
DOCTORAL THESIS

DEEP LEARNING BASED METHODOLOGY FOR THE DEVELOPMENT
OF INDUSTRIAL QUALITY INSPECTION SYSTEMS

JU
LE

N
 B

A
LZ

AT
E

G
U

I O
R

U
N

A
 |

 D
ee

p
Le

ar
ni

ng
 B

as
ed

 M
et

ho
do

lo
gy

 F
or

 T
he

 D
ev

el
op

m
en

t O
f I

nd
us

tri
al

 Q
ua

lit
y

In
sp

ec
tio

n
S

ys
te

m
s

JULEN BALZATEGUI ORUNA | Arrasate-Mondragón, 2022

Deep Learning Based Methodology For The
Development Of Industrial Quality

Inspection Systems

Julen Balzategui Oruna

Supervisors:
Dr. Luka Eciolaza Echeverria

A thesis submitted to Mondragon Unibertsitatea
for the degree of Doctor of Philosophy

Department of Electronics and Computer Science
Mondragon Goi Eskola Politeknikoa

Mondragon Unibertsitatea
July 2022

Con cariño, a mis padres y a mi hermano.

Acknowledgments
I would first like to thank my thesis advisor Luka for giving me the

opportunity to work on this thesis. Thanks to this thesis, I have been able to
delve into the fields of computer vision and artificial intelligence which I have
found wonderful fields.

I would also like to thank my colleagues Markel, Iñigo, Javi, Unai, and
Oscar for their support, those coffee breaks have helped to make the thesis
more bearable.

I cannot but be eternally grateful to Dani Maestro-Watson who has guided
me both during the initial days and throughout the three years until the very
last day of the thesis. Even when he was busy, he was always able to find a
time slot to help me with any of my doubts. Thank you very much for your
kindness and your time.

I would also like to thank Mondragon Assembly for providing us with
data to carry out the thesis.

Last but not least, all my thanks to my parents and brother. Your help has
been indispensable in completing the thesis. You are and will be everything
to me. Thank you very much for everything.

Declaration

Hereby I declare that this document is my original authorial work, which I have worked out
on my own. All sources, references, and literature used or excerpted during elaboration
of this work are properly cited and listed in complete reference to the due source.

Julen Balzategui
Arrasate, July 2022

Abstract
In recent years, the manufacturing industry has gone through what has

been called the fourth industrial revolution or Industry 4.0. Apart from still
automating industrial processes, the revolution has as well brought new trends
like zero-defect manufacturing, non-destructive unitary tests, or complete
traceability of every part along the production chain. One of the sectors that
have been influenced by this revolution is the solar sector. This sector, as part
of the strategic sector of renewable energies, has received large funding from
government entities and individual investors that have led to an improvement
in technology. This has lowered the prices of panels, which in turn has
increased the demand for them making it more necessary to automate the
production process.

Among all the stages during production, quality control plays a crucial role.
In the specific case of the photovoltaic sector, quality control in industrial
manufacturing is performed using the Electroluminescence technique which
allows practitioners to obtain high resolution images of the photovoltaic cells
where defects are highlighted. In contrast to the trend towards automation,
in practice, panel inspection is still mostly performed by operators. In
recent years, many proposals have been made to automate this quality
inspection. However, the proposals made so far show certain limitations
for their application in the increasingly dynamic and demanding industrial
context.

Some of the identified limitations are: the lack of flexibility to changes in
production since the proposed procedures have been designed to take advan-
tage of case specific data features. For example, an inspection system might
have been designed to take advantage of the high contrast between the light
background and the thin and dark longitudinal cracks in the cells. However,
a variation in the data like a darker due to a different material composition of
the cells or different shapes of the cracks may suppose to redesign the entire
inspection system to adapt to the changes. Other proposals contemplate
algorithms that require a large number of representative defective samples for
training, which are usually difficult to obtain in industrial environments. And
finally, some solutions consist of algorithms that can act as black boxes with
respect to their interpretability, which together with giving as a result only

whether a part is defective or not, can raise doubts about the performance of
the inspection system.

For these reasons, the objective of the thesis has consisted in designing
a methodology based on Deep Learning techniques for the development of
inspection systems. The methodology has contemplated techniques that are
robust and flexible to changes, but also able to work in industrial environments
where there are few available defective samples, and output more interpretable
results than a mere classification, for example, the location of defects in the
samples. At the same time, the methodology offers ways to obtain inspection
models from the very beginning in the production line, and take advantage
of their characteristics to obtain more accurate models with almost no need
for human intervention.

Resumen
En los últimos años la industria manufacturera ha estado envuelta en lo

que ha denominado como cuarta revolución industrial o Industry 4.0. Además
de perseverar en la automatización de los procesos, la revolución ha traído
consigo nuevas tendencias para producción tales como la fabricación sin
defectos, un control de calidad no destructivo unitario, o el rastreo absoluto
de las piezas a lo largo de la cadena de producción. Entre los distintos
sectores influenciados por la revolución, se encuentra el sector fotovoltaico.
Este sector, ha recibido gran financiación de entidades gubernamentales e
inversores privados que ha derivado en una mejora de la tecnología. Esto ha
hecho que los precios de los paneles se hayan abaratado, aumentando así la
demanda de los mismos, haciendo a su vez más necesaria la automatización
de su proceso de producción.

Entre todas las etapas durante la producción, el control de calidad juega
un papel de vital importancia. En el caso concreto del sector fotovoltaico,
el control de calidad en su fabricación industrial se realiza valiéndose de la
técnica de Electroluminiscencia, la cual que permite obtener imágenes de alta
resolución de las células fotovoltaicas donde los defectos quedan resaltados.
En contraste con la tendencia hacia la automatización, en la práctica la
inspección de los paneles sigue realizándose mayormente por operarios. En
los últimos años numerosas propuestas han sido realizadas con el objetivo
de automatizar este control de calidad. No obstante, las propuestas hasta
el momento muestran ciertas limitaciones para su aplicación en el contexto
industrial cada vez más dinámico y demandante.

Entre las limitaciones identificadas se encuentran: la falta de flexibilidad
a cambios en la producción ya que los procedimientos propuestos han sido
diseñados para sacar partido de particularidades muy específicas de los datos.
Por ejemplo, el sistema de inspección puede haberse diseñado teniendo en
cuenta el gran contraste que el fondo claro de la célula y las grietas negras y
longitudinales en las mismas presentan. No obstante, una variación, como
por ejemplo, un fondo más oscuro debido a una nueva composición de las
células o grietas con distinta morfología, puede suponer la necesidad de tener
que volver a diseñar el sistema de inspección por completo. Por otra parte,
algunas propuestas contemplan algoritmos que requieren muchas muestras

defectuosas para su entrenamiento, las cuales suelen ser de difícil acceso en
entornos industriales. Y por último, algunas soluciones consisten en algoritmos
que pueden actuar como cajas negras respecto a su interpretabilidad, que en
conjunto con dar como resultado solo si una pieza es defectuosa o no, puede
suscitar dudas sobre el funcionamiento del sistema de inspección.

Por estas razones, el objetivo de esta tesis ha consistido el diseño de una
metodología basada en técnicas Deep Learning para el desarrollo de sistemas
de inspección. La metodología ha contemplado técnicas robustas y flexibles
a cambios, pero capaces de funcionar en entornos industriales con escasas
muestras defectuosas, y además ofrecer resultados más interpretables que una
mera clasificación, como por ejemplo, la localización de los defectos en las
muestras. A su vez, se ofrecen maneras de obtener modelos de inspección desde
un primer momento en la línea de producción, y aprovechar las características
de los mismos para obtener cada vez modelos más precisos sin casi necesitar
una intervención humana.

Laburpena

Azken urte hauetan fabrikazio industriala bete betean sartuta egon da
industry 4.0 edo laugarren industriala-iraultza deitu den prozesuan. Iraultza
hau, aurretik prozesu industrialen automatizazioaren jarraipena mantenduz
gain, beste tendentzi berri batzuk ere ekarri ditu, esate baterako, akatsik
gabeko produkzioa, kalitate kontrol ez intrusibo unitarioa, edo fabrikazioan
zehar pieza guztien kontrola eramatea. Iraultza hau pairatu duten sektore
ezberdinen artean, panel fotovoltaikoen sektorea dago. Sektore hau, energia
berriztagarrien sektore estrategikoaren barruan izanda, gobernuen eta inbert-
sore pribatuen finantzaketa handia jaso du gaur egungo teknologia hobetzeko
helburuarekin. Honek, panelen prezioa behera egitea eragin du, ondorioz
panelen eskaera handituz eta automatizazioaren beharra ere areagotuz.

Fabrikazio prozesuaren etapa guztien artean, kalitate kontrola paper oso
garrantzitsua betetzen du. Sektore fotovoltaikoaren kasu konkretuan, kalitate
kontrola Elektrolumininsentzia deituriko teknikaren bitartez egiten ohi da,
non paneletako defektuak nabarmenduta agertzen diren erresoluzio altuko
irudiak ateratzen dira. Nahiz eta prozesuen automatizaziorantz mugitu, gaur
egun sektore honetan langileek jarraitzen dute izaten kalitate kontrolaren
egiten dutenak. Horregatik, azken urte hauetan hainbat proposamen egin
dira automatizaziorantz begira. Hala ere, proposaturiko soluzioak hainbat
limitazio azaltzen dute kontextu industrial batean aplikatu ahal izateko.

Limitazioen artean hauek nabarmentzen dira: kanpo aldaketei aurre
egiteko malgutasun gutxi dute zeren aplikaturiko prozedimenduak datuen
ezaugarri oso partikularrak kontuak izanda diseinatu dira. Esate baterako,
inspekzio sistema diseinatzerako orduan, zelularen kolore argia eta defektu
ilun eta longitudinalaren arteko kontraste handia aprobetxatu da. Baina
zelularen material konposizio berri baten ondorioz zelula aspektu ilunago
bat izaten badu edota defektuen itxura aldatzen bada, posible da soluzio
osoaren berdiseinuaren beharra izatea. Beste alde batetik, soluzio batzuk
entrenamendurako akastun lagin asko behar duten algoritmoak erabiltzen
dute. Halako laginak ezin dira beti erraz lortu, eta kontextu industrial batean
are eta zailago izan daiteke. Eta azkenik, erabilitako algoritmo batzuk kaxa
beltz bat izango lirateke moduan joka dezake, non pieza bat txarra edo ona

den bakarrik iragarriz erabiltzaileen aldetik momentu batzuetan sistema ondo
funtzionatzen duen ala ez inguruan mesfidantza sortu dezake.

Arrazoi hauengatik, tesi honen helburu nagusia Deep Learning oinarrit-
uriko kalitate kontrolerako sistema bat eratzeko balioko duen metodologia
bat eratzea izan da. Metodologiak teknika sendo eta flexibleak jorratu ditu,
beti ere akastun diren datuen behar minimoa kontuan izanda eta emaitz
interpretableak emateko kapazitatea bermatuz, hala-nola akatsen posizioa
emanez. Honez gain, metodologia baita lehenengo momentutik inzpekziorako
modelo bat lortzeko aukera eta gero gizakiaren parte hartze minimoarekin
modeloak hobetzeko aukera ematen du.

Table of contents

Declaration vii

List of figures xix

List of tables xxiii

1 Foundation and Context 1
1.1 Motivation and scope of research . 1
1.2 Objectives and Contributions . 5
1.3 Publications . 7
1.4 Outline . 8

2 Background 9
2.1 Deep Learning . 9

2.1.1 Types of learning . 10
2.1.2 Architectures . 12
2.1.3 Optimization . 15

2.2 Metrics . 18
2.3 Solar panel production . 21
2.4 Datasets . 27

2.4.1 Electroluminescence . 28
2.4.2 Polycrystalline cells . 30
2.4.3 Monocrystalline cells . 33
2.4.4 Sequence of 700 panels . 35

2.5 Hardware and Software specifications . 36

3 Literature review 39
3.1 Traditional Image processing . 39
3.2 Traditional Image processing and Machine Learning algorithms 43
3.3 Deep learning based proposals . 44
3.4 Summary . 46

4 Supervised training 47
4.1 CNN and Sliding Window . 48

4.1.1 Experiments and Results . 52
4.2 FCN based Segmentation . 55

4.2.1 Experiments and Results . 56
4.3 Concluding remarks . 61

5 Anomaly detection 63
5.1 Anomaly Detection . 63

5.1.1 Anomaly detection model (f-AnoGAN) 67
5.1.2 Experiments and results . 70

5.2 Automatic labeling . 79
5.2.1 Experiments and results . 81

5.3 Concluding remarks . 85

6 Model Adaptation 87
6.1 Transfer Learning . 88

6.1.1 Experiments and results . 90
6.2 Few-shot learning . 97

6.2.1 Experiments and results . 101
6.3 Concluding remarks . 108

7 Methodology deployment 111
7.1 Introduction . 111
7.2 Methodology outline . 112
7.3 Experiments and Results . 116
7.4 Concluding remarks . 120

8 Conclusion and future works 123
8.1 Conclusions . 123

8.2 Suggestions for further research . 126

Bibliography 131

List of figures

1.1 Renewable energy investment capacity over decade, 2010-2019 3
1.2 Electroluminescence image examples of polycrystalline and monocrystalline

solar cell looked by the naked eye . 4
1.3 Overall schema of the proposed methodology for the development of an

inspection system. 6

2.1 Deep Neural Network architecture schema 12
2.2 Common activation functions used in neural network 13
2.3 Convolutional Neural Network architecture schema 14
2.4 Forward pass and error backpropagation example 17
2.5 Example of a ROC curve . 20
2.6 Overall evaluation using segmentation results. 22
2.7 Standard solar panel composition illustration. 22
2.8 Schema of a solar panel production line. 25
2.9 Examples of different imaging techniques used for solar cell inspection . . 28
2.10 Full light spectrum diagram and typical emission spectrum of EL 29
2.11 Simple set-up to capture EL images from solar modules 29
2.12 EL images of different defective cells . 30
2.13 Samples from the polycrystalline dataset 32
2.14 Samples from the monocrystalline dataset 1 34
2.15 Samples from the monocrystalline dataset 2 35
2.16 Hardware and Software used in the thesis 37

