of 2 to 3.6 V.

In the following Section, the thermal model of this cell has been detailed. The ob-
jective of this model is to estimate the temperature at seven different points in the cell,
including the top and bottom, four points on the radial surface and the temperature at
the centre. A simplified thermal model (LTM) is used which considers heat generation,
heat accumulation and heat transfer by conduction, convection and radiation. The neces-
sary parameters for this model have been obtained through specific tests, as described in
the Subsection 3.6.2. Subsequently, in the Subsection 3.7.1, this thermal model has been
validated and the correct acquisition of the parameters related to temperature have been
verified.

In Section 3.4, the electrical model of the cell has been presented. The output equation
of the selected Electrical ECM has been detailed. This ECM model uses an equivalent
circuit with three RC branches to adequately capture the electrical characteristics of the
cell. Rc branches have been gradually added until an appropriate voltage response has been
obtained. In addition, an impedance has been added to represent the non-linear hysteresis
of the LFP cell and its impact on the electrical behaviour. The necessary parameters for
this model have been determined by specific tests, as explained in the Subsection 3.6.1.
Then, in Subsection 3.7.2, the ECM model has been validated and the proper electrical
parameters identification has been verified.

On the other hand, in the Section 3.5, the SoC estimator selected to work together
with the ECM model of the cell has been detailed. This estimator uses the voltage es-
timate obtained from the ECM output equation, together with the actual cell voltage
measurement, to correct the SoC estimate. In addition to validating the ECM model, this
estimation algorithm has been also validated in the Subsection 3.7.2.

Characterisation and validation tests were performed in temperature-controlled envi-
ronments (CTS and Prebatem climatic chambers, in Appendix A) and using the Digatron
multiple tester with BTS-600 data acquisition software (Appendix A).

In this chapter, the focus has been on the cell-level development carried out in this
study, which involved defining the cell and its characteristics. In addition to the manufacturer-
provided specifications, laboratory tests were conducted to obtain additional cell parame-

103



Cell-level Models

ters required for developing the cell models. The chapter aimed to define and explain the
fundamentals of these calculations, including the purpose of each model, the estimations
they provide, and their interactions with one another.

The thermal model is the starting point, which involves a LTM at the cell level that
estimated six temperatures and the core temperature. The thermal model parameters
were obtained and validated against laboratory tests, encompassing both slow and faster
dynamic profiles.

Subsequently, the electrical ECM of the cell has been introduced, providing the foun-
dation for defining the state space of the SoC estimator and updating the SoC estimation.
The state space model was based on an output equation that calculated the cell’s terminal
voltage, and each electrical effect contributing to this equation was explained and the SoC
estimation update in each time step. The model parameters and their acquisition through
specific tests were also discussed.

As mentioned, the electrical model worked in conjunction with the SoC estimator of
the cell. By introducing the SoC as an additional state variable in the state space, the
nonlinear cell system was fully captured. The calculations performed with the SPKF were
explained, including the output equation.

Each model was then discussed and evaluated for its validity, assessing the adequacy of
the obtained parameters. It was concluded that the models effectively captured both the
thermal and electrical dynamics of the cell. All models were validated, providing a solid
foundation for the subsequent extrapolation to the module level, which will be discussed
in the next chapter.
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Summary
This chapter presents the module-level models developed in this thesis, covering elec-

trical and thermal aspects. Firstly, the construction process of the prototype module is
described, followed by the extrapolation of the cell-level models to the module level. A
LTM is proposed at module level while the ECM together with the SPKF SoC estimator is
proposed at cell level for each cell. Additionally, the simulations conducted to determine
the parameters for the prototype module are presented. Finally, the models and the esti-
mator are validated against laboratory tests.
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4.1 Introduction

Chapter 4 of this thesis covers Stages 2 and 3 of the methodology proposed in Chapter
2. In the previous Chapter, the selected cell for the thesis development and the tests
conducted to characterize its electrical and thermal parameters were presented. The mod-
els used to estimate temperature, voltage, and SoC of the cells were also discussed and
validated at the cell-level through laboratory tests.

In this Chapter, the focus is on proposing extrapolated module-level models and vali-
dating them against laboratory tests. The specific models used and how the extrapolation
was carried out are detailed.

The Chapter is structured as follows: Section 4.2 presents the experimental prototype
used to validate the proposed methodology and its connection to the Cloud platform.
Section 4.3 describes the module-level thermal model, while Section 4.4 discusses the
module-level electrical model. Section 4.6 describes the simulations conducted to obtain
the necessary parameters for developing the thermal model of the module. Section 4.7
presents the validation of the models through static and dynamic tests conducted in the
laboratory. Finally, Section 4.8 provides a summary of the results and draws the main
conclusions of the Chapter.

4.2 Construction of a Battery Module Prototype

In order to verify the overall efficiency of the platform, a prototype has been built
using the selected cells (Section 3.2). The configuration of the connections and module
geometry was carefully chosen to align with the objectives of the hypothesis testing. The
module-level models were then developed, taking into account the interactions between
the cells and ensuring their representation is accurate for this specific prototype.

For the construction of the prototype, the battery module structure previously em-
ployed by [209] et al. using A123 cells has been adopted. However, the updated commercial
version of the A123 cells has been chosen for this study, ANR26650m1B Cell introduced
in 3.2. While the new cells maintain the same general characteristics as the previous ones,
they come from the manufacturer LW, representing an updated iteration of the original
cells. Unlike the setup in [209], which employed an air-based TMS, no cooling system will
be used in this thesis. Instead, the module will rely on natural convection for cooling.

The prototype consists of twelve cylindrical cells connected in a 12S1P electrical con-
figuration, resulting in a module with a capacity of 2.5 Ah and a voltage range of 24 to 39.6
V illustrated in Figure 4.1. The main characteristics of the module have been summarized
in Table 4.1.
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Table 4.1: Module main Characteristics.

Battery Module Prototype

Chemistry LFP
Voltage 12 to 39.6 V
Capacity 2.5 Ah
Cell Configuration 12S1P
Number of Cells 12

Figure 4.1: Prototype of a twelve cylindrical LFP cell module assembled with a 12S1P
configuration.

The main parameters of the module will be obtained from Section 3.6. However, with
twelve cells in the module, the thermal interaction involves more factors compared to
when only a single cell is considered. To understand the thermal behavior of the battery
module and account for the interaction between the twelve cells, a CFD simulation will
be conducted (Section 4.6). This simulation will provide detailed information on the
temperature distribution in the module and analyze the airflow that occurs naturally for
cooling.

The selection of sensor locations for measuring the cells has been an important consid-
eration, as this choice significantly impacts the accuracy and fidelity of the subsequently
estimated states using the estimators. To collect module data, a BMS-slave, developed by
Ikerlan S.COOP in [210], has been employed. The BMS device is configured to take twelve
voltage measurements of the cells, located at the negative terminal of the module and at
all the positive terminals of each cell. Additionally, it allows the acquisition of eight tem-
perature measurements using NTC sensors. The arrangement of the temperature sensors
in the prototype is illustrated in Figure 4.2.
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Figure 4.2: Location of the eight NTCs in the LIB prototype. Each purple dot represents
a NTC sensor positioned at the midpoint of the cell’s height.

The BMS-slave is connected to a BMS-master system, which consists of Serial Periph-
eral Interface (SPI) converter board, an Arduino Due and a Personal Computer (PC). The
overall hardware configuration is depicted in Figure 4.3. The Arduino Due controls the
slave and retrieves the measurements taken by the slave. This connection is facilitated by
an SPI converter board. Additionally, a current sensor is connected to the negative termi-
nal of the module, and it sends the measurements to the Arduino Due. The Arduino Due
is connected to a PC, which serves as an edge device in the system. The Universal Serial
Bus (USB) is responsible for wireless communication with the Cloud using the MQTT
communications protocol, facilitating the transmission of battery data. In this setup, the
PC acts as a gateway, emulating an edge device and enabling data transfer from the local
system to the Cloud. The software code for the system is implemented in Python, allowing
seamless integration and efficient data transmission. The communication with the Cloud
and the integration of the battery models are described in detail in Chapter 5.

Battery
Prototype
Module

BMS-slave Arduino
Due

SPI PC Cloud

Figure 4.3: General Scheme of the Prototype Hardware.

This system has been integrated with a battery cycler, which applies specific load
profiles to the module for the purpose of validating the system.

4.3 Module-level Thermal Model: Lumped Thermal Model

This Section covers a crucial part of Stage 3 in the proposed methodology outlined in
Chapter 2. Specifically, this stage focuses on the development and validation of module-
level models. In the previous section (Section 4.2), the construction of the prototype
module was discussed, and from this prototype, the thermal model for the module will be
defined.
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In Chapter 1, two types of thermal models for temperature estimation in cells or mod-
ules were identified: CFD based models and LTM. CFD based models are computationally
intensive and not suitable for real-time applications, while LTM models provide simpler
yet effective temperature estimations. However, CFD based models are a very powerful
tool to obtain the characteristics related to the thermal behaviour, so this model will be
used later in Section 4.6 to obtain the parameters of the model detailed in this Section.

The cell-level thermal model performs energy balance calculations and estimates the
thermal gradient within each individual cell. On the other hand, the module-level thermal
model not only takes into account the internal calculations of each cell but also considers
the heat transfer between the different cells within the module. This enables a more
accurate representation of the temperature distribution throughout the module.

The proposed methodology involves adapting the cell’s thermal model to the mod-
ule’s characteristics using a meshed circuit. A circuit is designed to represent all the
cells and the module’s geometry. The module-level model is based on the cell model,
which incorporates instantaneous current, battery SoC, and cell temperatures. Each cell
is individually considered in the heat generation model, and thermal interactions between
adjacent cells are accounted for in the energy balance equations. The parameters obtained
in Section 3.6 are reused, while new module-specific parameters (presented in Section 4.6)
are incorporated.

The module-level thermal model is based on the module geometry, which requires the
definition of cell-to-cell interactions in the main equations. For this purpose, a LTM circuit
is placed at the location of each cell, based on the single-cell LTM model as seen in Figure
4.4a and taking into account the position of the cell within the module geometry. Figure
4.4b illustrates how two single-cell models are connected in a meshed circuit. This process
is repeated at each location with adjacent cells.
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Figure 4.4: Positioning of each single cell LTM according to the geometry of the as-
sembled prototype module a) without connection between them and b) with connection
between them.

The single-cell model focuses on the interaction between the cell and its immediate
environment, primarily the surrounding air. For this reason, each cell model includes the
ambient temperature at its endpoints. However, in the presence of adjacent cells, the
ambient temperature points are connected. In Figure 4.5, only six out of the twelve cells
are depicted for simplicity, representing a simplified version of the module. All cells can
exchange heat with both the ambient environment and neighboring cells. Therefore, when
adjacent cells are present, the ambient temperature points on both surfaces are joined
to form a closed-mesh circuit. Since the cells are separated by a distance, heat transfer
between them is assumed to happen through radiation and convection, while there is no
heat transfer by conduction.

As the number of cells in the module increases, the complexity of the model also
increases due to the corresponding increase in the number of resistors. This is because the
energy balance calculations are multiplied by the number of cells. However, this increased
complexity does not pose a significant problem since the computational power provided by
the Cloud platform will be utilized. The cloud platform offers ample computing resources
that can handle the higher computational demands of the expanded model. Therefore,
it becomes feasible to redefine the function matrix and its Jacobian (equations 3.12 and
3.13) to accommodate the larger number of cells. In this model, each cell is treated as an
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individual unit, and the parameters are determined based on the state of each cell, such
as the SoC, at any given time.

The process of calculating the energy balance can be summarized as follows:

1. Perform an initial approximation of the roots (z0) of all the cells. In this case, a
matrix of dimensions 12x7 is obtained.

2. Calculate the values of the function matrix (fz0) with the initial approximations.
To do this, equations 3.1 and 3.2 are applied to each surface. This gives a function
matrix of dimension 84x1.

3. Obtain the Jacobian of the function matrix (Jf(z0)), resulting in a matrix of 84x84
functions.

4. Apply Gaussian elimination to obtain a new approximation by applying equation
3.14.

5. Repeat steps 2-4 until the determined error tolerance is reached.

Note: Due to the large dimensions of these matrices, an example of their extrapolation
applied to two contiguous cells is presented in the Appendix B.

When the module is not in operation, it is assumed that the thermal dispersion be-
tween cells within the same module is negligible, resulting in all cells being at the same
temperature in the zero state. However, this situation changes when the module starts
operating, and thermal gradients appear between cells over time. This is because not all
cells operate identically due to variations in internal processes and factors such as internal
resistances and self-discharge rates. Additionally, it is crucial to consider the influence of
neighboring cells on each other, as there is heat transfer occurring between them continu-
ously. In the case of cells connected in series, the temperature variations can be influenced
by the overall thermal behavior of the module and the distribution of heat dissipation.

Figure 4.7 illustrates the temperature estimations obtained by running the module-
level thermal model. Each data point represents a temperature estimation for a specific
cell within the module. Since there are a total of 7 temperature estimations per cell, the
module-level model will generate a corresponding number of data points, resulting in 84
total temperature estimations for the module.
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Figure 4.6

Figure 4.7: The thermal distribution within the module in a steady state is depicted,
showcasing the temperature estimations provided by the thermal model at various points.

4.4 Module-level Electric Model: Equivalent Circuit Model
& Sigma Point Kalman Filter

This Section introduces the proposal for extending the electrical model of the LIB to
the module level. Similar to Section 4.3, this Section is part of Step 3 of the methodology
outlined in Chapter 2. Its objective is to establish the electrical model at the module level
and suggest an extrapolation method.

Sections 3.4 and 3.5 focused on presenting the key aspects of the electrical model for
LIB cells and the SPKF, which were successfully implemented and validated for a single
cell in Section 3.7. The cell-level electrical model aims to provide real-time estimates of
various electrical characteristics for each cell in the module, including voltage and SoC.
Instead of estimating a single SoC value for the entire module, individual SoC values are
estimated for each cell, enabling more precise simulation and control.

To extend the SoC and SPKF estimator to the module level, the validated parameters
from the single cell model will be used. In contrast to the module-level thermal model that
treats all cells as a single entity, the electrical model considers each cell as an individual
unit. The consideration of each cell as an individual unit in the electrical model is justified
by the fact that the electrical behavior of each cell can be analyzed independently, as the
interaction between cells in a series configuration is primarily influenced by the shared
current. This allows for separate electrical modeling of each cell, enabling a more accurate
representation of the overall module behavior. Therefore, a separate electrical model will
be applied to each cell, as depicted in Figure 4.8 which describes six of the twelve cells in
the module for a simpler illustration. The representation of six cells in the figure serves as
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a simplification of the module, illustrating the parallel execution of these processes. The
model will utilize the average temperature estimated for each cell, which is derived from
the thermal model. This information about the cell temperature will serve as input for
the electrical model, enabling the selection of appropriate parameters.

As explained above, for module-level electrical modeling, a cell-by-cell implementa-
tion of the model is proposed. This means that all 12 models will be simulated together,
running concurrently in separate processes. Consequently, the cells will not interact elec-
trically with each other, but they will share current as input. Each cell considers its own
SoC and temperature when selecting the appropriate parameters during each model run
for estimations. This is achieved by implementing a parallel model for each cell, where
the parameters and states of each model are influenced by the respective states of the
corresponding cell. This approach allows for a comprehensive analysis of the electrical
behavior of the module, ensuring accurate and individualized estimations for each cell.

The proposed approach involves utilizing an ECM electrical model with an SPKF filter
to enhance SoC estimation for individual cells and facilitate cosimulation. The electrical
model incorporates an SoC estimation filter, which relies on the accuracy of the ECM
model and its initial parameter definition. By discretizing the non-linear system, the
model enables estimation of the non-linear states of the LIBs.

While ECMs are commonly used in commercial BMSs due to their simplicity, com-
puting multiple cells simultaneously can pose a significant computational challenge. This
is particularly true when attempting to parallelize tasks or instances to execute all the
models concurrently. To address this, leveraging cloud-based technologies becomes crucial
as they offer enhanced computational capacity and enable efficient multiprocessing. This
approach enables the estimation of SoC states for each cell, and the results and validation
of this model are presented in Section 4.7.
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4.5 Module-level Model Integration

After validating the electrical and thermal models at the module-level, this Section
focuses on introducing a integration of both models into a single simulation platform
where they can communicate and provide updated feedback of the state one to each other.
This integration completes Stage 3 of the proposed methodology. In this section, the ECM
electrical model together with the SPKF estimator will be considered in its entirety as the
complete electrical model of the module.

The DTSP encompasses a set of models and estimators that describe the instantaneous
state of the battery. This Section explores the possibility of integrating these models
by examining their input and output data, as well as the parameters required for state
estimation. The shared characteristics of input, output, and parameters shared by each
model to determine their common features and how the behavior of one model influences
the other is going to be analysed. For instance, the influence of temperature on the
electrical behavior will be investigated.

The electrical model used in this study is an ECM that incorporates three RC phases
and takes into account the battery hysteresis. This model relies on a current profile as
input to calculate the battery terminal voltage (model output). Accurate voltage calcu-
lation is ensured by including various electrical parameters that represent the electrical
phenomena in the battery. At each time step, the model selects appropriate values for
these parameters, including an open-circuit voltage (OCV) source, internal resistance (R0),
three RC phases (R1, C1, R2, C2, R3 and C3), and hysteresis characteristics (G, M and
M0) that depend on both the SoC and battery temperature. Therefore, the temperature
and SoC from the previous step also serve as inputs to the model.

The thermal model employed in this research is a LTM specifically designed to simulate
the thermal characteristics of the battery at the module level. This model requires a
current profile as input and incorporates temperature values estimated in the previous
execution. Its output provides temperature calculations at different points within the
battery. The model parameters include the internal resistance (R0) and the entropic heat
capacity (EHC) of the battery. While R0 depends on the SoC and temperature, similar to
the electrical model, the EHC only depends on the battery’s SoC. Hence, the temperature
and SoC from the previous step also serve as inputs to the thermal model.

As observed, both models require a current profile as input. Additionally, both the
electrical and thermal models rely on the temperature and SoC from the previous step. In
terms of parameters, the only parameter shared by both models is the internal resistance
of the battery. The internal resistance of the battery consists of two main components:
the resistance R0 and the three phase resistors RC. The three phase resistors (R1, R2,
R3) in the electrical model are key components that define the dynamics of the battery
module. In the electrical model, these resistors are employed separately to calculate each
state of the SPKF state vector. Meanwhile, in the thermal model, the cumulative effect
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of all four resistors is considered to simulate the thermal behavior of the battery. This
thesis proposes the development of a DT for a LIB and suggests a simulation platform
for comprehensive monitoring of the battery’s electrical and thermal characteristics. This
simulation platform consists of two models. Figure 4.9 illustrates the general framework
of the augmented model.
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Figure 4.9: DTSP Electric and Thermal Model Integration.

The estimated states of the models will rely on the calculated battery SoC, which is
determined by the voltage computed using the electrical model. This SoC value will be
utilized by both the thermal and electrical models for feedback. Similarly, the thermal
model computes the battery temperature, which serves as input for both models. Further-
more, as can be seen in the figure, there is a reciprocal feedback loop between the models
to increase the accuracy of the estimates.

It is worth noting that the dynamics of the models differ: the electrical model exhibits
faster dynamics compared to the thermal model. The different dynamics of the models
require unequal sampling intervals to update the state estimates. The activation time
denotes when each model is activated and executed to fulfill its function (Figure 4.10).
The goal is to determine which model should be activated at each time step. Thus, the
electrical model will be updated every second, while the thermal model will be updated
every few seconds.

EM TM

T∇

Electric Model ImplementationThermal Model Implementation

. . .

Figure 4.10: DTSP Electric and Thermal Model Activation Frequency.
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The data collection rate may impose additional constraints when determining the short-
est step time. The sampling rate of the BMS is 100 milliseconds, however, it is not nec-
essary to use all measurements to predict accurately the state of the battery. Executing
the electrical model every second provides a sufficient estimate of the battery state, as
extracting additional meaningful information from more frequent estimations would be
impractical and computationally inefficient. Therefore, it has been decided that a one-
second interval is an optimal solution in terms of accuracy and computational efficiency
for the electrical model.

In contrast, although temperature measurements are obtained simultaneously with cur-
rent and voltage measurements, the thermal dynamics are slower than electrical dynamics.
Hence, the thermal model aims to achieve accuracy by using a longer time interval. Con-
sidering heat dynamics and maintaining accuracy, it has been determined that running
the thermal model every 30 seconds is appropriate.

The proposed DTSP incorporates a module-level thermal model that is capable of
estimating the temperature at various points within the module, including cells without
temperature sensors. These temperature estimates serve as the equivalent temperatures for
each cell in the subsequent implementation of the electrical model. This approach allows
for estimating the electrical response of cells that potentially experience non-uniform load
demands, such as cell balancing or temperature gradients. By knowing the state of each
cell, the overall response of the module can be estimated.

To this end, the BMS controls the basic safety of the module. It is responsible for
obtaining voltage and temperature measurements, as well as cutting off charges and dis-
charges when the module is out of safe operating range. The charging is cut off when
the highest voltage cell reaches the maximum voltage of the module, 3.6V in this case.
Discharge, on the other hand, cuts off when the module is at voltages lower than 2V. In
addition, the BMS also obtains measurements of the voltage of the entire module. For the
estimation of SoC and module temperature, the averages of the values obtained from the
individual cells will be used.

Consequently, the DTSP is integrated into a simulation platform where the voltage,
SoC, and temperatures of all cells are estimated. The communication between the mod-
els enables better parameter selection at each time step, leading to more realistic state
estimation. This allows the DTSP to identify and estimate anomalies in the module’s
operation.

4.6 Experimental Characterisation for Cell-level Models Pa-
rameter Identification

In order to construct the prototype module, a total of 16 cells were characterized to
identify cells with similar capacity and internal resistance characteristics. These selected
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cells were then used for the assembly of the prototype module. These conditioning tests
entail subjecting the cells to three full capacity charge and discharge cycles, as well as
pulses at 20%, 50%, and 80% SOC levels. Out of the 16 conditioned cells, 12 cells were
chosen based on their comparable capacitance and internal resistance values. The selected
cells are listed in Table 4.2.

Table 4.2: Conditioning and Selection of Similar Cells.