3.1 General schema of different approaches in the literature 40

4.1 Sliding window and CNN based inspection method schema 49
4.2 Schema of the dataset creation using Sliding window. 50
4.3 Segmentation results from different window sizes 53
4.4 Effect of lower overlap ratio in segmentation results 55
4.5 Schema of U-net architecture . 57
4.6 Results on severe defects with U-net . 59
4.7 Results on light defects with U-net . 60
4.8 Results on a defect-free sample with U-net 61

5.1 The schema of phase 1 of f-AnoGAN training. 68
5.2 The schema of phase 2 of f-AnoGAN training 69
5.3 Example of anomaly detection with f-AnoGAN 70
5.4 Schema of the changes performed in f-AnoGAN architecture. 72
5.5 ROC curves from the different models . 75
5.6 Defect localization results from each model. 77
5.7 Detection rates results from each of the network configurations. 79
5.8 Pixel level defect detection of additional experiments. 80
5.9 Manual and automatic labeling for different samples 82
5.10 Results from supervised training models and from the anomaly model . . 84

6.1 Different Transfer Learning schemas. 89
6.2 Mono. to Poly. segmentation results . 93
6.3 Poly. to Mono. segmentation results . 95
6.4 Poly. 3 and 4 Buses to Poly. 5 Buses segmentation results 96
6.5 Schema of two-branch based network for few-shot image segmentation. . 98
6.6 Original network architecture for few-shot segmentation 100
6.7 The adapted network for few-shot following U-net architecture. 102
6.8 Results on the base defect classes . 103
6.9 Bad-soldering and black spots defect classes examples 103
6.10 Segmentation results on base defect classes before and after each imprinting105
6.11 Segmentation results on new defect classes before and after each imprinting106

7.1 Diagram on how could be applied the proposed methodology 112
7.2 Basic diagram on how the automatic labels are obtained. 114
7.3 Results example from supervised and anomaly detection models 115
7.4 Results from the model trained with manual labels and models trained

with automatically generated labels . 118

7.5 Examples of the results of the different models on a crack and a micro
defect classes. 119

7.6 Examples of the results of the different models on a severe and light finger
interruption defect class. 119

7.7 Example of the results of the different models on a sample with noisy area.120

8.1 Three different prediction cases where the PRO metric will output a perfect
score. 127

List of tables

2.1 Sample distribution in the polycrystalline cell dataset 31
2.2 Average defective pixels per type of defect in polycrystalline cells 31
2.3 Sample distribution in the monocrystalline cell dataset 33
2.4 Average defective pixels per type of defect in polycrystalline cells. 34

4.1 Base block used to construct the different architectures. 51
4.2 CNN architecture configurations. 51
4.3 Dataset distribution used for the sliding window experiment 53
4.4 Results of different configurations at full image level. 53
4.5 Execution time of the different configurations. 54
4.6 Image level results from U-net and sliding window experiment. 59

5.1 Dataset sample distribution for unsupervised part experiments. 73
5.2 The results of anomaly detection at the image-level 76
5.3 Time required to process a cell for each model. 78
5.4 Automatic labeling vs Manual labeling 82

6.1 Mono. to Poly. Transfer results . 91
6.2 Poly. to Mono. Transfer results . 94
6.3 Sample distribution in the dataset . 104
6.4 Results at image level before and after each imprinting. 106
6.5 Percentages of detection of each model per defect class 107

List of abbreviations

AE AutoEncoder

ANN Artificial Neural Network

AUC Area Under Curve

BN Batch Normalization

ConvL Convolutional Layer

CNN Convolutional Neural Network

DL Deep Learning

EM Earth-Mover’s Distance

EL Electroluminescence

FC Fully Connected layer

FCN Fully Convolutional Network

FN False Negative

FP False Positive

GAN Generative Adversarial Network

GD Gradient Descent

IoU Intersection Over Union

IR Thermography

ICA Independent Component Analysis

ICTs Information and Communication Technologies

JS jensen-shannon divergence

MaxPool Max Pooling

ML Machine Learning

MLP MultiLayer Perceptron

MSE Mean Square Error

NMAP Normalized Masked Average Pooling

PRO Per Region Proposal

PV Photovoltaic

ROC Receiver Operating Characteristic

SGD Stochastic Gradient Descent

sPRO Saturated Per Region Proposal

SVM Support Vector Machine

TL Transfer Learning

TN True Negative

TP True Positive

WGAN Wasserstein Generative Adversarial Network

WGAN-gp Wasserstein Generative Adversarial Network with Gradient Penalty

Chapter 1

Foundation and Context

This first chapter is going to briefly describe how industrial production has evolved in the
last years, and how the evolution has brought to light some limitations of the techniques
that have been applied to the different proposed solutions. Particularly is going to focus
on the renewable energies sector and the quality inspection process within the whole
production process which have served us to define the context of the thesis. Also, it
will outline the main objective to achieve with this thesis, as well as, enumerate the
publications as a result of the works done in the way to meet such objective.

1.1 Motivation and scope of research

Since the third industrial revolution, industrial production processes began to be auto-
mated through the inclusion of Information and Communication Technologies (ICTs) into
the existing processes, allowing companies to reach higher levels of automation and also
productivity and efficiency. This trend has continued over the years up to the present
day. These days, the industry is involved in the so-called fourth industrial revolution or
Industry 4.0, in which the use of sensors throughout the production processes has been
accentuated. These sensors generate a large amount of data related to the process, causing
the rise of the application of new techniques, mainly from the Artificial Intelligence field,
which are based on the use of such data in order to extract valuable information from
them to improve these processes.

1

Foundation and Context

Along with the surge of these techniques, Industry 4.0 has also made the way to new
trends such as the customization of the production for each client’s requirements. This
can be translated as the need for flexible and robust processes that can rapidly adapt to all
sorts of forthcoming changes without supposing a detriment in the final product quality.
In certain sectors, for example, the automotive or aerospace sector, the quality inspection
process is required to be very meticulous, as a faulty sample can mean a non-compliance
with the signed contract and result in a big monetary loss for the manufacturing company.
Moreover, nowadays industrial production is moving towards zero-defect manufacturing
standards, with unitary nondestructive inspection procedures, and with a complete
traceability of produced parts, making the quality inspection even more important within
the whole production process.

Among the different industrial sectors, international investors and global governments
have been attracted to the renewable energy sector. This sector has proved as an
alternative source of energy that can serve as a clean substitution or complementary
energy source to traditional energy sources such as gas, coil, or oil. These clean energy
sources have important advantages over traditional ones, for example, they do not present
a limitation with regard to the "material" from where the energy is extracted. Or also, the
energy extracted from renewable sources is more environmentally friendly during its use.
These are extremely important characteristics in the current global situation, as there
are signs that we are running out of fossil fuels reserves and humanity is continuously
demanding more energy. The advantages that present renewable energies have attracted
a great amount of economic investment in the last years (nearly 1.3 trillion dollars into
solar energy illustrated in Figure 1.1).

Global power sector investment is set to increase by around 5% in 2021 to more than 820
billion dollars, its highest ever level, after staying flat in 2020. Renewable energies are
dominating investment in new power generation capacity and are expected to account for
70% of the total this year. And that money now goes further than ever in financing clean
electricity, with a dollar spent on solar Photovoltaic (PV) deployment today resulting in
four times more electricity than ten years ago, thanks to greatly improved technology
and falling costs [50].

In addition, the incursion of new companies in the sector has increased the competitiveness
of the market, making the price of PV panels drop at a rapid pace [106]. As the trend
has been accentuating in the last years, the demand for the installation of such panels
has also increased by 36,8% from 2010 to 2018. It is expected that world governments
are going to keep betting on renewable energies as a strategic sector of the economy

2

1.1 Motivation and scope of research

Figure 1.1: Renewable energy investment capacity over decade, 2010-2019. Source: [17]

aiming to reach net-zero emissions by 2050, although the consequences of the Covid-19
pandemic and the recent war situation in Ukraine might impact regarding the timing of
the execution of the plan.

In concordance with the increase in the market demand for PV panels, manufacturing
companies have also intensified their production of panels [52]. This supposes that in
the whole production process, there will be a greater number of PV modules 1 that
will need to be handled as well as an increasing rhythm of the production. Because
of this, big efforts have been lately done to automate the manufacturing process. The
goal is to enhance production capabilities by being able of working with larger module
quantities, under more strict production times, and at lower costs. Thus, incorporating
nondestructive unitary testing is a must in order to improve the process control, enabling
to reach 100% of traceability of the produced parts.

In the case of solar panel production, the imaging technique called Electroluminescence
(EL) is commonly employed during the quality inspection stage. The procedure in this
technique consists in putting the panels under an electrical current flow causing the
cells to emit light by the effect of the phenomenon called Electroluminescence [40]. The
light is then captured in high-resolution grayscale images that represent how well the
electricity can flow from the different areas in the cell. The areas that present proper
levels of conductivity will appear lighter, while the areas with lower levels of conductivity

1PV cells and PV module are used across the document interchangeably

3

Foundation and Context

Figure 1.2: Electroluminescence image examples of polycrystalline solar cell (top) and
monocrystalline solar cell (bottom) looked by the naked eye (left) and in El image (right).
Image source [40]

will appear darker. Figure 1.2 shows what a cell would look like if it is seen with the
naked eye, and on the left how the same type of cell would look like after employing the
Electroluminescence technique. If the cells are in good condition, just the areas that are
not supposed to conduct electricity will remain dark. However, if the cell has been under
excessive mechanical stress during the module transportation, has not been correctly
soldered or contains any kind of failure, the affected areas will end up not conducting the
electricity, and thus, appear dark easing their detection. This imaging technique helps
during the inspection as it is not easy to identify defects in cells with the naked eye.

Nonetheless, the availability of these kinds of images does not prevent the companies
from performing a manual inspection where human operators need to check EL images
of each cell in the panel in order to detect possible defective cases. Usually, the time to
inspect the entire panel that is on average composed of 60 cells is stipulated to be 30
seconds, which means more or less half a second per cell. The human operator might
struggle to keep such production pace for a long period of time. Also, there is an inherent
evaluation subjectivity that each operator has which will be hardly shared among other
relay mates, and can even change for the same operator from day to day based. All these

4

1.2 Objectives and Contributions

factors can lead to irregular inspection criteria and unpredictable outcomes which is not
desirable when the objective is to reach high quality panels.

In recent years, this task has been subject of automation within the present industrial
automation trend. Several proposals have been made towards this end, from more purely
traditional manual feature engineering based procedures, to a mix between a manual
engineering approach and shallow Machine Learning (ML) methods, and to more recent
Deep Learning (DL) based approaches. Manual feature engineering based procedures
usually reach high defect detection rates while demanding minimum resources for their
applications. However, they usually consist of very case specific solutions that present
a lack of adaptability, and thus could require a complete redesign of the system if a
change in the inspection is required. Taking into account nowadays constantly changing
environment, these kinds of proposals can suffer to keep up with such changes. Because
of that, the latest proposals have moved toward Deep Learning methods as they have
shown capable of automatically extracting meaningful features directly from raw data.
In this way, they present higher levels of adaptability as well as a high level of defect
detection capability making them more interesting for the current dynamic scenarios.
This thesis has explored these latter methods in the context of the quality inspection
within the production of solar cell panels.

1.2 Objectives and Contributions

Many initiatives/attempts are targeting the Automatic Quality inspection of solar panels.
However, the proposed solutions to this day are not as generalizable to different scenarios
as one might wish as they heavily rely on case and situation specific features in order
to design the inspection system. This can result in the need to allocate a considerable
amount of resources when the need to adapt the system to changes in production arises.
This might not be affordable for all companies, or not worth the effort, thus nowadays
the inspection is still lacking automation.

Because of this, the objective that was established for this thesis consists in proposing a
DL based methodology for the development of a robust and flexible industrial inspection
system. All the experiments were carried out within the context of the inspection of solar
modules, however, it should be extensible for other domains. Moreover, the techniques
that were selected during the design of the methodology are relative to Deep Learning
methods for image segmentation that uses few defective data for training which were

5

Foundation and Context

chosen after reviewing the state of the art in quality inspection of solar panel production
in Chapter 3. The proposed methodology is illustrated in Figure 1.3 which is composed
of three stages that tackle different periods that an inspection system can face during its
cycle of life:

Figure 1.3: Overall schema of the proposed methodology for the development of an inspection
system.

• Stage 1 - Anomaly detection: In the first stage of the set-up of a new production
line, an anomaly detection approach would be used. By training a network using
only non-defective cells, the cells that are out of normality, i.e. anomalous or
defective, would be identified. In addition to classifying them, the defective areas
within the cells would also be marked for inspection, i.e. defect segmentation. In
this way, it would not be necessary to wait for having enough defective cells for
training, and it would be possible to start detecting defects from the beginning.

• Stage 2 - Supervised training: During the lifetime of the production line, it
will generate defective cells which will be automatically identified and annotated
at pixel level by the model from the first stage. Once a handful of these defective
samples are accumulated, they will be used to train a second model in a supervised
manner and using methods that require little data for training. This second model
will be trained specifically to search for concrete defects reaching higher accuracy
rates than the previous model in detection.

6

1.3 Publications

• Stage 3 - Model adaptation: In a production system, there may be features
that are not common and rarely appear during production. It could also happen,
that similar inspection scenarios could take advantage of existing models. For this
case, the methodology proposes two DL bases techniques called Few-shot learning
and Transfer Learning, which take advantage of the previously trained models to
obtain new models that will be adapted to work on the new line. Using already
trained models as the starting point alleviates the need for defective data which
accelerates the deployment of the new line.