Conditioning of cells
Q [Ah] R [W] Q [Ah] R [W]

Cell 1 2.486 0.0208 Cell 9 2.469 0.0207
Cell 2 2.492 0.0210 Cell 10 2.458 0.0209
Cell 3 2.457 0.0208 Cell 11 2.506 0.0209
Cell 4 2.473 0.0207 Cell 12 2.462 0.0208
Cell 5 2.462 0.0205 Cell 13 2.485 0.0210
Cell 6 2.474 0.0211 Cell 14 2.482 0.0217
Cell 7 2.462 0.0208 Cell 15 2.502 0.0210
Cell 8 2.472 0.0208 Cell 16 2.501 0.0210

The electrical and thermal parameters obtained in Section 3.6 provide an understand-
ing of the behavior of a single cell. In the process of selecting cells for the prototype
module, it is important to consider the inherent variations in cell characteristics due to
manufacturing tolerances. These variations can affect the parameters used at the module
level and may result in changes in the overall performance of the module.

Indeed, when transitioning from a single-cell characterization to the module level, there
are changes in the environment and operating conditions that need to be taken into ac-
count. These changes can affect the thermal behavior of the cells within the module.
Factors such as heat dissipation, thermal conduction between cells, and temperature dis-
tribution across the module can all differ from the single-cell scenario. Therefore, it is
necessary to re-evaluate and identify certain parameters specifically for the module config-
uration in order to accurately model the thermal behavior at this level. In this regard, CFD
models utilizing the Ansys-Fluent software have been employed. CFD is a widely-used
technique that predicts fluid flow phenomena by applying principles of mass, momentum,
and energy conservation. These mathematical models consider various physical parame-
ters such as velocity, pressure, temperature, density, and viscosity to accurately simulate
fluid flow-related events.

The model applies conservation laws to each infinitesimal volume within the physical
geometry, discretizing the corresponding partial differential equations. This approach
enables the study of air flow around the prototype due to natural convection, facilitating
an analysis of its thermal behavior.
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For this project, Ansys-Fluent 2022R1 software was used to implement a thermal
model and analyze the prototype. Although the starting point was the model presented in
[209], modifications were made to align it with the operating characteristics of the specific
prototype module. The original model proposed by Leire et al. was designed for a TMS
based on forced air cooling. However, in this project, natural convection was chosen as the
cooling method, needing the removal of the cooling system and corresponding adjustments
to the model.

Incorporating heat generation into the numerical models is crucial. To simplify the
calculations, simulations were performed with a constant heat generation rate, assuming
a steady-state operation. A constant heat power was applied until the model achieved
convergence and thermal stability. Simulations were conducted for various operating sce-
narios, gradually incorporating different phenomena occurring in the fluid surrounding the
module, until the scenario shown in Figure 4.11 was finalised. This methodology allowed
for the step-by-step inclusion of the diverse fluid-related phenomena.

Figure 4.11: Simulations of the prototype module with CFD models incorporating tur-
bulent airflow coupled with the heat transfer by radiation model.

Initially, the airflow was simulated without considering radiation heat transfer and
with a laminar flow. Once thermal stability was achieved for both the module and the
surrounding air, the turbulent flow was activated and allowed to reach a new thermal
stability. The simulation took into account the Reynolds number and Rayleigh number
for natural convection. Finally, the radiative heat transfer model was activated, and the
simulation was repeated. This sequential process helped to expedite the convergence of
parameters and incorporate additional effects that influence the behaviour of the module.

Through these simulations, the values of the convection parameter h were determined
for different temperature differentials, along with the View-Factor (VF) provided by Ansys-
Fluent itself, which are calculated as a function of the module geometry.
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As for the electrical parameters of the cells, they remain unchanged (or negligibly
affected) even when connected in series with other cells. Hence, no electrical character-
ization tests were repeated, except for capacity tests. As the twelve cells are connected
in series, ideally the capacity of the module should be equal to the capacity of the cell.
However, it has been found that each cell has its own capacity. Due to imbalances among
the cells, there will always be a limiting cell in terms of charging and another limiting cell
in terms of discharging when all cells are in the same SoH. Consequently, the module’s
capacity will be slightly reduced.

The BMS of the prototype module controls and cuts off charging and discharging when
the first cell reaches the upper and lower voltage limits within the operating range of the
cells. Due to small imbalances within the module, not all cells are charged or discharged
within the full SoC range. To calculate the SoC of each cell, each cell capacity data is
considered. This allows for calculating the SoC of each cell relative to the total capacity
of the module, providing an accurate estimation of the individual cell’s state of charge.

4.7 Results & Discussion of Module-level Models

This section of Chapter 4 aims to present the module-level simulations conducted in
this thesis. The ultimate goal is to verify the proper functioning of the proposed module-
level models defined in Sections 4.3 and 4.4.

Upon completing this validation, the Objective 2 (O2 ) we will achieved as stated in the
introduction of this thesis, which involves developing and validating module-level models
to understand and predict the behavior of the overall system and the interactions among
multiple cells within the module. Furthermore, this section will partially address the first
hypothesis (H1) presented in the thesis. The hypothesis states the following: "Models
of modules that consider individual cells provide relevant additional information to that
obtained by module sensors."

4.7.1 Results & Discussion: Module-level LTM Validation

This subsection presents the results obtained using the module-level thermal model
proposed in section 4.3. The objective is to verify the accuracy of the temperature esti-
mation at different points of the module. For this purpose, as shown in section 4.2, eight
NTCs have been placed at strategic points to capture the temperature gradient inside the
module during its operation (Figure 4.2).

These points are considered strategic, as they are supposed to adequately describe all
key points of the module. Points in the coldest areas of the module have been selected as
T5 and T6 for temperature measurement. On the other hand, T2 and T3 are expected to
be the hottest points of the module, as these are located in the centre of the module and
therefore have less cell surface to exchange heat with the surrounding air, which makes
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them more sensitive to the heat generated by the neighbouring cells. The thermocouple
positions have been illustrated in the Section 4.2 where the prototype module has been
defined. All recorded temperatures have been obtained using the BMS connected to the
prototype module.

All experimental tests were carried out at the Energy Storage Laboratories of Ikerlan
S.COOP, located at its headquarters in Galarreta (Hernani). The prototype module was
connected to a battery module tester (details of the cycler are provided in Appendix A).
Two types of tests were performed: i) a capacity test in which the module was fully charged
and discharged over the entire SoC range, and ii) a dynamic test in which the module was
subjected to an electric vehicle driving profile. These two tests were repeated at three
temperatures: 10°C, 25°C and 45°C.

First, the results obtained at 25°C in both tests are presented, which will serve to
evaluate the model’s ability to represent the temperature gradient when the module is
operated at this ambient temperature. Figure 4.12 shows the capacity test, where the
prototype module is fully charged and discharged for 2 cycles. Figure 4.12a shows the
reference SoC of the module, calculated using a Coulomb counting method. Subsequently,
Figure 4.12b shows the temperatures measured by the NTCs and Figure 4.12c depicts
their respective estimates. In addition, Figure 4.12d shows the errors obtained in the
estimations.
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Figure 4.12: Module-level. Capacitance test at 25°C ambient temperature. The graphs
show a) the SoC during the test, b) the temperatures measured by the LTM, c) the
temperatures estimated by the LTM and d) the error of the LTM in °C.
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The estimates in Figure 4.12 are plotted separately in Figure 4.13 for more detail. In
Figures 4.13a-4.13g, the discontinuous black curves represent the actual measurements.
Meanwhile, the coloured plots represent the LTM estimation of the module at that point
of the module.
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Figure 4.13: Module-level. Capacity test at 25°C ambient temperature. The graphs
show the measured temperature by a NTC versus the estimated temperature in a) T1, b)
T2, c) T3, d) T4, e) T5, f) T6, g) T7, and h) T8.

The results obtained by the model provide a detailed representation of the temperature
in the module. As anticipated, the measurements reveal that the T2 and T3 points have
the highest temperature. This is caused due to the thermocouples location in the central
area of the module, where the surrounding air has a lower capacity to move and cool these
locations (Figure 4.14). In addition, as these cells are located in the centre, they have a
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larger heat exchange surface with the adjacent cells. Regarding the LTM of the module,
it succeeds in correctly estimating these hottest points, with an average error of 0.4°C and
a maximum error of 1.03°C. On the other hand, points T5 and T6 have been identified as
the coldest points of the module. This is because these thermocouples are located outside
the module, where the surrounding air is present. Similarly, in this case, the model has
been able to properly identify these coldest points, with an average error of 0.19°C and a
maximum error of 0.53°C.

T1T2T3

T4

T5

T6 T7 T8

Figure 4.14: Location of the NTCs through the module.

The efficiency of the model has been further tested by performing another dynamic
test at an ambient temperature of 25°C, using dynamic profiles, as mentioned earlier. On
this test, the module has been subjected to intermittent discharges and charges with more
demanding profiles involving higher currents. The profile used resembles an electric car
travelling to and from the workplace. In addition, these journeys have been repeated to
ensure that the module operates over the full SoC range, from 100% SoC to 0%.

For a clearer visualization, from this point onwards, the estimates of these key points
in the module will be shown. However, the error of all the estimated points, obtained
by comparing the model’s estimation with the actual measurements from the prototype
module, will also be provided. These points correspond to locations where an NTC sensor
is connected and accurate comparisons can be made.

Figures 4.15 and 4.16 show the results obtained in the dynamic test. Figure 4.15a
presents the SoC profile in which the module has been operating during the test, while
Figure 4.15b shows the temperatures measured by the thermocouples. Next, Figure 4.16a
shows the estimate made at point T3, and Figure 4.16b shows the estimate at the coldest
point, T5. Finally, Figure 4.16c shows all the errors obtained in this test.
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Figure 4.15: Module-level. Dynamic test at 25 °C ambient temperature. The graphs
show a) the SoC during the test and b) the temperatures measured by the NTCs
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Figure 4.16: Module-level. Dynamic test at 25°C ambient temperature. The graphs
show the measured temperature by a NTC versus the estimated temperature in a) T3, b)
T5, and c) the error in all the estimations of the LTM in °C.

Based on the dynamic test, it can be observed that the model is able to represent the
thermal gradient of the module accurately, obtaining a maximum error of 0.66°C. The
internal resistance of the cells is higher when the cells operate at low SoC, which causes
a higher Joule loss (irreversible heat generation) in the cells. This is evident in the test
shown, where the module temperature increases by almost one degree at these points.
Nevertheless, Figures 4.16a and 4.16b confirm that the LTM adequately estimates these
temperature variations when the ambient temperature is 25°C.
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In the following, the results obtained at an ambient temperature of 45°C will be shown.
In this case, the estimations at the key points of the module and the errors obtained by
comparing the measured temperatures (Figure 4.17b) with those estimated by the LTM
(Figures 4.18a and 4.18b) will also be presented.

On the other hand, the same information as in the capacity test is shown in the
corresponding dynamic test performed at 45°C ambient temperature in Figures 4.17 and
4.18.
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Figure 4.17: Module-level. Capacity test at 45°C ambient temperature. The graphs
show a) the SoC during the test and b) the temperatures measured by the NTCs
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Figure 4.18: Module-level. Capacity test at 45°C ambient temperature. The graphs
show the measured temperature by a NTC versus the estimated temperature in a) T3, b)
T5, and c) the error in all the estimations of the LTM in °C.
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Furthermore, Figures 4.19 and 4.20 depict the dynamic profile test applied to the
module at 45°C.
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Figure 4.19: Module-level. Dynamic test at 45°C ambient temperature. The graphs
show a) the SoC during the test and b) the temperatures measured by the NTCs
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Figure 4.20: Module-level. Dynamic test at 45°C ambient temperature. The graphs
show the measured temperature by a NTC versus the estimated temperature in a) T3, b)
T5, and c) the error in all the estimations of the LTM in °C.

In both cases, the error is around 1°C, with the dynamic test exhibiting a lower error
that mostly stays within one degree. In the capacity test the model has been shown to be
able to track the temperature of the T5 and T3 points adequately with an average error
of 0.65°C and 0.8°C and a maximum error of 1.11°C and 1.12°C. This verifies that the
model is capable of estimating the temperature gradient in the module at 45°C. Finally,
both tests were also repeated at a temperature of 10°C. The results obtained are shown
in Figures 4.21 and 4.22. Furthermore, Figures 4.23 and 4.24 depict the dynamic profile
test applied to the module at 10°C.
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Figure 4.21: Module-level. Capacity test at 10°C ambient temperature. The graphs
show a) the SoC during the test and b) the temperatures measured by the NTCs
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Figure 4.22: Module-level. Capacity test at 10°C ambient temperature. The graphs
show the measured temperature by a NTC versus the estimated temperature in a) T3, b)
T5, and c) the error in all the estimations of the LTM in °C.
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Figure 4.23: Module-level. Dynamic test at 10°C ambient temperature. The graphs
show a) the SoC during the test and b) the temperatures measured by the NTCs
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Figure 4.24: Module-level. Dynamic test at 10°C ambient temperature. The graphs
show the measured temperature by a NTC versus the estimated temperature in a) T3, b)
T5, and c) the error in all the estimations of the LTM in °C.

The presented tests have also demonstrated the model’s ability to track the tempera-
ture of the module. In these tests, average errors of 0.59 and 0.48 °C were obtained, with
maximum errors of 1.69 and 1.43 °C.
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4.7.2 Results & Discussion: Module-level ECM and SPKF Validation

This final subsection of the chapter aims to present the results obtained with the ECM
at the module level and demonstrate its effectiveness in tracking the voltage of each cell in
the module, as well as its robustness in estimating the SoC of each cell. To achieve this,
all the tests used for the validation of the LTM at the module level in Section 4.7.1 will
be utilized.

The voltage measurements of each cell obtained by the BMS connected to the prototype
module have been used for this purpose. As explained in Section 4.4 when presenting the
proposal for adapting the cell model to the module model, an ECM together with an SPKF
will be executed for each cell. Therefore, the electrical model does not require additional
parameter identification for its extrapolation to the module level. The parameters already
used in the cell models will continue to be utilized.

The measurement of SoC in LIBs is a complex task, and selecting an appropriate
reference for this parameter is of utmost importance. One commonly used method is
Coulomb counting, which involves tracking the amount of charge entering or leaving the
battery over a specific time period. However, this method is subject to cumulative errors
over time. In the present study, it is assumed that the duration of the conducted tests is
sufficiently short to minimize the impact of cumulative errors in the current integration.

Starting with the analysis of the capacity test at 25°C, first, all the measurements
and estimations made by the electrical model will be presented. Figure 4.25 shows these
results along with the SoC profile of the test. The measurements obtained by the BMS
(Figure 4.25b) are displayed, as well as all the estimations made by the ECM (Figure
4.25d). Subsequently, Figure 4.25 presents the SoC estimation for each cell, along with
the comparison of the estimated and measured voltages.
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Figure 4.25: Module-level. Capacity test at 25°C ambient temperature. The graphs
show a) the SoC during the test, b) the cell voltages measured by the BMS, and c) the
cell voltages estimated by the ECM.

Analyzing the results, it has been found that Cell 5 is the most limiting cell at low
SoCs, which makes it reach the minimum voltage threshold earlier. This cell is not the cell
with the lowest capacity (as shown in Table 4.2), which indicates that it is more discharged
than the others. Therefore, moving forward, Cell 5 will be considered the lower limiting
cell. On the other hand, the upper limiting cell will be defined as the cell that reaches the
upper voltage limit first. In this case, Cell 9 serves as the upper limiting cell. Examining
the graph of SoCs errors (Figure 4.25c) obtained by the SPKF, it is evident that the
maximum error is 0.15%.

To facilitate visualization and understanding of the results, subsequent sections will
focus solely on these two cells. Thus, Figures 4.26 and 4.27 present the results obtained
of the Cell 5 and Cell 9 from the capacity test conducted at 25°C. On the other hand,
Figures 4.28 and 4.29 show the results obtained in the dynamic test.
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Figure 4.26: Module-level. Cell 5. Capacity test at 25°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.
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Figure 4.27: Module-level. Cell 9. Capacity test at 25°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.

The RMS error of the SoC estimation obtained in the capacity test is 0.15% and 0.13%
in Cell5 and Cell9, respectively. In both figures it can be seen that with the obtained SoC
estimation, the voltage in the model output equation correctly represents the voltage
measured by the BMS in both cells.
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The following are the results obtained for both cells in the dynamic test of the prototype
module at 25°C ambient temperature. Figure 4.28 shows the results obtained of Cell 5,
and Figure 4.29 shows the results obtained from Cell 9.
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Figure 4.28: Module-level. Cell 5. Dynamic test at 25°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.
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Figure 4.29: Module-level. Cell 9. Dynamic test at 25°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.
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The errors obtained in this dynamic test for Cells 5 and 9 in the estimation of SoC
are 0.24% and 0.19% respectively. This test has faster dynamics and covers the entire
range of module SoC. In both SoC estimations, it can be observed that the SPKF opens
its boundaries when the module is at low SoC. This increase in uncertainty in the SoC
estimation is due to a greater difference between the measured voltage and the estimated
voltage at low SoCs. However, as the test progresses, these boundaries gradually close,
demonstrating that the filter is accurately estimating the SoC.

Similar to the cell-level models and the module-level LTM, the module-level electrical
model has also been analysed at ambient temperatures of 10°C and 45°C. Below are the
results obtained in the capacity test at 10°C, including the results obtained from cells 5
and 9, as shown in Figure 4.30 and Figure 4.31.
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Figure 4.30: Module-level. Cell 5. Capacity test at 10°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.
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Figure 4.31: Module-level. Cell 9. Capacity test at 10°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.

The obtained RMS errors in SoC for Cells 5 and 9 of the module at 10°C ambient
temperature are 0.31% and 0.32%, respectively. These errors are within an acceptable
range, indicating that the model is capable of accurately capturing the slower dynamics at
10°C. To further assess the model’s performance, a dynamic test was conducted. Figure
4.32 presents the results of the dynamic test for Cell 5, while Figure 4.33 displays the
results obtained for Cell 9.
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Figure 4.32: Module-level. Cell 5. Dynamic test at 10°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.
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Figure 4.33: Module-level. Cell 9. Dynamic test at 10°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.

In this dynamic test at 10°C, the RMS errors obtained for SoC estimation in Cell 5
are 0.27%. Similarly, errors of 0.25% were obtained for Cell 9. Throughout this test,
the SPKF boundaries remained closed for most of the time, indicating that the estimator
made estimations with a high degree of confidence. Thus, it can be concluded that the
model performs well at low temperatures such as 10°C.

Next, the model’s behavior at high temperatures will be analyzed. Figure 4.34 il-
lustrates the capacity test conducted at an ambient temperature of 45°C in the climatic
chamber where the module was cycled. Additionally, Figure 4.35 depicts the dynamic
profile applied to the module.
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Figure 4.34: Module-level. Cell 5. Capacity test at 45°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.
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Figure 4.35: Module-level. Cell 9. Capacity test at 45°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.

During the capacity test conducted on the module at 45°C, an RMS error of 0.15% was
obtained for the SoC estimation of Cell 5, while Cell 9 exhibited an error of 0.13%. These
errors are within an acceptable range, indicating the reliability of the model. Subsequently,
the model’s performance was evaluated under more demanding and rapidly changing con-
ditions. The dynamic test results at 45°C ambient temperature are presented in Figures
4.36 and 4.37 for Cells 5 and 9, respectively.
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Figure 4.36: Module-level. Cell 5. Dynamic test at 45°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.
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Figure 4.37: Module-level. Cell 9. Dynamic test at 45°C ambient temperature. The
graphs show a) the SoC during the test, b) the cell voltage measured by the BMS versus
estimated by ECM, and c) error of soc obtained, and d) test current.

In the dynamic test at an ambient temperature of 45°C, the RMS errors obtained in
the experiment were 0.37% for Cell 5 and 0.33% for Cell 9. In this case, the SPKF initially
exhibited higher uncertainty, but it gradually decreased throughout the test, resulting in
accurate SoC estimations.
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4.8 Discussion & Conclusions of the Chapter

In this section, the electrical model at the module level, along with the proposed SPKF
estimator at the module level discussed in Section 4.4, has been analyzed. After evaluating
the model’s behavior under various dynamics (including slow capacity tests and higher-
speed dynamic tests) and over a wide range of operating temperatures (ranging from
10°C to 45°C), it was observed that the proposed model closely aligns with the electrical
behavior of the cycled module.

4.8 Discussion & Conclusions of the Chapter

This chapter covers the work related to the development of module-level models, in-
cluding the proposal and implementation. The validated models from the previous chapter
were used as the foundation, considering the electrical and geometric characteristics of the
prototype module constructed specifically for this thesis.

Before proceeding with the model development, a prototype module was built. This
module consisted of 12 LW cells and served as a physical validation platform for the tech-
nical developments of the thesis. The module was tested in the laboratory for cycles and
configured with the BMS developed by Ikerlan, which was connected and configured for
cloud connectivity. The module was subjected to low and high dynamic profiles during
testing. All cell voltages were measured and compared with the estimated module volt-
ages. The SOC estimation by the Kalman filter and the thermal model’s ability to capture
temperature dispersion within the module were also evaluated. The results were satisfac-
tory, indicating that the module exhibited accurate estimations and calculations. This
was further validated by conducting a test that compared the SOC estimation of each cell
with the overall module SOC estimation.

The LTM is a practical alternative for estimating the temperature distribution in
battery modules compared to the computationally intensive CFD models. While the
LTM may not provide the same level of detailed thermal analysis, it offers a high level
of accuracy to determine the module’s temperature. One advantage of the LTM is its
simplicity, as it requires fewer computational resources and is easier to implement in
real-time applications. It allows for temperature estimation at various points within the
module, considering the interactions between cells. However, it is important to note that
the LTM requires careful parameter definition to ensure accurate results (Section 4.6).

As the number of cells in the module increases, the computational complexity of the
LTM also increases. This may cause challenges for commercial BMS that are not specifi-
cally designed to handle such large-scale models in their processing units. To address these
challenges and enable the widespread use of the LTM in conjunction with commercial BMS,
the adoption of cloud-based technologies is proposed. Leveraging cloud resources can pro-
vide the necessary computational power and memory capacity to effectively implement
and execute the LTM for real-time thermal analysis of battery modules.
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In summary, the module-level LTM presents a practical and efficient solution for es-
timating the temperature distribution in battery modules. By considering the state and
positioning of each cell, it accounts for thermal interactions within the module, enabling
optimized design and operation of thermal systems in real-time scenarios. The results and
validation of the LTM model, as presented in Section 4.7, play a vital role in advancing the
development of battery modules and enhancing their thermal management capabilities.