1.3 Publications

The design of the methodology required to experiment with several techniques in order
to check their applicability. These experiments lead to different publications that are
enumerated below:

First Author publications

• [8] Balzategui, J., Eciolaza, L., Arana-Arexolaleiba, N., Altube, J., Aguerre,
J.,Legarda-Ereño, I., Apraiz, A.: Semi-automatic quality inspection of solar cell
basedon convolutional neural networks. In: 2019 24th IEEE International Confer-
ence on Emerging Technologies and Factory Automation (ETFA), pp. 529–535.
Zaragoza, Spain (2019). DOI 10.1109/ETFA.2019.8869359.

• [9] Balzategui, J., Eciolaza, L., Arana-Arexolaleiba, N.: Defect detection on polycrys-
talline solar cells using electroluminescence and fully convolutional neural net-
works.In: 2020 IEEE/SICE International Symposium on System Integration (SII),
pp.949–953. IEEE, Honolulu, HI, USA (2020). DOI 10.1109/SII46433.2020.9026211
.

• [10] Balzategui, J., Eciolaza, L., Maestro-Watson, D.: Anomaly detection and
automatic labeling for solar cell quality inspection based on generative adversarial
network. Sensors21(13) (2021). DOI 10.3390/s2113436.

• [7] Balzategui, Julen, and Luka Eciolaza. "Few-shot incremental learning in the
context of solar cell quality inspection." arXiv preprint arXiv:2207.00693 (2022).
(Submitted).

7

Foundation and Context

Collaborations

• [70] Maestro-Watson, D., Balzategui, J., Eciolaza, L., Arana-Arexolaleiba, N. (2020).
Deflectometric data segmentation for surface inspection: a fully convolutional neural
network approach. Journal of Electronic Imaging, 29(4), 041007.

• [69] Maestro-Watson, D., Balzategui, J., Eciolaza, L., Arana-Arexolaleiba, N.
(2019, July). Deflectometric data segmentation based on fully convolutional neural
networks. In Fourteenth International Conference on Quality Control by Artificial
Vision (Vol. 11172, p. 1117209). International Society for Optics and Photonics.

1.4 Outline

The rest of the document is organized as follows:

• Background: The first chapter describes the background of the thesis in terms of
the basics of the techniques that have been employed in the thesis, an outline of
the use case that has been used to perform the experiments, and the metrics, data,
and hardware and software specifications that have been used in the experiments
to train the techniques and evaluate their results.

• Literature review: the second chapter provides a literature review that revolves
around the techniques that has been applied so far in the context of the thesis.

• Methodology (chapter 7): the following chapters, Supervised learning
(chapter 4), Anomaly detection (chapter 5), and Model adaptation (chap-
ter 6) describe the three stages that compose the proposed methodology as well
as the experiments that were performed to check their applicability as techniques
in each stage. Also a real experiment is described on how the methodology would
be applied in a real scenario.

• Conclusions and future works: The last chapter concludes the document with
some conclusions that were drawn during the experimentation in the thesis, and
also some suggestions for future work lines that can be followed.

8

Chapter 2

Background

The thesis has mainly focused on the use of Deep Learning methods to design the
methodology for automatic solar cell quality inspection. This section will present a brief
background about the different terms used throughout the next chapters in the thesis
aiming to give some context that can help to understand them.

The background will be divided into two parts: first, some general concepts about how DL
methods work and how they are evaluated will be introduced. Then, more of this thesis
specific concepts will be described which will be related to the solar panel production
process, and the data, hardware and software used in the different experiments.

2.1 Deep Learning

Deep Learning is a subfield within the Machine Learning field that is at the same time a
set of methods that are part of the broad domain of Artificial Intelligence (AI). The aim
of Artificial Intelligence methods nowadays is to try to automate the decision-making
process by means of employing models trained on data gathered from the process, rules
defined by experts, or mathematical functions that describe how the process works.

Among the various alternatives proposed, ML methods have chosen to use data as the
backbone of their strategy to achieve the goal of making machines intelligent. Broadly
speaking, ML methods try to train algorithms to learn to extract meaningful features
from data, thus, later these features can help the algorithm perform optimally in a given

9

Background

task such as data classification, regression, or clustering. When talking about training,
it often referred to feeding data samples to the algorithms in an iterative way so that
they can process them and make a prediction or estimation for each sample. Once this
prediction has been made, it is evaluated by means of an error function that serves to
guide the algorithm in the following iterations towards a specific objective, for example,
to learn to classify images. The form of evaluation and the objective is usually dependent
on the nature of the data as well as the objective set, which is further elaborated in the
next section.

Over the years, different ML algorithms have been proposed (e.g. Support Vector Machine
(SVM), K-means, linear regression...etc) and successfully applied in many different fields.
However, in recent years, as a result of having easier access to more data and more
computing power, the field has seen the resurgence of a new type of methods that compose
a subfield within ML known as Deep Learning. The methods within this subfield are
characterized by the use of artificial neural networks as their core technique, which like
the aforementioned ML methods, are iteratively trained to extract features from the data
and then apply them to a defined task. Nonetheless, these latter methods’ training is a
more data intense process. In contrast with ML methods, neural networks usually require
thousands of data samples in order to obtain robust models than can generalize well
cases outside of the training set. Despite such limitations, since their emergence neural
networks have demonstrated great accuracy in various tasks such as image classification
or text classification, which has displaced more traditional techniques to a less relevant
position becoming the way to go in fields like Computer Vision or Natural Language
Processing.

2.1.1 Types of learning

When talking about the training of a neural network, it refers to optimizing the neural
network with a given data such that it can then be employed to solve a task, for instance,
an image classification problem. However, the type of data available for training is not
always the same. The type of the available data will determine which type of training
can be carried out, which could be categorized into four types of learning: supervised
learning, unsupervised learning, semi-supervised, or reinforcement learning [44].

• In Supervised learning, the algorithms are trained using a dataset with form
D = {{x1, y1}, ..., {xn, yn}}, where for each of the samples x, there is an output y

that is known beforehand. Based on the pairs of input and output, the algorithms

10

2.1 Deep Learning

are trained such that, for each input, it gives its correspondent or expected output.
This is achieved by making the network minimize a given loss function L = (x, f(x))
which will try to force the network to behave as expected to every input data.
This kind of training is widely used in classification kind of problems, where the
algorithms are trained to classify the data points into predefined output classes.

• In unsupervised learning, the dataset samples do not have an expected output
(label) associated as in supervised learning. Due to the lack of labels, an exploratory
search is conducted in order to find similar features or patterns among the data
sample such that they can be then clustered together. In the context of deep
learning, for example, unsupervised learning is commonly applied in anomaly
detection problems, where using only normal data as training data, the networks
are forced to learn the probability distribution of that training samples, PX , so then
can be used to detect anomalous samples. This type of learning, however, does
not reach the same accuracy rates as the supervised type of learning due to the
exploratory nature of the training itself. While in one a specific objective is set and
the network is trained accordingly, in the other possible patterns and structures
are searched in the data which usually leads to more noisy outcomes.

• Semi-supervised learning is a mix of supervised and unsupervised learning. In
this case, the network is trained with a dataset composed of labeled and unlabeled
data points. While the training can be closer to unsupervised learning, in this case,
labeled samples are incorporated to help the network during the feature extraction
process.

• In Reinforcement learning the network does not learn from the error gradient
calculated from the network prediction and the expected value but from rewards and
penalties received during "experimentation" with the environment. By interacting
(actions a) with the environment, the model passes from one state s to another
resulting in different rewards r. In the end, the network is trained to maximize the
final return given by the sum of the rewards, G = ∑∞

t=1 Rt.

These learning approaches can be used in different industrial scenarios, for example, for
defect classification (supervised training) [1, 68, 105, 61], anomaly detection (unsupervised
training) [89, 46] or robot picking (reinforcement learning) [34, 114].

11

Background

2.1.2 Architectures

In Deep Learning, the models are neural networks: a conjunction of interconnected
neurons that define mathematical functions that map some set of input values to an
output value y = f(x; θ), where θ is the parameters in the network. The mapping,
illustrated in Figure 2.1, consist in performing a dot product between the data coming
from input connections and the weights associated to each connections, plus a bias term,
y = ∑

i Wi · xi + b.

Figure 2.1: Deep Neural Network architecture schema

The neurons are organized in layers stacked one after the other, and the connections
are established between adjacent layers of neurons as illustrated in Figure 2.1. However,
stacking linear functions one after the other can only lead to representing more and
more complex linear functions at each time. For instance, a neural network composed
of three layers defining three functions, f

1 , f
2and f

3 , will compose a chain y = f(x) =
f

3(f 2(f 1(x))) that in the end still be a representation of a linear function.

In order to be able to approximate more complex functions that will serve to represent
nonlinear data such as images, the design of a neural network usually incorporates a
nonlinear activation function σ, at the end of each neuron, y = ∑

σ(Wi · xi + b). Some
of the most common nonlinear functions used when constructing neural networks are
Sigmoid, Tanh, ReLU, or LeakyReLU. With these functions, the output of the neurons
is forced to fall into different data ranges as can be observed in Figure 2.2 which breaks

12

2.1 Deep Learning

down the linearity of the models. The choice among the existing functions will depend
entirely on each practitioner, as every case could be different. To give an example, if we
want the network to output the data in a range [0, 1] so we could train it as if it was
a probability output we could choose the Sigmoid function to be the final activation
function of the network.

Figure 2.2: Some of the most common activation functions used in neural network.

The layers are denominated as "visible" or "hidden" based on accessibility to the inputs
and outputs. The input and output layers are the visible layers in the network as the
first is where the data enters the network and the latter where the data get out of the
network. Then, all the layers in between these two are considered the hidden layers of
the network.

As can be observed in Figure 2.1, every input connection has its own associated weight
value. The value of the weights will determine how the information will "flow" through
the network. The optimization of the networks aims to find the best combination of the
weight values, such that the network will yield the best performance in the given task
(e.g. higher accuracy at a classification task).

Different types of architectures have been proposed throughout the years in order to deal
with different kinds of problems, as well as try to solve some of the drawbacks of older
models. Nowadays, in problems where image processing is somehow involved, the most
widely employed neural network architecture is the Convolutional Neural Networks (CNN)
illustrated in Figure 2.3. CNNs are a type of deep neural network that assumes the input
data to have a three-dimensional shape (i.e., images). While in the initial architectures
(i.e, Multilayer Perceptron (MLP)) the neurons were fully connected between layers, in
CNNs, neurons are connected to a small region in the input data, thus the weights in
that region (i.e., receptive field) are spatially shared. In this way, the spatial relationship
between the pixels in the data will remain as it could contain meaningful information. In
addition, if a MLP was applied on such high dimensional data, the memory usage would
increase notoriously as the number of neurons needed to process the data would be huge.

13

Background

In the case of CNN architecture instead, the images are processed using a receptive field
which reduces the number of neurons needed to extract the features, and in this way
alleviate the hardware demand making them suitable to work with image type of data
[102].

Figure 2.3: Convolutional Neural Network architecture schema. Source: http://alexlenail.
me/NN-SVG/AlexNet.html

The principal characteristic that makes CNNs different from other types of networks is
the Convolutional layers, which have parameters consisting of a set of learnable filters.
These filters are convolved (hence the name of the layer) across the height and width
of the input volume computing the dot product between the entries of the filter and
the regions in the input volume (i.e., the previously mentioned receptive field). The
convolution will be performed for each of the filters defined as a hyperparameter in the
layer, yielding 2d activation maps that will correspond to the responses of the input
volume to each of the filters.

Conceptually, these filters will end up being akin to the types of filters that traditionally
users defined in conventional computer vision pipelines, for example, blur the images,
extract edges, find circles, or find corners. However, in contrast to traditional manual
labor, the filters in Deep Learning are automatically defined by the network throughout
a training. During the training, the network will decide on its own how to configure the
filters at each layer such that it can extract meaningful features from the data, and thus
optimize its overall performance for the given task (e.g., classification).

14

http://alexlenail.me/NN-SVG/AlexNet.html
http://alexlenail.me/NN-SVG/AlexNet.html

2.1 Deep Learning

In addition to the Convolutional layers, other types of layers are also usually employed
in the CNNs architectures. To name a few, pooling layers like Max-Pool or Avg-Pool
are usually incorporated to progressively reduce the spatial size of the input volume to
reduce the number of parameters in the networks. Or, the Batch Normalization layer
(BN) that normalizes the output activations after each Convolutional layer, which has
been shown as a way to speed up the training process[51]. Or also, Dropout layers
that will deactivate certain neurons in the layers during the forward pass as a form of
regularization that will prevent the network from overfitting the data (i.e., memorizing
the training data). For a more extended explanation and visual animations of how the
layers work refer to Stanford’s lecture on Convolutional Neural Networks.

The first publication of a successful application of CNN was done by [62] aiming to
identify different zip codes, digits, ...etc from images. The network was called LetNet-5
and was composed of a sequence of three 3 layers: convolution layers, pooling layers,
non-linearity function, and fully connected layers with a final activation function at the
end that acted as a classifier.

Nevertheless, the turning point in the usage of the CNNs was their application in the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012, where [60]
proposed AlexNet and surpassed the accuracy results of all other contestants that were
employing more traditional image processing based approaches. From that moment
on, CNNs were adopted by the Machine Learning community as one of the de facto
techniques to be used for modeling computer vision problems. Also, in recent years, this
architecture has evolved into more complex structures to adapt to different tasks, such as
ResNet [47] or Inception [93] for image classification, YOLO [80] or Mask R-CNN [48] for
object detection, or Fully Convolutional Networks (FCN) [65, 81] for image segmentation.

2.1.3 Optimization

Apart from the architecture configuration, the loss function is another key component
during the training process. The loss function, Equation 2.1, serves as the final evaluation
of the network that will measure the magnitude of the error when predicting an output
for the given input x. In other words, it will measure how far the prediction was for
a given sample regarding the expected output y. The error function also implicitly
evaluates how optimum the parameters of the networks θ at that training stage.

15

https://cs231n.github.io/convolutional-networks/

Background

J (θ) = J (σ(x; θ), y) (2.1)

In the end, the training of the neural network is an optimization problem where the
objective is to find the global minima of the error function (or at least a local minima),
meaning that the network has learned to do the given task for the given data. Neural
networks are usually trained with Gradient Descent (GD) [16] and Back-propagation
algorithms [83] which are focused on updating all the weights based on searching the
direction of the greatest increase rate of the loss function. As the objective is to reduce
the overall error, and this is parameterized by the weights in the network, the weights are
updated based on the opposite direction of the gradient (gradient descent) with respect
to the error which can be expressed as in Equation 2.2.

θ′ = θ − α∇θJ (2.2)

where θ are the parameters in the network, α is the magnitude of the update known as
the learning rate. The update is done at every training iteration, which consists of a
forward and backward pass through the network. In the forward pass, first, the data goes
through the layers in the network where the features are extracted. Then, the extracted
features are employed to complete the given task, for example, image classification. After
the network predicts an output, an error is calculated using a loss function that measures
the distance between the output and the expected value. Once the error is computed,
this is backpropagated from the final layer to the very first layer in the network such
that, each weight can be updated using the gradient to respect the error expecting to
reduce the overall error of the network each iteration. In this way, the global minima
will be steadily approached iteration after iteration until, hopefully, the global minima is
reached or the training is stopped.

This process is done using the Back-propagation algorithm that can efficiently compute
the gradient of the loss function w.r.t. all the parameters in the model. The algorithm
takes advantage of the fact that the neural networks are function compositions and
applies the chain-rule to compute the gradients with respect to each parameter. The
chain-rule says that the derivative of composed function F (x) = f(g(x)) w.r.t x is the
derivative of the outside function times the derivative of the function inside, i.e. =
F ′(x) = f ′(g(x))g′(x). Following this rule, it is possible to compute the error with respect
to the parameters at the last layer in the network and by means of the partial derivatives
and the function composition structure defined by the network architecture, propagate

16

2.1 Deep Learning

Figure 2.4: Forward pass and error backpropagation example. The superscript denotes the
layer, k denotes the neuron at the layer, and i the connection to the neuron.

the error back to the initial layers i.e. backpropagate the error. Figure 2.4 illustrates this
forward and backward process. For example, to compute the gradient of the error w.r.t
the weight w3

ki, i.e. that connects the first neuron in the last layer and the first neuron in
the previous layer (i.e. k = 1 and i = 1), the relation of this weight to the error must be
taken into account which is defined by the expression σ(∑

i a2
i w

3
ki + b3), where a is the

output coming from the previous layer that acts as input, w the weight associated to the
input and b the bias term. If the functions in the expression are denominated as follows,
z3

k = ∑
i a2

i w
3
ki +b3, and a3

k = σ(z3
k), the chain-rule will define that partial derivative of the

error with respect to the weight w3
ki should be defined by taking the partial derivatives

of the outside function times the function inside, i.e. ∂L
∂w3

ki
= ∂L

∂a3
k

∂a3
k

∂z3
k

∂z3
k

∂w3
ki

The update should be performed after the network has seen all the training samples in
the dataset in order to make the weight update contemplate every aspect of the samples.
However, when the training set is populated with millions of samples, each update will
take a lot of time as all the samples need to be processed. In order to overcome this
limitation, the training is more commonly done using the Stochastic Gradient Descent
(SGD) where the iteration is done using just subsets of the training set (i.e., batch).
Based on this, the forward and backward pass of the batch through the network is
denominated as an iteration, and processing the entire dataset using batches is called
epoch.

17

Background

The magnitude of the update is defined by the value of the learning rate parameter. A
high learning rate will make the value of weights in the network take big steps towards
the function minima, making the values of the weights abruptly oscillate and causing
sometimes the network not to ever reach the minima. Instead, a small learning rate will
make the weights updates to be very small making the network very slowly approach the
loss function minima, and thus, extending the training time. This makes the value of
the learning rate an important aspect of the network’s training. Nowadays, there are
different algorithms available for the weight update such as Adam [54], Adagrad [37], or
RMSprop [49] that propose different ways of updating the weights and also consider the
adaptation of learning rate value, making it bigger or smaller as the network gets closer
or farther from the minima.

For example, Adagrad adapts the learning-rate for each parameter, making it larger
for parameters that do not update frequently, and smaller for those parameters that
frequently update. In order to adapt the update for each parameter, the algorithm keeps
the square-sum of the gradients throughout the training in a big vector equal size of the
number of parameters. When updating the parameters, the learning rate is adjusted for
each parameter by dividing it by the value that corresponds to each parameter in the
vector. As the square-sum of the gradients will always be a positive number, the values
in this vector will grow up each training step making the update shrink until it will
eventually turn very small and make the network stop from training. This weakness of
storing the gradients is substituted in other algorithms like Adam and RMSprop, which
instead of using all past gradients, they define a time window and store the decaying
average of past squared gradients. In this way, the update is still performed for each
parameter individually, but there is no such risk of diminishing learning rates in later
iterations. For a more detailed explanation of the different algorithms available in the
literature please refer to the review in [82].

2.2 Metrics

The evaluation of algorithm performance is a key step in the field of Machine Learning.
Different algorithms can be used to solve the same problem (e.g., image classification),
however, it is important to determine which is the best performing method. For this
purpose, there are standardized metrics that describe different aspects of performance
which can be then used for an objective comparison. Noted that the metrics that are
going to be exposed assume that the task is a supervised learning scenario.

18

2.2 Metrics

Before starting with the metrics, it is necessary to explain that in a classification problem,
being a multiclass or a binary classification, there are four possible ways of evaluating
the model output: True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN). In order to assign one of these labels, it is necessary to first specify
which is the positive and negative class in the classification. For instance, in an industrial
inspection case, defective parts are usually considered the positive class while a non-
defective part will be considered the negative class. Therefore, if the model classifies a
part as defective, and it turns out to be defective, the output is defined as True Positive.
On the other hand, if the sample belongs to a non-defective part, and is classified as such,
this output is considered True Negative. In the case of the sample being misclassified,
the defective part classified as non-defective would be considered a False Negative, and
the non-defective part classified as defective a False Positive. If the problem involves
multiple classes, the same procedure is followed but evaluating one class at a time, where
the class to be evaluated will be the positive class, and the remaining classes will act as
the unique negative class.

Once the classes are established, the algorithms are executed on the test sets and the
results are accumulated in the described four groups. Then, different metrics are employed
where the accumulated results are combined in different ways to reflect several aspects of
the performance. The metrics that are more widely used are exhibited in Equations 2.3,
2.4, 2.5, and 2.6.

Precision : TP

TP + FP
(2.3)

Recall : TP

TP + FN
(2.4)

Specificity : TN

TN + FP
(2.5)

Accuracy : TP + TN

TP + FN + TN + FP
(2.6)

Precision describes the percentage of success with respect to the positive class. In other
words, from all the samples that have been classified as belonging to the positive class,
how many were correctly classified. Recall represents the percentage of detection with
respect to the positive case, that is, from all the defective samples during evaluation,
how many was the model able to detect. And Specificity indicates the same as Recall
but with respect to the negative class. Also, there is another metric called Accuracy that

19

Background

measures the overall performance by taking into account how many classification results
were successful regardless of the class.

As mentioned above, these metrics are applied in classification problems where the
classification unit is the whole image. Nonetheless, the algorithms might not give a
binary classification but rather a probability that the image (or pixel) belongs to a specific
class. In order to apply the metrics the results need to be binarized by a threshold.
Based on the value of the threshold an output can be considered a False Positive or True
Positive. To choose the best threshold, the Receiver Operating Characteristic (ROC)
curve is often employed. This curve shows the relationship between the Recall and
False Positive ratio (or 1 - Specificity) at different threshold values. Figure 2.5 shows an
example of what this curve looks like. The closer the curve is to the upper left corner will
indicate that the more accurate the algorithm has been at the classification. When the
curve consists in a diagonal line in the middle of the graph (illustrated by the dashed lines
in the image), it would indicate that the algorithm is not better than a random classifier.
And if the curve falls below the dashed line, it would be the signal that the algorithm
has a terrible job. Based on the curve, the best threshold value can be found which will
give the highest recall and the lowest False Positive ratio. Along with the curve, the
Area Under the Curve (AUC) value, which is independent of the chosen threshold, is
usually provided.

Figure 2.5: Example of a ROC curve

20

2.3 Solar panel production

This thesis has focused on locating defects in the cells aiming to provide more interpretable
information to evaluate whether cells are defective or non-defective. In image segmentation
problems, additional metrics are employed that evaluate the precision of that segmentation.
These metrics usually measure the accuracy of the classification taking every pixel in the
prediction as an independent classification. Then, the predictions are averaged by the
class present in the test image. Also, the pixels with the same predicted class are grouped
together forming interconnected areas or blobs. Then, these areas are compared against
the ground truth blobs (i.e., defects in the label) in order to evaluate if the defects were
detected or not.

In our case, the objective was not to seek a perfect segmentation like in other domains
such as the medical domain where an accurate location and shape of a tumor can be
key to later design one type of treatment or another. In our scenario, it was sought to
provide the users of the methods with additional information rather than the ultimate
segmentation. Taking this into account, it was decided to just evaluate the segmentation
accuracy of the results at a qualitative level, and use these segmentation results to
evaluate the whole prediction as defective or non-defective. Such that, the problem
turns into an image classification problem where the described metrics can be used. For
example, Figure 2.6 illustrates how a segmentation evaluation can be used to get an
overall evaluation of the prediction. Does the prediction contain a certain amount of
defective predicted pixels? yes, therefore this cell can be considered defective. Instead,
if the prediction is clear or does not contain a sufficient number of defective pixels, the
overall evaluation will be that the cell is non-defective.

2.3 Solar panel production

The production of the PV panels is composed of a sequence of different steps that
transform the initial solar module into the final solar panel. A finished panel shown in
Figure 2.7 is made of the following materials:

1. External frame: This frame is the external structure of the panel. It is usually
made of aluminum and serves as a seal and protection to the panel.

2. Crystal: The crystal is a layer that provides extra protection to the panel against
external threats.

21

Background

Figure 2.6: Overall evaluation using segmentation results.

Figure 2.7: Standard solar panel composition illustration.

3. Encapsulant: The encapsulant consists of three different parts that ensure a long
useful life of the module. The first layer is a solid crystal that protects the panel
from threats such as radiation, shocks, or unfavorable weather conditions. After
the first layer, two encapsulate layers, one on top and another behind the panel,
seal the connections along the cells isolating the panel. The isolation prevents
the panel from short circuits. Finally, a back layer seals the encapsulation adding
further insulation and protection to the panel.

22

2.3 Solar panel production

4. Cell matrix: The cell matrix consists of solar cells that are interconnected to
each other with ribbons and buses. The ribbon or tab is a wire made of tinned
copper that is used to join (i.e., solder) cells such that they compose a closed circuit.
The buses or busbars instead are vertical lines drawn in the cells that indicate the
position where the wires should be placed and soldered.

5. Junction box: The main function of this component is to group together the dif-
ferent connections in the panel as well as protect the entire system from nonuniform
radiation which can affect the panel performance.

The cells that compose the matrix are the most important component in the panel as
they are the ones that will turn solar energy into electricity. Nowadays there are different
types of cells available in the market, however, the most distributed ones are the first
generation cells that are made of silicon. These kinds of cells are mainly fabricated
following two types of compositions: monocrystalline and polycrystalline. In the case
of polycrystalline cells, the cells are composed of small silicon crystals of different sizes
that are melted together. In the case of monocrystalline cells instead, the cells are made
from a single silicon crystal. This difference makes the monocrystalline cells present
higher levels of electricity generation efficiency than the polycrystalline cells but it also
implies a higher final cost and a more complex production process. This is one of the
reasons why some manufacturers choose polycrystalline cells, that even though they are
less efficient at electricity production they allow them to save money. Within each type
of cell, the cells are also classified based on the number of buses and the size. Most of
the produced cells have a size of 156.75 x 156.75 mm and several buses ranging from 4 to
6. However, nowadays the number of buses has been continuously increasing, reaching
12 and 16 buses per cell.

The mentioned components are commonly assembled in the following steps:

1. Glass and encapsulant loading: the manufacturing process starts by loading
the front glass and the encapsulant on the production line. Once loaded, they wait
in line while the structures that will compose the cell matrix are created in parallel.
The loading is usually done by a machine due to the weight and dimensions of the
material, however, it is common to have an operator checking the process.

2. Tabber&Stringer + Layup: While the glass and encapsulant are being loaded,
in this machine the cells are put in lines with the ribbons forming what is called
a cell array or string. Then, the strings are grouped into matrices. The number
of cells per string and number of strings per matrix may vary depending on the

23

Background

final design of the panel. Commonly, the matrices are composed of 6 strings with
10 cells per each, which results in a 60 cell panel. After generating the structures,
a robotic arm takes and places them on top of the encapsulant. All this is done
with the help of machine vision cameras and sensors to ensure that everything is
precisely in the right place.

3. Interconnection: When the 6 strings are properly positioned in the encapsulant,
the module enters into the interconnection machine where the strings are soldered
together to form a single electrical circuit.

4. Lamination: After connecting all the cells together, the panel goes through a
lamination process consisting of three distinct phases. This step ensures the final
quality of the module. First, a small pressure and vacuum is applied to seal and
fill out possible holes between the components. Secondly, high temperature and
pressure cause the components of the different layers to adhere to each other and
the air inside to be flushed out. Finally, a cooling phase completes the sealing of
the panel.

5. Edge trimming: During the lamination process, excess material from the layers
may be left sticking out of the panel. This step serves to remove that material such
that the panel remains clean for the next step.

6. Framing: Finally, an aluminum frame and junction box are placed on the panel
to provide rigidity and ease of handling during installation.