On the other hand, the electrical module-level ECM, coupled with the SPKF estimator,
provides accurate SoC information for each cell. Unlike module-level electrical models that
consider the module itself as the smallest entity, considering the cell as the smallest unit
for estimation yields deeper insights into the module’s state.

To estimate the SoC of each cell, the implementation of the ECM model together with
the previously developed and validated SPKF estimator in Chapter 3 has been proposed.
However, in order to accelerate computations and enable real-time estimations, performing
these calculations through co-simulation using the power of cloud computing is suggested,
which will be discussed in detail in Chapter 5.

In summary, the module-level ECM and SPKF estimator offer a precise and suitable
solution for estimating the SoC of individual cells within a battery module. Considering
the state of each cell enables the design of energy management strategies and facilitates
cell balancing techniques. Moreover, having knowledge of each cell’s state can help identify
operational anomalies within the module. The results and validation of the ECM model,
as presented in Section 4.7, play a vital role in advancing the development of battery
modules and enhancing overall performance and efficiency.

In conclusion, the module demonstrated reliable estimations and calculations. The
testing and evaluation process provided valuable insights and highlighted the importance
of considering individual cell SOC variations rather than assuming uniformity, as it had a
significant impact on the thermal behavior of the module.
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5
Digital Twin Simulation Platform

Summary
This Chapter introduces the simulation platform developed in the Cloud environment.

First, the services used from AWS for this development are described, providing a brief
definition of each of them. Next, two case studies are presented that aim to validate the
DTSP developed in this thesis. The first case study focuses on the simulation of anomalies,
while the second case study focuses on the disconnection of the Cloud environment. Finally,
a critical discussion on the use of DT tools in the context of LIBs is carried out.
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5.1 Introduction

This Chapter presents the developed DTSP within the scope of this doctoral thesis.
It concludes the research conducted in the previous stages, specifically addressing the
second part of Stage 4 as outlined in Chapter 2. The main objective is to define the key
characteristics of the cloud-based architecture and provide justification for selecting the
employed services. Additionally, two case studies are presented to validate the DTSP: one
involving thermal anomalies in the operation of the tested prototype module, and another
simulating voltage anomaly en the module.

The analysis of various cloud service providers conducted in Chapter 1 has led to
the selection of AWS as the most suitable option for this work. This Chapter focuses
on presenting the specific AWS services chosen for this study, building upon the earlier
examination of the available services within the AWS ecosystem.

The Chapter is structured as follows: Section 5.2 presents the developed Cloud ar-
chitecture for deploying the module-level models validated in Chapter 4. It outlines the
architecture used to host the DTSP and provides an overview of the deployment process.
Next, two case studies are presented to validate the DTSP. In Section 5.3.1, the first
case study focuses on introducing an anomaly in the operation of the prototype module
and analyzing its impact. Subsequently, in Section 5.3.2, the second case study explores
the disconnection of the prototype module from the Cloud platform where the DTSP is
hosted. Both case studies provide insights into the behavior of the system and its response
to abnormal conditions. In Section 5.4, a critical discussion is conducted regarding the
application of DT tools in LIB batteries. This Section examines the advantages, limita-
tions, and potential challenges associated with using DT techniques in the context of LIB
batteries, providing a balanced analysis of their suitability and effectiveness summarizing
the key findings and drawing the main conclusions of this Chapter.

5.2 Cloud Architecture for the Digital Twin Simulation Plat-
form

For the deployment of the module models, the cloud services platform provided by
Amazon, known as AWS, will be utilized. AWS offers a wide range of cloud-hosted ser-
vices and solutions, such as storage, data processing, databases, and developer tools. The
platform is known for its reliability and the variety of available services. AWS provides
users with flexibility, enabling them to choose and utilize resources that best suit their
specific needs. However, new users may face a initial learning curve due to the complex-
ity of the offered services. One advantage is that users only pay for the resources they
use, making it cost-effective, particularly for companies. Additionally, AWS ensures high
availability and offers geographical regions of use, guaranteeing high fault tolerance.
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The proposed Cloud environment combines public and private cloud resources. It
utilizes a combination of public services for algorithms, data, communications with IoT,
and visualization, while incorporating an Amazon Virtual Private Cloud (VPC) to add
control and isolation to the resources used. This hybrid architecture provides flexibility
and customization.

5.2.1 Implemented Architecture for the DTSP

Among the various services offered by AWS, those that meet the requirements of this
study have been selected. These services relate to computation, data storage, visualiza-
tion, and data communication with the module’s BMS. It is important to note that while
this Cloud architecture may not be the optimal choice for implementing LIBs, it provides
a suitable simulation environment to meet the requirements of this thesis. The architec-
ture offers flexibility, reliability, and cost-effectiveness, allowing users to select and utilize
resources that best suit their specific needs. The characteristics of the services chosen for
the development of the DTSP are detailed below.

Data Transfer.

The prototype module has been cycled in the laboratory, connected to a BMS with
a connection to the Cloud. The BMS master was responsible for sending the measured
data to AWS, including the current, voltage of each cell and the module, as well as the
temperatures of the NTCs.

Two main communication protocols for sending data were analysed: Message Queuing
Telemetry Transport MQTT protocol [211] and Hypertext Transfer Protocol (HTTP)
protocol [212]. However, MQTT was chosen over HTTP because MQTT is mainly used
for efficient communication between IoT devices, with an emphasis on real-time data
transfer. HTTP, on the other hand, is used for the transfer of resources on the web, with
a focus on information retrieval.

AWS IoT Core

Figure 5.1: Amazon IoT Core. The selected data transfer service between BMS-master
of the prototype module and AWS.

The data transfer was performed using the MQTT communication protocol and the
IoT services offered by AWS. Figure 5.1 shows the used IoT Core service. MQTT is a
lightweight messaging protocol designed for communication between devices on networks
with limited bandwidth or unstable connections. It offers flexibility in communication
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through message subscription and publication, and scalability to handle multiple connected
devices simultaneously. MQTT is particularly suitable for the IoT due to its low power
consumption, small size and efficiency in low-speed networks. These characteristics make
MQTT a suitable choice for sending data from the BMS to the simulation platform.

The MQTT protocol consists of three elements: the input device, the broker and the
output device. The input device is the data sender (publish), in this case the master BMS.
The broker is an element located between the sender and the receiver and has two main
purposes: to store the records of the input and output devices, and to facilitate the routing
of messages to their intended recipients. Finally, the output device receives (subscribe)
the data from the intermediary, in this case, AWS (Figure 5.2).

Output DevideInput Devide Broker

...

...
Publish

Publish

Subscribe

Figure 5.2: MQTT publish/subscribe communication protocol between the BMS of the
prototype module and AWS.

This publish/subscribe approach allows bidirectional communication, which is useful
for updating the master BMS with the estimates made and performing control actions on
the battery.

Computation.

AWS offers a variety of computing services, the most widely used being Amazon Elastic
Compute Cloud (EC2) [213] and AWS Lambda [214]. Amazon EC2 is a virtual machine
managed by Amazon that allows running the models developed in this thesis. By selecting
the appropriate parameters, such as instance, processor, memory and operating system,
the computing power and memory of the virtual machine is adjusted. On the other hand,
AWS Lambda is a serverless service that runs code automatically, without the need to
manage the infrastructure. The Lambda infrastructure is automatically updated according
to the characteristics of the code to be executed.

In this case, it has been chosen to execute the models in EC2 because of its greater
control and flexibility over the execution environment of the applications. EC2 allows to
have a complete virtual server to customise the operating system and manage the network
configuration. Figure 5.3 shows the used EC2 service.

144



5.2 Cloud Architecture for the Digital Twin Simulation Platform

Amazon EC2

Figure 5.3: Elastic Compute Cloud. The selected computation service for module-level
models deployment in AWS.

EC2 is a cloud computing service designed specifically for computational tasks. It offers
specialised instances, such as those of the "c7g" family [215], optimised for this particular
compute purpose. When launching an EC2 instance, the processor, memory and operating
system, among other things, can be configured according to the specific needs. In addition,
EC2 facilitates a connection to databases. It also offers a variety of instance types with
different Central Processing Units (CPUs), allowing the processing capacity to be adapted
according to project requirements. For instance, in this thesis, it was required to run 12
electrical cell-level models. Initially, these models were executed in a serialized manner,
one after another. However, it was observed that there was no significant change in
the execution time of the estimates. To improve efficiency and accelerate the process, the
decision was made to parallelize these models or processes. This involved running multiple
models simultaneously using parallel computing resources. By parallelizing the models,
a noticeable difference in performance was observed as it allowed for better utilization of
available resources and faster and more efficient computations.

Database.

Two different data storage systems have been analysed in this Section: object storage
systems and databases. Regarding object storage systems, the Simple Storage Service
(S3) service offered by AWS has been evaluated. For databases, a comparison was made
between relational databases and non-relational databases.

Amazon S3. Amazon Simple Storage Service (S3) is an AWS object storage service
offers unlimited capacity and high durability. It allows to store objects generated by
AWS applications and services, protecting them by automatically creating backups on
different systems. Objects are stored in "buckets", which are directories within S3. Access
permissions can be configured using AWS identity and access management. The cost of
the service is calculated based on the type of storage, the number of objects and the
requests made.

Relational databases: Relational databases are data storage systems that use tables to
organise and relate information. They usually use SQL language to perform queries and
data manipulation. They are suitable for hierarchical models and eliminate duplicate data
by relating tables. Capacity is automatically updated as the number of data increases.

145



Digital Twin Simulation Platform

Non-relational databases: These data storage systems have evolved beyond traditional
tabular structures and relationships commonly found in databases. They emerged to
handle more complex applications and programmes such as Big data analytics or Mobile
and gaming applications. There are different models, such as key-value storage, document
storage and columnar storage. They are more flexible and support both structured and
unstructured data. Each database has its own search language and there are no replication
restrictions.

The data received from the BMS will be structured and stored in separate tables,
ensuring consistent data structure for both input data and output estimates of the DTSP.
This ensures that the data is organized and follows a predefined format, allowing for
efficient storage, retrieval, and analysis of the information. By maintaining the same data
structure, it becomes easier to perform operations, queries, and comparisons on the data,
enabling effective data processing within the DTSP framework.

To meet the requirements for the DTSP database, an Relational Database Service
(RDS) has been employed. Specifically, the data structure is based on a data flow struc-
ture in the Amazon RDS PostgreSQL. The data flow describes how data is collected,
transformed, processed, and distributed throughout a system or process. PostgreSQL
was chosen for its efficiency and flexibility in storing and manipulating structured data.
Unlike AWS S3, which is designed for storing objects and files, PostgreSQL offers fast
performance and the ability to handle large data sets with low memory usage. Figure 5.4
shows the chosen RDS service for the DTSP.

Amazon Relational
Database Service

Figure 5.4: Amazon Relational Database. Selected database service to storage module
prototype data in AWS.