Throughout the process, several sources of failures can affect the panel such as components
exposed to shocks, excessive pressure when transporting the panel, or mistakes made
by the machine when performing any of the previously described assembly steps. These
events lead to damaged or defectively assembled components, being the cells the ones
prone to present most of the failures due to their fragile structure. To ensure that
damaged modules do not end up in the final panel, several quality inspections are carried
out during the process. Commonly, two inspections are performed, one before the
lamination and another after the lamination. If a defective cell is detected in the former,
it is usually manually replaced or repaired, whereas if the detection is done in the latter,
the replacement is not that easy to perform. In this case, the panel is usually left with
the defective cells and sold at a cheaper price. The detection of the defects is difficult
to perform with the naked eye, because of their size (some are usually smaller than 1
millimeter), or because other components in the cell can be mistaken as a defect.

24

2.3 Solar panel production

Figure 2.8: Schema of a solar panel production line. The machines that constitute the line
depends on the design of the panel to be built and the level of automation to be achieved.
Some of the steps require a machine while others can be done manually.

The most common defect that are found are the following:

• Cracks: This defect consists of black lines like structures that appear perpendicular
and diagonally to the buses. They are usually caused by an excessive pressure that
has been applied to cells during transportation or soldering.

• Microcracks: Microcracks are a type of crack that are characterized by their size
which is usually less than 1cm.

• Finger interruptions The fingers are structures that appear perpendicular to the
buses and allow electricity to flow through the cell. Due to shocks or failures during
soldering, some areas between the buses and these fingers can end up disconnected
from the main circuit making the electricity flow get interrupted at that point.

• Bad soldering: When soldering the cells, the soldering may not be well done.
This can result in areas adjacent to the buses (usually external ones) not conducting
electricity properly.

• Breaks: This defect is just a complete fracture of the cell that could be caused by
a more severe physical shock.

25

Background

• Black spots: In the same way that an excessive pressure can cause cracks and
microcracks, or in a more extreme situation, a break, the same kind of events
can also cause very localized points to get disconnected from the cell. Instead of
longitudinal line appearance, black spots are more like isolated dots that interrupt
the electricity flow.

A defect that covers 8% of the total module may not have a major impact on performance
if this module is isolated; this same area can have a significant impact when the cells are
connected together, which is the usual structure [59]. Because of this, a strict criterion is
usually established during the quality inspection aiming to detect as many defective cells
as possible. For example, a cell can be rejected if it contains an inactive area greater
than 10% of the cell that has been caused by a crack, microcrack, or a finger interruption.
Or also, require to be put aside and soldered again if less than 80% of the busbar area is
not correctly soldered before the lamination. These measures ensure that defective cells
will be removed and finished with a high quality final panel.

These defects are difficult to be detected by the naked eye, therefore, various techniques
are often used to help detect them. Numerous inspection methods are currently available
such as Electroluminescence, Thermography (IR), Photoluminescence, acoustic vibration
based detection, or electrical modeling (i.e., measuring electrical generation capacity).
These techniques allow practitioners to obtain enhanced images or measurements where
the defects themselves or their effects are highlighted. The techniques are chosen based
on how intrusive they are or by the environmental conditions where they need to be
employed. For example, both Thermography and Electroluminescence output images
that highlight the location of the defects but they are used in different contexts.

In the case of Thermography, it takes advantage of the temperature difference that a
well working cell and a defective cell will present. The cells are connected in series in
the panels, therefore if one cell is defective the electrical current cannot flow properly
through the circuit affecting the overall power generation capabilities of the panel. To
avoid this, bypass diodes are often installed allowing the current to avoid passing through
these defective cells. However, sometimes this bypass does not work properly, causing
the current to concentrate on the defective cells and increasing their temperature. By
capturing IR images, these hot-spots can be easily located in the panels.

Instead, the Electroluminescence technique takes advantage of the physical phenomenon
of Electroluminescence that the cells show when are put under an electrical current. Solar
panels are designed to capture the energy coming from the sun and transform it into

26

2.4 Datasets

electricity. In this technique, the energy flows the other way around. The solar panels are
connected to an electrical current making the solar cells emit light. This light is captured
in high resolution images showing the areas that are capable of conducting electricity
and those that are not. Bearing in mind that in the cells only those areas made of
non-conductive material should be the ones that do not allow electricity to flow, it would
be possible to detect those defective areas that will present the same non-conductive
behavior. Figure 2.9 presents two examples of images captured using the IR and using
EL.

However, Thermography is more commonly used outdoors for inspecting already installed
panels, while Electrolumiscence is more commonly used for indoor industrial inspection.
Thermography imaging allows us to rapidly visualize those cells that emit anomalous
levels of temperature. By using drones or Thermographic cameras coupled to cars, wide
farms of PV panels are inspected [36, 42]. Nonetheless, IR images will only show which
of the cells in the panel exhibit high temperature values, but do not show the specific
location of the defect within the cell. On the other hand, EL images are more precise
regarding the location of the defects, but the process of capturing the images must be
taken in total darkness. This limits its application outdoors but makes it applicable in
industrial inspection where there is greater control over environmental conditions [78, 99].

This thesis has focused on cell inspection using the Electroluminescence technique as
one of the most widespread techniques for quality inspection during production and also
because there has been access to EL images extracted from a real environment. This has
allowed us to validate the performance of the techniques that have been explored in real
conditions.

2.4 Datasets

For the experiments in the thesis, three different industrial datasets were provided by
Mondragon Assembly S.Coop which contained Electroluminescence images of monocrys-
talline and polycrystalline solar cells, all extracted at the quality inspection stage from
real production lines. The following sections will focus on describing the characteristics
of the data in each dataset.

27

Background

(a) Example of a Thermograhy image of a panel, source:
[103].

(b) Example of an Electroluminescence image of a solar panel.

Figure 2.9: Examples of different imaging techniques used for solar cell inspection

2.4.1 Electroluminescence

Electroluminescence is a physical phenomenon that happens to certain materials which
emit light when they are under forwarding bias conditions (i.e. electrical current flow
through them). The light that they emit is near infrared light which is in the wavelength

28

2.4 Datasets

range of 780-2,500nm. But more specifically, the wavelength of EL is usually in the range
of 1,000-1,200nm with a peak around 1,150nm [41] Figure 2.10.

Figure 2.10: Full light spectrum diagram and typical emission spectrum of EL. Image source:
[6] and [41]

These numbers consist in values that well functioning cells present. However, there might
be different causes like defects that can alter these numbers and present deviations in
how the light is usually emitted. These variations can be captured using a cooled Si-CCD
camera and turned into high-resolution grayscale images using a set-up like the one
illustrated in Figure 2.11.

Figure 2.11: Simple set-up to capture EL images from solar modules. Image source: [40]

These EL images reveal spatially resolved information about the electronic material
properties of solar cells as well as defects or breakages in them [40]. Usually, during

29

Background

the industrial inspection, the whole panel is processed using an industrialized version
of the set-up in Figure 2.11, and EL images from all the cells are captured. Then, the
images are put all together to inspect them to find defective modules. As mentioned, EL
images are in a grayscale where areas that present electrical conductivity appear with a
light color while areas that do not conduct that will appear with a darker color. This
difference is used to spot areas that in advance are known to have a light color in the
images but appear dark. Figure.2.12 illustrates some EL images with different defects
that might appear during production. The inspection process is still done by humans to
some extent. However, efforts are being done to automate the process mentioned before
and described in the next chapter regarding the techniques proposed for such purpose.

Figure 2.12: EL images of different defective cells. The defects in the figure are a) microcrack,
b) crack, c) bad soldering, d) break, and e) finger interruptions.

2.4.2 Polycrystalline cells

The first dataset is composed of 542 EL images of polycrystalline cells of 15x15cm
that have an average resolution of 943x923 pixels. As stated before, polycrystalline cells
are made by melting together many silicon fragments to form the wafers that compose
the silicon panel. This procedure makes the cells have a heterogeneous background as
can be seen in Figure 2.13.

The dataset contains defective and defect-free cells with 3, 4, and 5 buses, distributed as
illustrated in Table 2.1. Defect-free samples are samples that were in proper conditions,
and thus, considered to be part of the final solar panel. Whereas the defective samples
contained one or several defects that were severe enough to be discarded from the final
panel. The classification of whether the individual cell should be defective or defect-free
was done by the company based on their quality criteria.

Regarding the type of defects, the cells in the dataset contain mainly cracks. Some
of the cracks are severe and easily visible, while there are other smaller cracks (i.e.,

30

2.4 Datasets

Total
Defect-free 397

3 Buses 7
4 Buses 189
5 Buses 201

Defective 145
3 Buses 38
4 Buses 100
5 Buses 7

Table 2.1: Sample distribution in the polycrystalline cell dataset.

microcracks) that are harder to be detected. Figure 2.13 shows some of these defective
samples side-by-side with defect-free samples.

The provided dataset also included a ground truth image with a pixel level {0,1} anno-
tation for each individual cell image. As can be appreciated, if the crack is not severe,
in certain defective samples cracks can be confused by grains and vice versa. Thus, in
some cases, it might not be so trivial to classify the cell either as defective or defect-free.
Even though this can impact the performance metrics of the models, this has not been
considered as part of the scope of the thesis, thus the labels provided by the company
have been considered the ultimate ground truth for both models’ training and evaluation.

Based on the labels, several statistics have been calculated to show the severity of the
defects in the cells. The computed statistics have been the average number of defective
pixels, the standard deviation of defective pixels, and the ratio between defective and
background pixels for the samples with severe cracks and microcracks. All metrics are
shown in Table 2.2.

Crack Microcrack Crack (severe)
avg def. pix. 4,782 726 16,452
std def. pix. 4,150 385 11,456
ratio def./def-free 0.51% 0.07% 1.7%

Table 2.2: Average defective pixels per type of defect in polycrystalline cells. Taking into
account the size of the cells, a microcrack of about 50 pixels length can be around 0.75cm if its
diameter is 1 pixel. Usually the diameter is about 3-5 pixels.

31

Background

Figure 2.13: Cell samples from the polycrystalline dataset and their corresponding ground
truth.

As can be seen in Table 2.2, there is a great unbalance between defective pixels and
background pixels in the images, which can considerably affect the training and final
performance of the models. This is more notorious in the case of samples with microcracks,
where the microcracks appear in groups of two or more. Thus, the average defective
pixels in the table for these samples should be divided by two or more in order to have the
real ratio between defective and non-defective pixels in the images. The ratios in Table
2.2 have been calculated to try to convey to the reader the difficulty of the segmentation
on these data samples. Mainly to keep it in mind when analyzing the results from the
experiments.

32

2.4 Datasets

2.4.3 Monocrystalline cells

The second dataset consists of 1886 EL images of monocrystalline cells with an average
resolution of 840x840 pixels. As mentioned in Section 3.3, the monocrystalline cells
are generated from a single silicon wafer which leads to cells with a more homogeneous
background than the polycrystalline cells as can be appreciated in Figure 2.14. This
dataset also contains samples evaluated as defective and evaluated as non-defect. In
this case, the cells are more uniformly distributed as they only contain 4 buses. Within
defective samples, there are 5 different types of defects: cracks, microcracks, finger
interruptions, black spots, and bad soldering. Table 2.3 shows the sample distribution in
this dataset, where it is appreciable that there is a great unbalance of samples for each
type of defect.

Total
Defect-free 1,498
Defective 388

Crack 18
Microcrack 240

Finger interruptions 117
Breaks 2

Black spots 7
Bad Soldering 4

Table 2.3: Sample distribution in the monocrystalline cell dataset.

The dataset is mainly composed of samples with cracks, microcracks, and finger interrup-
tions which are illustrated in Figure 2.14 along with a couple of defect-free samples.

With regard to the black spots, breaks, and bad soldering defect classes, the dataset
only contains few samples for each of them. Some of the available samples are shown in
Figure 2.15.

These latter defects do not appear as frequently as crack, microcracks, and finger
interruptions. Moreover, the company labeled them as hard defects giving priority to
the former ones. Because of the lack of samples as well as having a lower priority for
the company, the training, and evaluation in the experiments have been focused on the
samples with cracks, microcracks, and finger interruptions while leaving the samples with
breaks, black spots, and bad soldering for qualitative evaluation.

33

Background

Figure 2.14: Samples with cracks, microcracks and finger interruptions from the monocrys-
talline dataset and their corresponding ground truth.

For every defective cell, a pixel level annotation indicating the defects has been created.
The following Table 2.4 shows some statistics about the defects present in the cells.

Crack Microcrack Finger Interruption
avg def. pix. 3,546 398 887
std def. pix. 2,410 446 675
ratio def./def-free 0.50% 0.056% 0.17%

Table 2.4: Average defective pixels per type of defect in polycrystalline cells.

As in the previous dataset, here also the defective pixels represent a tiny percentage of the
whole cell. The numbers show that the samples with finger interruptions present more

34

2.4 Datasets

Figure 2.15: Samples with bad soldering, black spots, and breaks. and their corresponding
ground truth.

defective pixels than the samples with microcracks. It should be noted that microcracks
commonly appear isolated while finger interruptions usually appear in groups of three or
more, thus, they contain more defective pixels.

2.4.4 Sequence of 700 panels

At the beginning of the section, it was mentioned that we were provided with three
datasets for the development of the thesis. Of these three datasets, the two described in
the previous subsections are the main datasets used in the experimental phase. However,
to validate the proposed methodology an additional dataset was employed in the very
last experiment in the thesis.

This third dataset is composed of images taken from a set of solar panels of monocrystalline
modules. The set consisted of a set of sequentially produced 700 panels, each composed
of 60 monocrystalline cells, which in total counted for 42,000 monocrystalline cells.
In contrast to the other datasets, the cells in this dataset were not manually labeled.
However, the cells were reviewed and it was seen that about 70% of the cells were
completely defect-free and the rest of the cells have similar defects to the ones shown in
subsection 2.4.3. Regarding the defect class distribution, the vast majority of them were
finger interruptions instances, which corresponded to about 95 percent of the defects.

35

Background

Then, there were also cracks and microcracks but in more moderate quantities, 77 and
405 respectively.

2.5 Hardware and Software specifications

All the experiments in the thesis have been performed in a server located in the university
which is equipped with 40 CPUs and 3 GPUs (2 GeForce RTX 2080 Ti and 1 TITAN
Xp), nevertheless, the maximum number of GPUs required during the training of the
models was 2. For more details about the hardware requirements in each experiment
check the section in chapters 4, 5, and 6.

Regarding the software, the server has Linux as the operative system, and on top of that,
several Docker containers for each application or user. Docker is a platform that allows
launching different denominated Containers, which consist in software packages that act
as standalone environments providing all required dependencies for the application to
run but isolating them from each other. By isolating environments, the applications will
access the same hardware in the server but without the need to deal with dependencies
conflicts. In this thesis, three different docker containers have been used which were
created from three different Docker images as illustrated in the Figure 2.16 schematic.

The first one has been created using the image available at Nvidia’s docker repository
with the tag nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04. The image comes with CUDA
software toolkit version 10 and CuDNN version 7. Moreover, all the neural networks
in this contained were developed with Python 3.6 using Tensorflow and Keras at their
version 1.14 and 2.3.1, respectively. Also, well-known libraries such as Numpy, Pandas,
and Matplotlib were also employed mainly to work with the images and analyze the
results from the experiments.

In the case of the second container, the image used can be found in the same Nvidia
repository with the tag nvidia/cuda:8.0-cudnn7-runtime-ubuntu16.04. This second
container was created to work with CUDA 8 as the software downloaded from the
repository github:f-AnoGAN was done using this CUDA version and python 2.7. As it
was wanted to use the original version and experiment on top of that, it was decided
to keep the same version of CUDA and python. All the code could be migrated such
that it could be possible to work with the previous container with CUDA 10 and python
3.6. However, there was a chance of introducing some possible bugs that could impact
the results so it was decided not to try any migration. The neural network from the

36

https://www.docker.com/
https://hub.docker.com/r/nvidia/cuda
https://github.com/tSchlegl/f-AnoGAN

2.5 Hardware and Software specifications

Figure 2.16: Schema of the main Hardware and Software used in the thesis.

repository was programmed with Tensorflow 1.2, so it was also kept at that version.
With respect to the other libraries, Numpy, Pandas, and Matplotlib were also the main
libraries that were used to work with the images and data.

Finally, a third container was also created using the script available at AMPproxies
repository. The Docker is created using the base image with tag nvidia/cuda:9.0-cudnn7-
devel-ubuntu16.04, also from the same NVIDIA docker repository mentioned above. The
code that was used in the experiments was from the same repository, so to avoid any
source of problems it was decided to work with that image instead of any of the previously
mentioned images. Regarding the libraries, the experiments with the neural networks
were done using Pytorch as all the code was done with it, and as in the previous two
containers, Numpy, Pandas, and Matplotlib were used to work with the images and data.

37

https://github.com/MSiam/AdaptiveMaskedProxies/tree/master/docker

Chapter 3

Literature review

In this section, a summary of the state of the art of different image processing techniques
used so far for the detection of defects in solar cells will be provided. In this thesis DL
methods have been mainly applied, however, it has been found necessary to outline the
different techniques that have been used in some works in the field and highlight their
characteristics in order to reason why the choice of DL methods for this thesis.

The techniques can be divided into three groups based on the level of human intervention
required for their application: 1) traditional image processing methods, all procedures
such as feature extraction design or decision making rules are manually defined, 2)
traditional image processing methods in conjunction with traditional Machine Learning
methods, where the decision making step from the previous procedures is replaced with
Machine Learning techniques, and 3) Deep Learning based methods, where all feature
extraction and decision-making is automatically done using end-to-end trainable neural
networks.

3.1 Traditional Image processing

The initial works that can be found in the literature regarding defect detection in solar
cells are mainly traditional image processing based approaches. Traditional approaches in
this context refer to approaches that heavily relied on manually defined feature engineering
procedures such as image filtering, morphological operations, or thresholding.

39

Literature review

Figure 3.1: General schema of the different approaches found in the literature to develop an
inspection system for the quality inspection of solar cells.

The works in this section propose data processing pipelines that are mainly composed
of an initial noise reduction operation, followed by a feature enhancement procedure,
and finally, the result "cleaning" procedure using thresholding mixed with morphological
operations that isolate defects in the cells.

The first step of the pipeline is usually focused on removing the noise (i.e. little structures
in the cells) that can interfere with the subsequent steps in the pipeline. What can be
considered noise can vary from one scenario to another, going from features that are part
of the cell itself like gridlines that appear as horizontal lines in the images, or external
objects like dust particles that might have deposited on top of the cells while acquiring
the images. As the noise reduction is very case specific, the works found in the literature
present several alternatives to deal with it like: Gaussian filtering [120, 94, 110], median
filter [112], mean shift algorithm [95], Anisotropic diffusion [55, 97], or Fourier Transform
[98, 90]. Even though it might seem that techniques are applied independently from each
other, they are usually sequentially employed in order to improve the results.

Once the noise is removed, the next step in the pipeline focuses on enhancing the features
left in the images such that, the final step in the pipeline can easily isolate defective
features from non-defective ones. As with the noise reduction, the works in the literature
show different alternatives for this step: wavelet 2D decomposition [63], histogram

40

3.1 Traditional Image processing

(a) (b)

Figure 3.2: Some result examples from traditional methods based approaches. On top, the
input image, and on the bottom the result from the algorithm. (a) Source [98]; (b) Source [25]

equalization [57], mamdani fuzzy logic [19], Parameter optimized Atmospheric Scattering
Model (PASM) [23], or Hessian matrix based structure extraction [25].

Finally, the last step after all the preprocessing steps consist in isolating the defective
features from the rest. If the images have not shown many peculiarities, this final step
can be undertaken with a simple thresholding [88, 56, 112, 98]. If the previous steps have
not completely removed all the noise additional basic operations like erosion or dilation
are performed [24, 57, 90].

Traditional image processing based approaches are fast and have high precision in
detecting defects. Setting aside the cases of [56] and [23], the works reported accuracy
numbers above 90% and execution time below one second. Also, the type of cell that is
mainly employed in the works is the polycrystalline cells, that as the reader can guess by
checking the images in Figure 3.2 makes the problem harder than if the defect detection
was to be done in monocrystalline type of cells. In addition, each step that composes
the pipelines is simple enough to understand, which is an important aspect to have for

41

Literature review

cases where something starts not working as expected as it can help to fix the problem.
Moreover, simple approaches do not demand high hardware requirements which is also a
positive aspect regarding their deployment.

Nevertheless, these works are ad-hoc solutions that take advantage of case-specific
characteristics in order to adjust the parameters for each of the techniques they employ,
which can lead to procedures that might lack the flexibility to adapt to current dynamic
industrial scenarios. For example, in [97, 94, 55] they assume based on their data that
the gray level of the cracks is always much lower than the gray from the crystal grains.
Thus, they take advantage of such gradients to isolate cracks from the background and
crystal grains using a threshold. However, it is quite common to capture images where
the cracks and the crystal grains have very similar gray values due to uneven illumination.
Or for example, in [63] they take advantage of the different blurriness of saw-mark edges
concerning sharp grain edges in the background, which limits the detection for the cases
where the crystal grains present such sharp edges. Or also in [120, 57, 22], they employ
case-specific morphological operations tailored to the specific shape of the defects in the
cells to enhance them for detection. Also, it should also be mentioned that the works
have focused mainly on cracks type of defect. This defect is one of the most common
types of defect that can be found during production, however, there are other kinds that
also appear and with these solutions could not be detected.

If the production remains unchanged and very stable for a long period of time, may
be worth spending time and resources developing the procedure to extract very case
specific features that will serve during the inspection. However, in the current dynamic
scenarios, as well as the inherent variability that the production is usually subject to,
these solutions may have a tough time adapting to such changes.

The traditional methods usually require high domain expertise in order to define the
optimum combinations of feature extractors that can retrieve as many defective areas
as possible from the cells. This can be considered as another limitation when choosing
these kinds of approaches as in some cases, the definition of the pipeline can require
more creative-artistic skills subject to the practitioner than just technical expertise.

42

3.2 Traditional Image processing and Machine Learning algorithms

3.2 Traditional Image processing and Machine
Learning algorithms

In the previous section, different examples of manual feature engineering based approaches
have been presented. In these works, all the procedure is manually defined, both the
feature extraction and then the decision-making based on these features. This way
of defining the pipeline can be sometimes cumbersome. In order to alleviate some of
the manual labor, some later works incorporated ML methods into the pipeline aiming
to automate the decision-making step. In this case, the feature extraction will still be
manually performed, but once the features are extracted they will be used as training data
to train ML algorithms. After the training is completed, the pipeline will be composed
of an initial feature extraction procedures, like the ones seen in the previous section, and
a decision-making step composed of a trained ML algorithm that will determine whether
the extracted features are defective or not.

The techniques that have been found in the literature regarding this purpose have been
classifiers like SVM [3, 32] or AdaBoost [15], clustering methods like spectral clustering
algorithm [101], fuzzy C-means [99] or K-means [91], or other feature analysis techniques
like Independent Component Analysis (ICA)[95, 116].

The works found for this section have reported overall defect detection accuracy rates
above 90% which is similar to the ones in the previous section. Regarding the processing
time, some of the works reported times above a second per image which will not meet the
industrial inspection speed. For example, [32] reported 12s per 300x300 pixel image or [3]
that required 4s per 1,178x1,178 pixel images. However, the rest of the works reported
processing time below the 1 second mark per cell, from which it can be concluded that
even ML algorithms might introduce more complexity to the pipeline overall but still can
meet the industrial processing time limit set. Nevertheless, it should be noted that these
algorithms can often find relationships between features that a manual analysis may miss,
which sometimes can improve the final detection rates. In this case, practitioners should
deal with this trade-off between execution time vs. complexity and accuracy.

Despite reporting high detection rates, the feature extraction that will serve to feed the
ML algorithms is still manually defined which does not overcome the lack of adaptability
that the works in the previous section present.

43

Literature review

3.3 Deep learning based proposals

In more recent works, the traditional algorithms have been replaced by Deep Learning
methods. Unlike in the previous two sections, the works in this section employ Artificial
Neural Networks (ANN) which automate both main steps in the pipeline, i.e., feature
extraction and decision-making.

The ANNs are able to extract meaningful features from the data, as well as approximate
non-linear functions, that will serve to perform tasks like image classification. However,
in contrast to the previous approaches, this process is done through training where
the network learns on its own to select the best combination of filters that will lead to
the best performance for the given task. This characteristic will avoid manual work,
which is a great advantage from the point of view of the flexibility of the model. Thus,
users can adapt the models to variations in the environment in a systematic and simple
way, avoiding manual redesign and choosing the best combination of filters and feature
extractors for the new circumstances.

After collecting and reviewing the works that apply DL methods for solar cell inspection,
it has been seen that the works focused on either image classification or image genera-
tion. If compared to the traditional approaches, ANN training is a more data intense
procedure. The works in the literature that employed these kinds of methods for image
classification employed at least 1800 images for training [107, 92, 11, 26, 71, 32, 1, 64].
This requirement is hard to meet in industrial scenarios where defective samples are
usually scarce. Moreover, even having access to a large number of defective samples,
will still require an annotation process which is an arduous task to accomplish. This
may prevent practitioners from having access to inspection models at an early stage and
delay production line set-up. However, if not enough representative defective samples
are gathered, the training with few defective samples can lead to overfitting which will
increase the risk of experimenting a performance drop during inference. Despite this
limitation, Neural Networks avoid the manual engineering process as they automatically
learn to perform the classification, thus are more adaptable to new scenarios. Some
researchers tried to overcome such limitations by employing generative networks to
generate synthetic data that can be used to populate data scarce datasets [27, 96]. Then,
both synthetic data and real data are used for image classification.

The proposals in this section were mainly focused on cell classification while some works
in the previous section also considered the location of the defect as part of the results.

44

3.3 Deep learning based proposals

By the time the thesis started, just some works such as [96, 71, 32] took advantage of the
features from the networks as an approximation to the location of the defects. Unlike
more traditional methods, neural networks can sometimes act as a black box that receives
inputs and outputs whether a cell is defective or not without providing any additional
information about the reason behind the results. The pipelines in the previous sections
were "simple" enough to debug them in order to find any source of error if a given output is
not convincing, reaching higher levels of interpretability about how the model is working.
Instead, in neural networks, the feature extraction is designed automatically throughout
the training process, and even once the training has been completed it is usually hard to
keep track of all operations performed inside the network. Thus, it is complicated to try
to debug the model in order to find any sort of explainability about how the network
is working. The main task to be addressed during the quality inspection is believed
to be the classification of the cells so in the end defective cells can be discarded from
production. However, it is thought that providing additional information with the results
such as the location of the defects within the cells, might help interpret the results and
also evaluate the severity of the defects. Later, as the thesis progressed and the results
obtained were published, different works were also published [26, 78, 77, 76, 118, 53] that
shared our point of view and also provided defect location to improve the interpretability
of the results.

With the only exception of [1] where they designed a light CNN to work on a CPU, in
the rest of the works GPUs are employed for training and for inference of the networks.
Neural networks require more intensive computation procedures during training than
traditional pipelines. That is one of the main reasons why GPUs are commonly used
when working with DL methods as they accelerate the training. Nonetheless, nowadays
there are cloud services that provide access to multi GPU stations to train the models,
and then at inference, the heavy computations can be delegated to a modest GPU
incorporated into the inspection infrastructure.