To establish and manage the database from EC2, an specific algorithm is used. This
allow EC2 to make automatic calls to the database, once it has been scheduled properly.
In addition, in order to secure the connection and authentication, Private Keys are used.
These keys provide the necessary security to ensure that only authorised users can access
and perform operations on the database providing the necessary security to protect the
integrity of the connection and the data stored in the database.

Visualisation.

The QuickSight service is used for data visualisation. Amazon QuickSight is an AWS
service that focuses on collecting, storing and analysing data. It aims to improve the
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analysis of data stored in other AWS services, such as Amazon S3, RDS or DynamoDB,
and to provide real-time monitoring. It has been decided to use Amazon QuickSight as a
visualisation service on AWS because of its native integration with other AWS services.
This is a data visualisation tool provided by AWS that allows an automatic connection to
databases. Figure 5.5 illustrates the utilization of the RDS service for the DTSP.

Amazon QuickSight

Figure 5.5: Amazon QuickSight. Selected data visualisation service to of stored data in
AWS.

Within the service, QuickSight offers an intuitive and easy-to-use interface, allowing
users to program and visualise essential information in an easy way. For this purpose, a
dashboard was designed to display the values measured in the battery BMS and the DTSP
estimates.

Pricing for the service is based on four factors: the number of authors, the number of
readers, the use of irregularity detection tools and alerts, and memory consumption. In
addition, QuickSight offers tools to detect errors or irregularities in the data. Finally, The
cost of these services is directly proportional to their usage.

Final Architecture.

After reviewing each of the selected services individually, the overall architecture of
the DTSP is presented in Figure 5.6. This diagram illustrates the connections established
between the services and the sequence in which they are executed. It provides a clear
visual representation of how the different components of the DTSP interact with each
other.

AWS Cloud

AWS IoT Core
 Internet Gateway

New 
measured

data

Read 
measured

data

Amazon EC2
Amazon Relational
Database Service

Amazon
QuickSight

Other control
services

IoT MQTT 
protocol

Module-level 
- Electric Model
- Thermal Model

Figure 5.6: Complete Cloud Architecture of the DTSP in AWS.
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5.2.2 BMS and DTSP State Machines

The DTSP operates two state machines: i) in the onboard BMS of the prototype
module and ii) in the simulation platform located in the Cloud. These state machines
are key elements for the operation and coordination of the system. The state machine in
the onboard BMS controls the behaviour and operation of the prototype module, while
the state machine in the simulation platform in the Cloud supervises and manages the
simulations and estimates performed by the implemented models. Both state machines
(Figure 5.7) collaborate to ensure the correct data flow and execution of the essential
procedures required for the successful operation of the DTSP system.

- The BMS state machine is located in the BMS master, defines the rules and the
control flow that governs the behaviour of the LIB according to its current state and
the events that occur. Thus, this will be responsible for controlling the basic safety
functions of the module by cutting the charge or discharge when the LIB reaches
the established voltage or temperature limits. On the other hand, it will send the
measured information from the prototype to the Cloud using the MQTT protocol
and guarantees at each time step that there is a connection to the Cloud. The BMS
will make continuous attempts to connect to the Cloud, and in case there is no
connection to the DTSP, it will activate the SoC estimation function of the BMS
using a simple Coulomb Counting method. This estimated data is stored until the
connection is re-established, at which point all accumulated information will be sent
to the Cloud.

- The Cloud state machine is located in the Cloud which will define the rules and
control the flow of the data coming to the Cloud from the BMS. This state machine
is constantly trying to receive the data sent by the BMS through the MQTT protocol.
Once the data is received, the state machine decides according to the elapsed time
to activate the execution of the electrical model or the thermal model. The electrical
model will be run every second while the thermal model will be run every 10 seconds.
After completing the calculations and estimations, the state machine establishes
periodic connections to the database for storing the corresponding measurements
and estimates. It is also responsible for displaying the information stored in the
database in case a user requests to activate the visualisation functionality. Finally,
the state machine sends back to the BMS the current SoC of the LIB, ensuring that
there is an established connection to the Cloud via the Internet.

Next, the two case studies will be conducted in order to investigate and validate the
complete DTSP system as part of this thesis.
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5.3 Digital Twin Simulation Platform Validation

In this section, two case studies are presented to further illustrate the findings and
implications of the research. These case studies serve as practical examples to validate
the effectiveness of the proposed models and estimator. Through these real-world sce-
narios, the ability to detect anomalies in SoC and voltage within the battery module is
demonstrated. The insights gained from these case studies contribute to the overall un-
derstanding of battery behavior and highlight the importance of considering individual
cell characteristics in module-level analysis.

5.3.1 Case Study 1: Anomalies in the Operating Battery Condition:
Unbalances in Voltage

This section presents the first case study conducted in this thesis. The purpose of this
test was to observe the simulation platform’s capability to detect anomalies in the module
voltage and verify its ability to accurately estimate the module temperature.

To achieve this, a capacity test will be conducted on the module. An anomaly will be
introduced by discharging one cell more than the others, resulting in an unbalance of a
cell voltages and consequently the module voltage. This capacity test will be performed
at the same C-rate as the capacity test at 25°C ambient temperature.

Firstly, one cell will be discharged with the help of an externally connected resistor.
At the end of the discharge, this cell will be at approximately 8% lower SoC than the
other cells.

Discharging one of the cells means that it will reach the minimum voltage threshold
much earlier than the others. As a result, the total capacity of the module will decrease
since the charge and discharge processes are terminated when the first cell among the 12
reaches the voltage limits. This cell, reaching lower SoC limit earlier, will experience a
significant increase in its internal resistance at that moment, as observed in the parameter
acquisition of the cells in Chapter 3, where it was found that internal resistance is higher
at low SoC levels. Consequently, this will lead to higher heat generation as a greater
portion of the heat will be irreversible due to the influence of the internal resistance. At
this point, the thermal model is expected to estimate a higher temperature at the location
of the discharged cell within the module. Additionally, the difference between estimating
the SoC of each individual cell for temperature gradient estimation proposed to using the
module’s SoC value for all cells will also be observed.

Figure 5.8 shows the BMS reading that was taken in the case study test.
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Figure 5.8: Measured voltages on the module in the first case study test. In the picture
it can be seen how one of the cells is unbalanced in terms of voltage.

Figure 5.8 shows how the imbalanced cell reaches the minimum voltage with a signifi-
cant difference compared to the others. In this case, the influence on the temperature will
be observed. Figure 5.9 displays the measurements of all NTC temperatures.
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Figure 5.9: Measured temperatures on the module by the NTCs in the first case study
test.

In Figure 5.9, it is confirmed that the X temperature measured in the most discharged
cell is the highest among all cells when they are at low SoCs.In this case, the thermal
model’s ability to accurately estimate these temperatures, and the results are shown in
Figure 5.10.
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Figure 5.10: Estimated temperatures on the module in the first case study test consid-
ering each cell SoC.

It can be observed that the model is able to accurately estimate this temperature rise
in the specific cell. Thus, this test demonstrates that the module-level thermal model
that considers the interactions between cells provides more information than what can be
obtained from sensors alone. Furthermore, the same simulation was performed, but this
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time considering the SoC of the entire module, to confirm that the estimations considering
the individual cell SoCs are more precise. The results of this simulation are shown in Figure
5.11.
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Figure 5.11: Estimated temperatures on the module in the first case study test consid-
ering module´s SoC.

In this case, it can be observed that when the module’s SoC is higher than that of the
cell, the thermal model is unable to estimate the temperature rise accurately, resulting in
a loss of precision in the overall module information. In summary, the individual cell-level
simulations have successfully detected unbalances in voltage within the battery module.
This approach has provided valuable insights that would not have been attainable if the
module was treated as a single unit, thus validating the third hypothesis of this thesis.

H3: The implementation of the advanced algorithms in the Cloud could allow to detect
anomalies and battery failures more efficiently and faster, which will lead to the mitigation
of the computational load of the onboard BMS and improve system performance.

5.3.2 Case Study 2: Anomalies in the Operating Battery Condition:
Unbalances in Temperature

This section presents the second case study carried out in this thesis. The objective of
this test is to verify that the simulation platform is able to detect anomalies of temperature
in the operation of the module.

The test proposed to observe the behaviour of the model is a capacity test in which
the prototype module is fully charged and discharged for 5 cycles. This capacity test has
been performed at the same C-rate as the capacity test at 25°C ambient temperature.

In this case, an external anomaly has been introduced in the prototype module. The
anomaly consists of an increase in temperature in one of the prototype cells. This has
been achieved by enveloping the cell with a electric heater. The thermal blanket was only
rolled around cell 6, which is located in a corner of the prototype. While the rest of the
module was operating at temperatures around 25°C, the temperature of this single cell
was raised to 40°C.
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Increasing the temperature of a cell implies that this cell operates differently from
neighbouring cells. As discussed in section 3.6, as the temperature of the cell increases,
more energy can be obtained from the cell. Therefore, it is anticipated that a difference
in voltage measurements will be observed. This is due to the fact that as the temperature
increases, the capacity of the cell also increases, resulting in a lower discharge rate. As a
result, it is expected that the cell will have a higher voltage compared to the other cells in
the module. Although the cell is and LFP chemistry model, characterised by its voltage
plateau during most of the SoC, the voltage of this cell with the introduced anomaly is
expected to be different from the rest of the cells in the module.

Figure 5.12 shows the voltages measured by the BMS in the capacity test without the
thermal blanket (Figure 5.12a) and with the thermal blanket (Figure 5.12b).
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Figure 5.12: Applied profiles in the module. a) Capacity test without a thermal blanket,
and b) Capacity test with a thermal blanket.

On the image, the expectation is confirmed, as a delay in the voltage of cell 6 can be
observed in Figure 5.12b. This delay causes the cell to discharge less due to the incremental
of capacity of the heated cell when the module reaches 0% SoC.

The test was simulated with the anomaly in the DTSP and the results are depicted
in Figure 5.13. This figure shows the SoC during the test (Figure 5.13a), the comparison
between the measured voltage of cell 6 (represented by the black discontinuous line) and
the voltage estimated by the electrical model (represented by the pink line) in Figure 5.13b
and the SoC estimated of the cell 6 in Figure 5.13c. In addition, the error in SoC estimate
obtained by the SPKF is shown in Figure 5.13d.
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Figure 5.13: Case study 1. The graphs show: a) the estimated SoC of all cells, b) the
estimated voltage of all cells, c) the estimated SoC of cell 6 and d) the measured voltage
versus the estimated voltage of cell 6.

In Figure 5.13, it can be noted that the SPKF estimates the SoC of this cell similarly
to the rest of the cells. That is, the SoC estimator does not estimate a higher SoC for the
anomalous cell, but corrects the voltage difference and assumes that all cells are operating
homogeneously. This is due to the plateau mentioned above, where the voltage difference
observed in this test is 10 mV.

The aforementioned voltage correction is done by means of SPKF gain updates. This
gain has allowed to identify the correction in cell 6. Figure 5.14 shows the gain related
to the SoC in the test without the thermal blanket (Figure 5.14a) and with the thermal
blanket (Figure 5.14b).
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Figure 5.14: SoC related Kalman Gain in a) Capacity test without a thermal blanket,
and b) Capacity test with a thermal blanket.