With regard to the accuracy rates and execution time reported, it can be observed
that there are a variety of results. Works like [100, 118, 21, 67] reported high accuracy
rates (above 90%) and execution times below 1s per image which is comparable to the
proposals from previous sections. But there are also other works like [71, 11, 26], where
the accuracy rates are lower than the traditional approaches based works. What can be
underlined here is that even though works mainly focus on cracks, more types of defects
have been taken into account for the classification. Nevertheless, a direct comparison
between works is hard to perform as they used different datasets for evaluation.

45

Literature review

3.4 Summary

After analyzing the literature, several approaches for developing an image processing
based automatic inspection system for the quality inspection of solar cells were found. On
the one hand, there are traditional image processing based methods, which are accurate at
detecting defects within the images, fast, and are not very hardware demanding. However,
they consist in case specific solutions that lack in adaptability, a key characteristic for
nowadays rapidly changing scenarios. On the other hand, there are DL based methods,
which can also be fast, accurate, robust, and flexible to changes. However, they require a
great amount of annotated defective samples for training and have been mainly focused
on classification.

Taking into account the pros and cons of the different proposals, it was decided to focus
the thesis on exploring DL methods to develop an inspection system for solar cell quality
inspection taking into account that: 1) in industrial setups the common scenario is to
only have access to few annotated defective data samples (e.g. less than thousands
of samples usually required when employing conventional neural networks supervised
training), and 2) the techniques should provide a localization of the defects to ease the
interpretation of the results. When experimenting with the different methods, it has
been always taken into account their applicability in real industrial scenarios with regard
to the method’s accuracy and execution time.

46

Chapter 4

Supervised training

Among the different learning approaches in Deep Learning, supervised learning is usually
the one that yields the most accurate results. This happens due to the use of labeled
samples as training data. When employing labeled samples during the network’s training,
the networks are being told to specifically search for particular patterns that will serve to
discriminate and detect annotated features. For example, in the case of quality inspection,
these patterns could refer to defective features in the pieces.

Once the training finishes, the model will search for specified features in test samples.
However, supervised learning of DL methods have shown that the accuracy of the results
is proportional to the amount of training data employed in the training. Few training
samples can increase the risk of overfitting the training data, thus, making the model
perform poorly at inference.

Nonetheless, in an industrial context, access to enough defective data samples for training
is not always ensured. Usually, in industrial environments, there are not so many defective
samples available. Moreover, these samples need to be annotated in order to be applicable
as training samples. The scarcity of representative defective samples could be a potential
limitation for the applicability of DL methods.

Despite this, in this thesis, there was access to defective samples that were labeled
by experts. Taking into account this, it was thought that it was better and more
straightforward to check the applicability of supervised learning models on our datasets.
Even, not having thousands of data samples, overfitting the data will at least show that

47

Supervised training

DL methods could behave correctly in our dataset. Once checked the results, it would be
possible to try to overcome the lack of defective samples as well as explore approaches to
complete the remaining stages of the methodology.

This first chapter will describe two possible supervised learning approaches. Despite
being supervised approaches, they are intended to reduce the need for training data as
well as provide defect localization to aid the interpretation of results. On the one hand,
Convolutional Neural Network is trained using the sliding window processing algorithm
to process the images, and on the other hand, a Fully Convolutional Network based
approach is employed which is able to process the images as a whole.

These two techniques belong to the block of supervised learning techniques in Figure
1.3, thus they require annotated samples for training. These techniques are thought
to be employed in the second stage of the proposed methodology after the anomaly
detection is executed. This was thought this way as the anomaly detection model could
provide automatic annotations as training samples and avoid the need for manual labeling.
Despite conceptualizing the methodology this way, practitioners may have access to
enough defective samples and have decided to devote themselves to the task of annotating
them. In this case, they will be in the position of directly applying the supervised learning
approach.

4.1 CNN and Sliding Window

One possible alternative that was explored to employ the supervised learning approach
in a data scarce scenario is mixing the Convolution Neural network for classification with
the sliding window algorithm. The idea here consists in splitting the images into several
sub-images such that the dataset to train the network could increase and overcome the risk
of overfitting. By splitting the image, the network would understand them as independent
entities instead of parts belonging to the same cell. Also, is a way of turning an image
classification problem (i.e., general evaluation) into a region classification problem (i.e.,
local evaluation). When giving an entire image to the network, it is expected that it will
learn how to focus on the meaningful features in order to classify the entire image in a
predefined class (e.g., defective or not). With the sliding window processing instead, the
network is guided by telling it which regions are defective and which are not, and thus,
which features are important to spot defective cells.

48

4.1 CNN and Sliding Window

Once the training finishes, the same procedure would be employed to process the test
images. In this case, the network would be slid over the images with an overlap between
regions, and predict a probability of the defectiveness of each region. At the same time,
the predicted probabilities would be accumulated into a final image where the regions
that were classified multiple times as defective would present higher values resulting in a
heatmap like image.

Figure 4.1: Sliding window and CNN based inspection method schema. The trained network
is slid across the image, and the output probability is accumulated on the window location
resulting in a final heatmap like image.

Sliding window is a broadly used procedure in the field of computer vision, such as, for
image filtering (e.g., Gaussian blurring), for local thresholding (e.g., Otsu’s algorithm), or
in more advanced tasks like object detection [38, 108]. For the sliding window approach,
a window (w, h) is defined which is slid from left-to-right and top-to-bottom in the image,
and at every location, an operation is performed. For example, in Gaussian blurring, a
two dimensional kernel whose entries represent a Gaussian function is convolved with
the image (i.e, the dot product between the specified kernel and the region inside the
window is computed at every position). In this work, the sliding window procedure was
employed to create the training dataset to train the CNN, and then to process the test
images and obtain the final heatmap results with the trained CNN. The whole procedure
used in this work can be separated into three different phases: 1) Dataset creation, 2)
Network training and 3) Trained network deployment.

1) Dataset creation: For the dataset creation, the dataset in Section 2.4 was taken
and the sliding window algorithm extracting patches from the original image was applied.
In this case, in order to increase a bit the amount of generated image, an overlap ratio of
90% was employed when sliding the window both vertically and horizontally. Also, for

49

Supervised training

each patch extracted, an additional patch image was created by employing a rotation of
90º to the extracted patch.

In the original images (before the split), the ratio between defective pixels and defect-free
pixels is very low as illustrated in Section 2.4. To compensate for such imbalance, two
additional images were also created for each patch by rotating the images 180º and 270º
based on the number of defective pixels present in the region. If the region had more than
15 defective pixels, this augmentation was executed, otherwise, only the 90º rotation was
applied. The pixel counting was performed using the corresponding pixel-wise annotated
ground truth images of each cell.

For illustrative purposes: following the described procedure, if 145 defective samples
and 397 defect-free samples were taken, a window of size 32×32 pixels, and an overlap
ratio of 90%, about 1.9 million defect-free patches and 350,000 defective patches would
be obtained. Then, if they were divided into training and testing sets following a
common proportion of 90% for training and the remaining for testing, the training set
would be composed of about 315,000 defective samples. This will help to overcome the
network overfitting issue that could face if the original dataset was directly used. These
numbers could be easily increased by adding more augmentation procedures (e.g. affine
transformations) or decreased by reducing the overlap ratio or increasing the window
size.

Figure 4.2: Schema of the dataset creation using Sliding window.

2) CNN training: Once the training dataset was created, the patches were separated
into train (90%) and test (10%) sets to train and evaluate the neural network, respectively.
Regarding the network architecture, several experiments were done with different network
architecture configurations inspired by the one in [68]. First, a base architecture (config.

50

4.1 CNN and Sliding Window

1 in Table 4.2) was defined, trained, and tested. Then, modifications were incorporated to
explore different window sizes and check their impact on the final defect detection rates
and defect location results. The base architecture was composed of 3 Convolutional Layers
(ConvL) and 3 Fully Connected (FC) layers, with some additional layers in between
aiming to make the model more robust. The additional layers were Gaussian noise (it
adds some noise to the pixels in the images defined by a Normal distribution), Batch
Normalization, Max-pooling (MaxPool) layers between the ConvL, and Dropout layers
between the FC layers. The experiments with the window sizes consisted in doubling the
size for each of the following experiments. This caused the final feature maps before the
FC layers to also double in size. In order to keep the size at this point the same for all
the networks (4 × 4 × 32), more layers were included after the final Convolutional blocks.
The building blocks used for the construction of the architectures are presented in Table
4.1, and their combination in the different network configurations is shown in Table 4.2.

Conv. Block FC block
gauss. noise 0.1 FC 512
Conv 32, 5×5 dropout 0.3

BN FC 256
maxPool 2×2 dropout 0.5

– FC 64
– FC 1 Sigmoid

Table 4.1: Base block used to construct the different architectures.

Conf.1 Conf. 2 Conf. 3 Conf. 4
input 32×32 input 64×64 input 128×128 input 256×256

3 × Conv. block 4 × Conv. block 5 × Conv. block 6 × Conv. block
FC block FC block FC block FC block

Table 4.2: CNN architecture configurations.

All networks were trained during 50 epochs, with a batch size of 256 images, with
RMSprop [49] as the optimization algorithm, and binary cross-entropy in Equation 4.1
as the loss function. The batch size was set to 256 after several short tests, starting with
a value of 16 and increasing it by two until there was no improvement in the results.
With respect to the optimizer, both Adam and RMSprop optimizers were tested as the
most common ones seen in other binary classification problems. After some experiments,
RMSprop was selected as it gave slightly better results.

51

Supervised training

L = 1
N

N∑
i

−yi · log(pi) − (1 − yi) · log(1 − pi) (4.1)

where p is a scalar prediction for each image (patch from the original image) and y the
ground truth for each image.

3) Network deployment: The final step in this method consists in employing the
sliding window procedure used to generate the training dataset, but now sliding the
trained network such that at each step the region is processed by it. The models were
designed to output a probability value p about whether the region is defective or not,
where the value p is the probability that the area is defective and the value 1 − p is
the probability that the area is not defective. To build the final result, a new image
of the same size as the test image was created. When the network processed a region,
the output of the corresponding probability was added at the same position in the new
heatmap image. In this case, the output probability was added to every pixel at the
region in the heatmap image instead of just the center pixel. Like in the dataset creation,
the images were processed using an overlap between adjacent regions such that regions
that obtained high probability values multiple times will end up with higher values than
their neighbor regions revealing the location of the defects. To avoid excessive FP cases,
the output probability was accumulated only when it was above 0.6. By accumulating
the probabilities, the defects shapes in the heatmap presented blurred edges. In order to
obtain sharper shapes, the images were thresholded.

4.1.1 Experiments and Results

The training and testing of the networks in Table 4.2 was performed on the Polycrystalline
dataset distributed as in Table 4.3 and with the first Docker container described in Section
2.5 with CUDA 10, Tensorflow 1.14, and Titan Xp GPU.

The results from these experiments were evaluated quantitatively at image level using
Recall and Precision metrics, and also qualitatively with regard to the segmentation.

As the results consisted of heatmaps like images, a thresholding operation was needed to
evaluate whether each image as defective or not. After applying the threshold, if there
were 15 defective pixels, the resulting image was evaluated as defective, otherwise, it was
classified as defect-free. Based on this post-processing, the results were evaluated against
the ground truth obtaining the metrics in Table 4.4.

52

4.1 CNN and Sliding Window

Train Test
Defect-free 371 26
Defective 128 17

Table 4.3: Dataset distribution used for the sliding window experiment

Recall Precision

Configuration 32×32 89 65

Configuration 64×64 94 65

Configuration 128×128 92 85

Configuration 256×256 89 65

Table 4.4: Results of different configurations at full image level.

The second configuration that corresponds to the network with a window size of 64×64
pixels was the configuration that obtained the highest Recall value that represents the
capability of detecting the existing defective samples in the test set. However, the third
configuration with the window size of 128×128 pixels obtained a much higher Precision
rate with a similar Recall rate. Overall, the best configuration for detecting the defects
can be considered the third configuration.

Figure 4.3: On the left, the cell image and the same image but with the defect highlighted in
white. Then, from left-to-right the results from 32, 64, 128, and 256 window size networks with
an overlap of 90%, and top-to-bottom, the same results but with a threshold applied.

53

Supervised training

Nonetheless, if both the image level and the pixel level results are analyzed together, it
could be said that the second configuration was the model with the best results. While
the third configuration was able to segment the entire defect and the predictions kept the
underneath shape of the defect, the second configuration was able to obtain segmentation
results that were closer to the defect’s shape. It should also be mentioned that the first
configuration that used a window size of 32×32 pixels was the configuration that was
able to get closer to the defect borders even though certain areas remained unsegmented
and certain false positives appeared at the bottom of the cell.

Regarding the execution time to process an image, as it was anticipated, the bigger the
window size was, the less time was required to process the images. The time that the
four models achieved to process an entire image is reflected in Table 4.5. The fourth
configuration with the window size of 256×256 pixels was the configuration that was
closest to meeting the stipulated time for processing a cell during the real production
scenario (half a second at most), however, this was in sacrifice of precise segmentation
results.

Model Time (s)

Configuration 32×32 11-12

Configuration 64×64 5

Configuration 128×128 3

Configuration 256×256 0.9

Table 4.5: Execution time of the different configurations.

The experiments show that the sliding window approach is a way to increase a dataset,
it allows one to obtain a segmentation like image using a small CNN network designed
classification, and it only requires a single GPU although it can also be run on a CPU.
Nonetheless, the networks take much time to process each image which makes the
approach unable to match the required production speed. An option to reduce the
computation time is to reduce the overlap ratio such that fewer steps would be required
to process the images. However, when reducing the overlap for each configuration so the
execution time is at most 0.5 seconds, the segmentation accuracy will drop as can be
observed in Figure 4.4.

In order to reduce the execution time, but still, obtain accurate location results, the
next section will describe how in the following work the sliding window approach was

54

4.2 FCN based Segmentation

Figure 4.4: On the left, the cell image and the same image but with the defect highlighted in
white. Then, from left to right the results from 32, 64, 128, and 256 window size networks with
an overlap of 90%, and top to bottom, the same results but with lower overlap (i.e., 40%).

substituted with a Fully Convolutional Network based approach. Instead of processing
the images by regions, the FCN is executed by taking the whole image as the input, thus
a precise segmentation results can be obtained without requiring a multi-step processing
schema.