The gain of the cell operating at higher temperature is shown in blue colour in the
figure. Observing the capacity test performed without the electric heater, at the beginning
of the test the SPKF corrects the SoC of the cells but as the test progresses all the cells
converge. Concerning the test with the electric heater, it can be observed that in the first
cycle of the test, the SPKF has been correcting the SoC of different cells, such as Cell 2
illustrated in colour orange or Cell 5 in colour pink. However, these cells converge and
from cycle 2 onwards, the SoC correction decreases and becomes constant. This is not the
case for cell 6. The SoC correction of cell 6 is similar to the others at the beginning of
the test. However, the gain peaks, which occur mainly when the module is at low SoCs,
become larger each time and drift away from convergence.

In conclusion, the individual cell-level simulations have successfully identified the spe-
cific cell presenting an anomaly. This demonstrates the advantage of considering each cell
individually, as the classical approach of treating the entire module as a unit would not
have allowed for the detection of such anomalies. It is important to note that the thermal
model does not accurately predict the temperature rise caused by the capacity increase
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due to temperature. While the voltage difference introduced by temperature may not be
significant, the ability to detect the anomaly is still possible through the individual estima-
tion of SoC. This supports the third hypothesis of the thesis, highlighting the effectiveness
of estimating SoC individually in anomaly detection, even when the thermal model does
not precisely predict temperature variations.

H3: The implementation of the advanced algorithms in the Cloud could allow to detect
anomalies and battery failures more efficiently and faster, which will lead to the mitigation
of the computational load of the onboard BMS and improve system performance.

5.4 Discussion & Conclusions of the Chapter

In this final technical chapter, the development that has been presented in the previous
chapters of this document has been summarized. The main objective of this chapter, which
addresses Stage 4 of the methodology proposed in Chapter 2, was to select the necessary
services and develop the Digital Twin Simulation Platform in which the module-level
models developed in Chapter 4 were deployed. Furthermore, this simulation platform has
been validated through two case studies in which the prototype module was tested in the
laboratory with imbalances in both voltage and temperature.

Section 5.2 has been divided into two subsections. The first one has presented the
potential services offered by AWS for contracting and setting up the desired cloud platform.
In this context, various data transfer, computing, database, and visualization services have
been analyzed. For each of them, the service that best suited the framework of this thesis
was chosen. Thus, AWS IoT Core was selected as the data transfer service between the
BMS and the Cloud, applying the MQTT communication protocol due to its flexibility
and efficiency in sending real-time data compared to the HTTP protocol used for web
data transmission. On the other hand, concerning the computing services offered by
AWS, the Lambda service was discarded, and the decision was made to use the Amazon
EC2 service, as it is faster than Lambda, allows for a constantly running instance, and
offers the ability to configure the characteristics of the virtual machine, such as RAM, the
number of processors, and the operating system. It is within this virtual machine that the
module-level models will be deployed.

All the data measured by the BMS and sent to the Cloud, including the estimates
generated by the models, are stored in a database. For the selection of this database,
services such as Amazon S3, Relational Databases, and Non-Relational Databases were
analyzed. Among these options, Amazon Relational Database Service was chosen, as the
data to be handled by the DTSP always maintains the same structure. This type of
database allows for searches across related data tables using identification parameters.
Additionally, it provides the ability to apply security measures with passwords. Lastly,
the QuickSight visualizer was chosen for its ease of integration with other AWS services,
including the database. It has proven to be a user-friendly and efficient visualization tool.
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In subsection 5.2.2, the two state machines have been presented. The first one, located
in the BMS-master, is responsible for performing all the measurements and sending data
related to current, voltage, and temperature to the Cloud. The second state machine
resides in the Cloud, specifically within the EC2 service. Its functionality is to continuously
execute the battery DT and run both the electrical and thermal models at the specified
frequencies.

The second case study aimed to verify the DTSP’s ability to detect a temperature
imbalance within the module. For this purpose, one cell in the module was heated using
an external heat source. In this case, the electrical model demonstrated sufficient accuracy
in the anomalous cell, with an RMS error of 0.134% of SoC. This is because the cell, being
at a higher temperature, experienced less discharge compared to the other cells due to
the increased capacity associated with the temperature rise. As the cells were LFP, the
voltage difference during charging and discharging was approximately 10mV. This voltage
difference was not sufficient for the SPKF to consider it as a significant factor, and it
was observed that the SPKF corrected it by following the SoC estimation of the other
cells. Since all cells operated at the same SoC, the thermal model was unable to estimate
this temperature increase and assumed an operating temperature of 25 °C. However, as
mentioned earlier, the SPKF was correcting the voltage difference, and this was reflected
in the gain of the filter in terms of SoC. Thus, it has been verified that the model is capable
of detecting an anomaly in one of the cells (as it exhibited the largest gain), and this was
made possible by simulating the cells individually.

Critical Discussion on the Use of Digital Twin Tools in the Battery Framework

In Chapter 1, during the SoA review, several key points have been highlighted regarding
the benefits of using a DT in the battery domain.

• Performance optimization: A DT allows for real-time monitoring and simulation
of battery performance. This has been demonstrated in both this and the previ-
ous chapter, where the module-level models provided additional information beyond
what is typically obtained from traditional sensors found in battery modules.

• Fault diagnosis: With a DT, it is possible to detect and diagnose battery faults
more quickly and accurately. This has been demonstrated in both case studies
where the models were capable of detecting anomalies. This is particularly useful
for predictive maintenance, as it enables the early detection of cells that deviate
from normal operation, even before they pose a dangerous or catastrophic failure.

• Improved energy efficiency: DTs can contribute to enhancing the energy efficiency of
LIBs by providing continuous monitoring of performance, optimizing battery man-
agement algorithms, and simulating different usage and charging scenarios.
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These advantages of utilizing a DT in the battery framework have been discussed and
validated throughout this thesis, demonstrating the potential for enhancing battery perfor-
mance, enabling fault detection, and improving energy efficiency. However, not everything
is positive as cloud-based DTs are directly dependent on the internet connectivity avail-
able at any given time. This means that when the module becomes disconnected from the
network, the DT may become inaccessible in some cases. Additionally, utilizing cloud-
based technologies introduces implementation and maintenance costs for these platforms.
Lastly, aspects such as data security and privacy must also be considered.

In conclusion, the evaluation of the complete simulation platform demonstrated its
effectiveness in capturing and analyzing various scenarios. The case studies provided valu-
able insights into the importance of monitoring individual cell states, detecting anomalies,
and optimizing system performance. The successful validation of the platform showcased
its potential for predictive maintenance, anomaly detection, and optimization of battery
systems using DT technology. The findings contribute to the growing body of knowl-
edge on DT applications in the field of battery technology and open avenues for further
research and development in this domain. The module provided reliable estimates and
calculations, highlighting the significance of considering SoC variations in each cell for
accurate thermal behavior. The testing and evaluation process yielded valuable insights
for future improvements.
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6
General conclusions,

discussion & future trends

Summary
In this final chapter, the conclusions, main findings, and key contributions of this

Ph.D. thesis are reviewed. Furthermore, the future research directions to expand upon the
topics explored in this work are identified.
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6.1 Summary & General Conclusions

The use of LIBs has seen significant growth due to their versatility and energy stor-
age capabilities. However, analyzing and optimizing large-scale LIB installations present
challenges, particularly regarding module-level performance. Imbalances, heterogeneities,
and variations in cell states within the LIB module can negatively affect performance and
pose risks. Monitoring individual cells is essential to address these issues effectively. Ac-
curate and real-time models are needed to estimate SoC and analyze battery behavior.
However, estimating SoC and SoH non-invasively during normal operation is challenging.
Existing works often oversimplify module-level studies, ignoring complex cell interactions.
Model-based analysis at the module level is crucial for optimizing LIB performance and
ensuring system safety. To overcome these challenges, a Cloud-based Digital Twin-
based Simulation Platform is proposed including thermal and electric models
that consider individual cell characteristics. Cloud-based technologies facilitate the
deployment of computationally intensive models. This approach enables plant or fleet
management strategies, improved communication, real-time monitoring, and extended
LIB lifetimes.

To achieve this, the main objective of this thesis was to Develop, Validate, and
Deploy Module Level Models within a Cloud-based Digital Twin Simulation
Platform for Lithium-Ion Battery that incorporate the SoX variations of indi-
vidual cells. In addition to the main objective, the secondary objectives proposed have
also been achieved.

The first was to develop and validate cell-level models to understand the be-
havior and interactions of basic system characteristics, in order to use them as a basis
for extrapolation to more advanced module-level models. This objective was fulfilled in
Chapter 3, where a LTM, an ECM, and a SPKF were validated at the module level under
different operating conditions. The errors obtained in these models and estimator are
0.52 ºC, 0.0023V and 0.38% respectively. Based on these models at the cell level, the
second objective was to develop and validate module-level models to understand
and predict the behavior of the overall system and the interactions of multiple cells in the
module, using the models developed in the previous objective as a basis. This objective
was accomplished in Chapter 4, where the proposed extrapolated models were validated.
In this extrapolation, the average error obtained from the electrical model was 0.24 % in
the SoC estimation and an error of 0.49 ºC was the error obtained in the LTM at the
module level.

In terms of the objectives related to Cloud architecture, the first was to develop a
secure and scalable cloud architecture that enables efficient deployment and execu-
tion of models, ensuring proper integration with all the services and resources comprising
the system. The cloud architecture was defined and implemented during Chapter 5 of
this document, thus achieving this objective. On the other hand, another objective was
related to select the most appropriate compute and memory resources on the
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Cloud platform to improve system performance and efficiency, ensuring optimal resource
utilization. This objective was addressed in the Section 5.2.1 of this thesis. After evalu-
ating the various computing services provided by AWS, the decision was made to utilize
the EC2 service. This service offers the flexibility to select the desired computing configu-
ration. In this particular case, the chosen configuration consists of 4 vCPUs and 8 GiB of
RAM. In addition to develop an alarm system for early detection and notification
of potential problems in the BMS, anticipating system failures, improving system effi-
ciency and security, minimizing interruptions or issues during operation, and empowering
users to take corrective action.

Finally, the last objective related to develop and assemble a functional proto-
type, establish and optimize necessary connections and communication channels, and
configure the Cloud platform to enable seamless transmission and reception of real-time
data from the prototype. This objective was achieved in the Section 4.2, where the nec-
essary communications for establishing connections with the Cloud were defined and im-
plemented.

By achieving these objectives, this research has made significant contributions to the
field, contributing to the development of module-level models integrated within a Cloud-
based Digital Twin Simulation Platform for Lithium-Ion Batteries. The successful valida-
tion and deployment of these models provide a foundation for optimizing battery system
performance, enabling predictive maintenance, and improving overall system efficiency.
These achievements demonstrate the effectiveness and practicality of the proposed method-
ologies and solutions, highlighting the potential for further advancements in the field of
lithium-ion battery systems. Once the objectives set in the introductory part of this doc-
ument (Chapter ) have been achieved, the hypotheses formulated in the same section have
been addressed. Each hypothesis is named and discussed below:

• H1: Models of modules that consider individual cells provide relevant additional
information compared to that obtained from module sensors.

This hypothesis has been validated in Chapter 4. The proposed module-level models,
based on the cell-level models validated in Chapter 3, offer valuable information
at the module level. By considering each individual cell and estimating their state
individually, these models provide additional insights beyond the voltage information
provided by the BMS. They can estimate the SoC and temperature of each cell, thus
mapping the SoX of the module’s cells. SoC is a key state for optimizing the available
energy of the module, making this information useful for designing management
strategies for the EMS. Moreover, modules typically have only a few temperature
sensors placed at key points. With the module’s thermal model, the temperature
gradient across the module can be obtained, even in areas without a temperature
sensor.
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• H2: Cloud Computing technologies may offer the computational power and memory
required for deploying module-level models, enabling additional services compared
to local environments.

This hypothesis is addressed in Chapter 5, where the chosen Cloud architecture for
deploying the module’s models and estimator in the DTSP is presented. The calcu-
lations required by these models, considering individual cells, are computationally
intensive and complex. Additionally, for the proposed electrical model, parallel pro-
cessing for co-simulation is suggested. Commercial BMSs, as seen in the SoA review
in Chapter 1, are generally not designed for these functionalities, thus requiring ex-
ternal computing power. In this thesis, performing these calculations in a Cloud
environment is proposed, as this technology offers the necessary computing power
and ample memory.

• H3: The implementation of advanced algorithms in the Cloud could efficiently and
rapidly detect anomalies and battery failures, reducing the computational load of
the onboard BMS and improving system performance.

This hypothesis is verified through two case studies conducted in Chapter 5. Dif-
ferent voltage and temperature anomalies were introduced to examine whether the
models capture these anomalies during operation. In the first case study, the module
operated under voltage imbalance conditions, and it was observed that the thermal
model is more effective when estimating the temperature considering the SoC of each
cell instead of the module’s SoC. In the second case study, a thermal blanket heated
one of the cells, increasing its capacity and causing its voltage to behave differently.
Although the thermal model did not detect the anomaly in this case, the electrical
model detected it, and the SoC estimator SPKF, while continuously correcting it,
showed the anomaly in the filter’s gain. Therefore, satisfactory results were achieved
in both the first and second case studies.

In conclusion, the hypotheses formulated at the beginning of this thesis have been
validated, demonstrating the significance and effectiveness of the proposed methodologies
and solutions.

6.2 Thesis Contributions

These are the main contributions of the research activities performed throughout the
development of this Thesis:

• A comprehensive review of the SoA related to the modeling of LIBs at both the
cell and module levels was presented. Additionally, the utilization of DT and Cloud
computing technologies in the context of LIBs was analyzed.
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• Thermal and electrical models were developed, along with a SoC estimator, for LIBs
at both the cell and module levels. The module-level models consider the SoX
variations of individual cells, providing more information than traditional sensor-
based approaches.

• A Cloud platform was established where the module-level models were deployed and
validated. This Cloud platform consists of computing services, a database, and a
visualization service for monitoring the measurements and estimations performed by
the DTSP.

• A methodology was developed for extrapolating cell-level models to the module
level, detailing the process of obtaining parameters and adapting well-known cell-
level models to the module level. This methodology allows for the integration of
individual cell models into a comprehensive module-level representation.

6.3 Future Works

After completing the Ph.D. Thesis, several potential avenues for future research have
emerged. These areas were not explored within the scope of this thesis but have the
potential to advance the current state of the art.

• Integration of temperature measurements into the thermal model estimates: A poten-
tial future research direction is to enhance the thermal model of the battery module
by incorporating direct temperature measurements as inputs to the model. This
would enable the use of temperature measurements as a corrective factor to improve
the accuracy of temperature gradient estimates. Techniques such as Kalman filters
or adaptive filters could be employed to achieve more precise and robust temperature
estimations.

• Anomaly detection in temperature variations: Building upon the case study ana-
lyzed in this thesis, a potential future research avenue is to enhance the model to
detect and respond to abnormal temperature variations in real-time. This would
involve developing algorithms or techniques that can identify anomalies and trigger
appropriate actions to ensure the reliability and safety of battery systems.

• Exploring future functionalities of the Cloud: It is important to investigate the
potential applications and functionalities that can be derived from the data collected
through measurements and estimations made by the model. Storing this data in a
centralized database for multiple deployed batteries could enable the detection of
patterns and anomalies, as well as serve as valuable input for developing battery
degradation models. It is important to note that the findings of this study reinforce
the future line mentioned above, which is already a well-established trend in scientific
research.
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• Extrapolation of the Digital Twin Simulation Platform to battery pack level: Ex-
tending the Digital Twin Simulation Platform to simulate multiple modules working
together in a battery pack represents an intriguing research direction. This would
provide valuable insights into the overall energy storage system’s state, enabling the
development of comprehensive management strategies for complete installations or
battery fleets.
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A
Laboratory Equipment

As the proposed methodology relies heavily on experimental activities for the param-
eter identification and cell and module-level modelling, the use of appropriate laboratory
equipment is essential to minimise experimental errors and obtain reliable results. The
main resources used for testing are described in this Appendix.
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Appendix A. Laboratory Equipment

A.1 Battery Tester

Specialised equipment is used to analyse the parameters of the reference cells during
this thesis. In this thesis, due to the testing of realistic operating profiles, the use of
battery cyclers with dynamic capabilities is necessary. The description of the main char-
acteristics of the Digatron battery cyclers used can be found in Tables A.1 and A.1. For
the configuration of the battery test equipment, the BTS-600 software is used. In the tests
at cell level (MCT cycler) the test equipment detailed in Table A.1 is used, while in the
tests at module level the equipment described in Table A.2 is used.

MCT technical data
PC Software BTS-600
Accuracy ± 0.1% full-scale
Resolution ± 15 Bit
Data Acquisition Rate 10 ms
Control Rate 2 ms
Voltage 0 - 6 V
Current 0.1 - 100 A

Table A.1: Battery cell tester

BNT technical data
PC Software BTS-600
Accuracy ± 0.1% full-scale
Resolution ± 15 Bit
Data Acquisition Rate 20 ms
Control Rate 2 ms
Voltage 5 - 100 V
Current 0.05 - 50 A

Table A.2: Battery modle tester.

A.2 Climate Chambers

As temperature stands as a critical factor that greatly influences battery performance
and parameters, it was imperative to exercise meticulous control over the ambient and/or
cell temperature throughout the testing process. This was crucial in order to conduct
an unbiased and comprehensive analysis of battery performance. To this end, specialized
climatic chambers were employed, providing a controlled environment for the experiments.

For the battery tests and characterization tests, the CTS/C-40/200/Li and Prebatem
Selecta climatic chambers were utilized. These chambers were selected based on their
specific features and specifications, which are outlined in Tables A.3 and A.4.

CTS/C-40/200/Li technical data
Internal capacity 200 L
Internal Dimensions 750 x 650 x 400 mm
External Dimensions 1800 x 920 x 1345 mm
Temperature range -40 to 180 ºC
Heating/Cooling speed 4º/min
Temperature fluctuation ± 0.3ºC
Relatice Humidity Range 10 - 95%

Table A.3: CTS climate chamber

Prebatem Selecta
Internal capacity 80 or 150 L

Internal Dimensions 500 x 400 x 400 mm - 80 L
500 x 600 x 500 mm - 150 L

External Dimensions 700 x 750 x 590 mm - 80L
700 x 950 x 680 mm - 150L

Temperature range 5 to 50 ºC
Temperature fluctuation ± 0.3ºC
Homogeneity ± 0.5ºC
Setpoint error ± 0.25ºC

Table A.4: Prebatem Selecta climate oven
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A.3 Temperature measurements

A.3 Temperature measurements

For increased accuracy, cell voltage and temperature are measured using a data ac-
quisition system (DAQ) Agilent 34970A, along with T-type thermocouples. The DAQ
has an accuracy of ±0.0035 % reading and 0.0005 % of range for voltage. Additionally,
DAQ’s temperature precision is ±0.5 ºC of range and 0.2 % of reading, while type-T
thermocouples have a ±1.0 ºC accuracy.
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B
Extrapolation of the Lumped

Thermal Model

Appendix B presents an example of the extrapolation of the single-cell LTM model to
a module of two contiguous cells.
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Appendix B. Extrapolation of the Lumped Thermal Model

The NR follows the following steps:

1. An initial approximation of the roots (z0) is made, in this case temperatures.

z0 =

T00, T01, T02, T03, T04, T05, T06

T10, T11, T12, T13, T14, T15, T16

 (B.1)

2. Calculate the values of the function matrix (fz) with the initial approximations, in
this case, equation 3.1 and equation 3.2 is applied on each surface of the cell in B.2.

fz0 =



f00 = I2 · R0_0 + I · EHC0 · T00 − m · cp · T00 − T00(k − 1)
∆t

−kra · Ara

Lra
· (4 · T00 − T01 − T02 − T03 − T04)

−kax · Aax

Lax
· (2 · T00 − T05 − T06)

f01 = kra·Ara
Lra

· (T00 − T01) − hra · Ara · (T01 − Tamb) − εra · θ · Ara · (T01
4 − Tamb

4)

f02 = kra·Ara
Lra

· (T00 − T02) − hra · Ara · (T02 − Tamb) − εra · θ · Ara · (T02
4 − Tamb

4)

f03 = kra·Ara
Lra

· (T00 − T03) − hra · Ara · (T03 − T14) − εra · θ · Ara · (T03
4 − T14

4)

f04 = kra·Ara
Lra

· (T00 − T04) − hra · Ara · (T04 − Tamb) − εra · θ · Ara · (T04
4 − Tamb

4)

f05 = kax·Aax
Lax

· (T00 − T05) − hax · Aax · (T05 − Tamb) − εax · θ · Aax · (T05
4 − Tamb

4)

f06 = kax·Aax
Lax

· (T00 − T06) − hax · Aax · (T06 − Tamb) − εax · θ · Aax · (T06
4 − Tamb

4)

f10 = I2 · R0_1 + I · EHC1 · T10 − m · cp · T10 − T10(k − 1)
∆t

−kra · Ara

Lra
· (4 · T10 − T11 − T12 − T13 − T14)

−kax · Aax

Lax
· (2 · T10 − T15 − T16)

f11 = kra·Ara
Lra

· (T10 − T11) − hra · Ara · (T11 − Tamb) − εra · θ · Ara · (T11
4 − Tamb

4)

f12 = kra·Ara
Lra

· (T10 − T12) − hra · Ara · (T12 − Tamb) − εra · θ · Ara · (T12
4 − Tamb

4)

f13 = kra·Ara
Lra

· (T10 − T13) − hra · Ara · (T13 − Tamb) − εra · θ · Ara · (T13
4 − Tamb

4)

f14 = kra·Ara
Lra

· (T10 − T14) − hra · Ara · (T14 − T03) − εra · θ · Ara · (T14
4 − T03

4)

f15 = kax·Aax
Lax

· (T10 − T15) − hax · Aax · (T15 − Tamb) − εax · θ · Aax · (T15
4 − Tamb

4)

f16 = kax·Aax
Lax

· (T10 − T16) − hax · Aax · (T16 − Tamb) − εax · θ · Aax · (T16
4 − Tamb

4)


(B.2)

3. Obtain the Jacobian matrix of the fz matrix.
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4. Apply Gaussian elimination to obtain a new approximation by (B.1).

z1 = z0 + ∆x0 = Jf (z0)−1 · fz0 (B.3)

5. Repeat steps 2-4 until the determined error tolerance is reached.
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