4.2 FCN based Segmentation

In the previous section, how the sliding window procedure and a CNN designed for
classification can be used to detect and approximate the location of the defects in the
cells has been described. The main drawback of the method was the need to execute
the network multiple times to produce accurate segmentation results. A trivial way to
shorten the processing time was to reduce the overlapping ratio of the sliding window,
however, this supposed less accurate results. This section will describe how processing
time can be significantly reduced and still obtain accurate segmentation results using
Fully Convolutional Networks.

The first end-to-end trainable Fully Convolutional Network to obtain dense prediction
equal to input size was proposed by [66]. In this work, they substituted the FC layers
of a "classic" CNN like the one seen above with deconvolution layers that acted as
bi-linear interpolation operations. In this way, the last feature maps in the network

55

Supervised training

will get upsampled to recover the initial input size allowing the network to learn dense
predictions.

In the last years, several end-to-end trainable FCN architectures have been proposed for
dense predictions. Among these architectures, the U-net [81] network was selected, which
was originally proposed for medical image segmentation (neural structures in electron
microscopy stacks). In addition to the similarity between the images in the paper and
our case (both grayscale images), the results in the paper show that the network yielded
precise segmentation results using few annotated training data. In addition, there was
some experience working with this network on another industrial dataset with quite
promising results [69].

U-net is composed of two sequential parts: an encoder and a decoder. The encoder
follows a similar structure to the CNN in the previous section. With consecutive blocks
composed of two Convolutional Layers followed by a MaxPool and a BN layer, it focuses
on extracting deep features from the data downsizing the feature maps to half their at
every step. After a sequence of 4 downsampling blocks, a bottleneck block adds depth to
the network to extract and force the network to learn more meaningful features. Then, the
decoder transforms the extracted low-resolution features into a final segmentation map
of the input size by successive upsampling steps. The upsampling steps are configured
as the inverse of the downsampling blocks, substituting the pooling operators with
upsampling operators, which can be defined to be as static bi-linear interpolation or
learnable deconvolution operations. Additionally, at every downsampling block, a skip
connection is established to fuse the extracted features with the corresponding upsample
block with the feature resolution. These connections allow the network to recover feature
location information that is lost during the downsample steps at the encoder. Figure 4.5
shows a brief schema of what U-net network architecture looks like.

4.2.1 Experiments and Results

The first experiment in this section consisted in just substituting the network architecture
and the image processing scheme from the work in the previous section with U-net. After
this, two additional experiments were also done regarding 1) the reduction of the number
of layers from the original U-net architecture and 2) the usage of pre-trained weights as
an initialization method.

56

4.2 FCN based Segmentation

Figure 4.5: Schema of U-net architecture.

Regarding the reduction of the layers, the experiment aimed to check if the network could
obtain similar detection rates as the original network even if some features extracted
from the deeper layers were removed. As the images go down in the encoding part, they
are reduced in dimension which might make information of smaller defects be lost from
the feature maps and thus be difficult to detect. On the other hand, when reducing
the number of layers in the network, the overall complexity of the network will also be
reduced, alleviating to some extent the memory usage both during execution and model
storage. The reduction consisted in removing the last three blocks in the encoder parts
and their counterpart blocks in the decoder part, and then, connecting the deepest layers
to make the network have the encoder-decoder shape like in the original architecture.

In the case of the experiment with pre-trained weights, it will serve to check if it could
help to improve the results. Section 6.1 briefly describes how this Transfer Learning is
applied, but in short, it consists of using the weights of a network already trained as
initialization of the weights of a network to be trained. For more extended information
refer to the survey in [104]. The weights were from VGG16 [87] pre-trained on Imagenet
[33] and were used in the encoding part of the network.

All the experiments were done using the same container with the Titan Xp GPU and
Tensorflow 1.14 as in the experiment in the previous section. In the case of the dataset,
the training samples were just limited to the defective samples in Table 4.3. After several
experimental training using both defect-free and defective samples and different loss
functions, it was observed that it was better to stick to just the defective samples as
training samples. When using both types of samples, the network was biased towards the

57

Supervised training

defect-free class yielding blank segmentation outputs. In other words, for the network,
all the cells were always defect-free cells. Instead, when using only defective samples
the defects in the test images started to be segmented. As mentioned before, there is
a great unbalance between defective and defect-free pixels in the images. In the case
of the sliding window approach, the unbalance did not have such a negative impact on
the results as images were split into patches and the patches with defective pixels were
augmented with rotation operations. In this way, the network could see more defective
samples during training which compensated for the unbalance. In the case of U-net,
even if image augmentation techniques were applied, there will still be a great unbalance
between defective and defect-free pixels as in the original dataset. The only way to
alleviate the problem was to remove the defect-free samples and focus on the defective
cells by employing rotation and flipping like morphological operations during the training.
In contrast to the previous experiment, the images were required to be downsized to
a resolution of 400x400 pixels in order to fit all the trainable parameters of U-net in
memory during training.

All the U-net based networks were trained to maximize the Dice Coefficient in Equation
4.2 between the ground truth and prediction. The training was performed during 500
epochs with a batch size of 4 images and Adam [54] as the optimization algorithm. The
value of the batch size was selected along with the input image size. A batch of 4 was
the highest value that the memory could support with a relatively large image.

Ldice = −
2 · ∑

j pjgj∑
j pj + gj

(4.2)

where p ∈ [0, 1] is the network output, and g ∈ {0, 1} is the ground truth.

After training models, they were evaluated on the test samples obtaining the results
shown in Table 4.6. Note that the results from the Configuration 2 (sliding window of
size 64×64 pixels) are different from the ones reported in Table 4.4.

Overall, all U-net based networks were able to detect most of the defective samples,
however, the sliding window based approach still surpassed these models in detecting
defective samples. Despite that, configuration 2 network mistakenly segmented areas
in defect-free samples leading to lower Precision and Specificity rates, i.e., higher False
Positive cases and lower True Positive cases than the original U-net.

In the case of the experiments with the U-net based networks, the reduced version of
U-net performed similarly to the sliding window approach. It segmented more areas

58

4.2 FCN based Segmentation

Specificity Recall Precision

64×64 Conf. 2 73 100 69.5

U-net 88.4 87.5 82.3

Reduced U-net 38 93.7 48.3

Pre-trained U-net 80 81.2 72.2

Table 4.6: Image level results from U-net and sliding window experiment.

as defective, but also incurring in more False Positive cases. It even obtained worse
Precision results than the sliding window approach. It seems that reducing layers made
the network less capable of learning features that differentiate crystal grains or other
structures like the buses from defects. In the case of U-net with pre-trained weights, it
did not help much in improving the performance if compared with U-net trained from
scratch, but it either was harmed badly.

In addition to the quantitative results, Figures 4.6, 4.7 and 4.8 show some representative
samples of the segmentation results that may ease the interpretation of the ratios in the
previous table.

Figure 4.6: Results on severe defects with U-net. In the following order: the cell image, the
cell image with the defect highlighted, the results using the sliding window approach with a
window size of 64×64, the results using original U-net architecture, the results with the reduced
version of U-net, and the results using the original U-net architecture with pre-trained weights.

59

Supervised training

Figure 4.7: Results on light defects with U-net. In the following order: the cell image, the
cell image with the defect highlighted, the results using the sliding window approach with a
window size of 64×64, the results using original U-net architecture, the results with the reduced
version of U-net, and the results using the original U-net architecture with pre-trained weights.

As expected, the networks performed better when the size of the defect was larger. All
the networks were able to segment with relatively high accuracy big defects like the Crack
in Figure 4.6 but struggle with Microcracks like the one in Figure 4.7. In particular,
none of the networks was able to detect the smallest microcrack on the bottom left of the
cell in Figure 4.7. Note that this small defect is around 0.75 cm in length, which can be
very hard to be detected regardless of the technique being used. As for the segmentation
accuracy, it is clearly visible that the sliding window approach led to blurrier results than
the U-net based experiments. It is true that the CNN and the sliding window were not
designed specifically for segmentation but for classification, nonetheless U-net designed
for segmentation is more suitable for cases where the goal is to obtain an accurate location
of defects.

With respect to the execution time, U-net reduced the time from the 5 seconds per cell
obtained with the sliding window approach to 0.07s per cell. Even if U-net is a more
complex network with more layers than the CNN used with the sliding window, the final
segmentation results are obtained after only one forward pass instead of the previous
multiple executions. Even more, if the network size is reduced as in the case of the
reduced U-net which required 0.048s per image.

60

4.3 Concluding remarks

Figure 4.8: Results on a defect-free sample with U-net. In the following order: the cell image,
the results using the sliding window approach with a window size of 64×64, the results using
original U-net architecture, the results with the reduced version of U-net, and the results using
the original U-net architecture with pre-trained weights.

4.3 Concluding remarks

In this chapter, two possible supervised alternatives that employ a few defective data
samples and with which the location of defects in the cells can be obtained have been
explored.

On the one hand, a sliding window approach in conjunction with a CNN for classification
has been explored. With this approach, the images in the datasets are not analyzed as a
whole but in patches. This way of processing the images can be understood as a way of
augmenting the dataset that can help overcome the lack of defective training samples.
On the other hand, a Fully Convolution Network based approach has been explored
aiming to speed up the processing time shown by the sliding window approach as well as
improve the defect location accuracy.

Overall, the results from the experiments have shown that U-net based approach yielded
more precise segmentation results than the sliding window approach, reducing at the
same time the execution time per image. However, even though it was more precise at
segmenting defects in the cells, the image level detection rates experienced some drop
with respect to the results from the sliding window approach.

61

Supervised training

The supervised learning approaches are the way to go when there are enough defective
samples and annotations available. However, real production lines may still present
certain limitations with respect to collecting enough defective samples for these supervised
methods to be used. The next chapter will explain how another approach can overcome
such limitations and still obtain accurate defect location in the cells.

62

Chapter 5

Anomaly detection

In industrial quality inspection environments, there are different peculiarities that must
be taken into account when applying DL-based solutions. These sometimes are difficult
to gather, making it hard to generate large enough datasets with representative images of
the different characteristics of interest for appropriate training. In addition, the manual
labeling of each of the examples must be done, which is usually an arduous task that
takes plenty of time and resources. In new industrial processes, there are no defective
data samples from the beginning, so it would be necessary to wait a long time to be
able to have enough data to train DL models capable of identifying the faults that may
appear.

Fortunately, there are ways that take advantage of defect-free samples which are more
accessible even if the process is new. This chapter will describe how these defect-free
samples can be used to train a neural network using an anomaly detection approach and
obtain a model that can classify defective and non-defective cells as well as locate the
defects.

5.1 Anomaly Detection

Anomaly detection refers to the problem of finding patterns in the data that differ from
what is considered normal. In an industrial quality inspection setup, anomaly detection
can be translated as finding defective patterns during production using defect-free samples

63

Anomaly detection

as training data. For this purpose, in the context of Deep Learning neural networks
are trained using just normal data such that they learn the probabilistic distribution of
what is normal [18]. Then, at inference it is expected that it will only be able to handle
defect-free samples, allowing in this way to identify those samples that do not follow the
learned distribution, i.e., anomalous or defective samples.

Within the solar cell inspection domain, this approach has been employed in [77] and
[76], and lately also in [73] through the usage of Autoencoders (AE), linear AE in the
case of the first two works and convolutional AE in the last work. In these works, AEs
are trained to encode and reconstruct defect-free samples, so later on it will make the
network unable to reconstruct defective patterns. In the case of defect-free samples, the
network will output a high fidelity version of the input image, whereas when processing
a defective cell, it will output a defect-free version of the input sample. By subtracting
the defect-free version from the defective sample, deviations will highlight anomalous
patterns in the image.

This same approach has also been employed in other domains but in this case, using
Generative Adversarial Networks (GAN) [43] which have shown remarkable capabilities
at generating realistic images, and also better anomaly detection rates than AEs [84, 12].

Taking into account the results obtained using GANs, this section will describe the
experiments performed with this type of network for anomaly detection in the context of
solar cells, specifically the experiments and adaptation performed using the f-AnoGAN
network [84]. This network is rooted in the original GAN [43], however, is the result
of successive improvements that have been done with regard to the network training
stability. Thus, before starting with the description of the particular network, it is
considered appropriate to briefly introduce which and how were these improvements
incorporated in the original GAN to clarify the reason behind the use of f-AnoGAN.

GANs are a type of generative model composed of a generator G and a discriminator D

that are trained in an adversarial manner. The problem is formulated as a zero-sum mix
max game Equation 5.1, where G learns to generate samples from an input noise vector
z sampled from latent space Z to fool the discriminator, while D attempts to distinguish
the generated samples from real samples x drawn from the training set.

min
G

max
D

V (D, G) = E
x∼Pr

[logD(x)] + E
x̃∼Pg

[log(1 − D(x̃)] (5.1)

64

5.1 Anomaly Detection

where Pr is the training data distribution, Pg is the model distribution defined by
x̃ = G(z). As it is a zero-sum game, the training converges at the point known as
Nash Equilibrium, where both the generator and the discriminator are good at their
corresponding tasks. A successful training makes the generator implicitly minimize the
divergence given by Jensen–Shannon Divergence (JS) measure between the generated
data distribution p(z) and the training data distribution p(x). In other words, it has
learned the probabilistic distribution of the training data.

The minimization of the JS divergence derives into unstable training when both distribu-
tions are very different from each other, finally leading to a mode collapse or vanishing
gradients [4].

Mode collapse happens when the Generator is only able to generate one kind of sample.
During the training, it learns that generating that specific sample is a way of minimizing
the loss function (fool the discriminator) and does not try to generate different looking
samples as it does not want to get a higher error value. As a consequence, the training
ends up with a poor generator that has learned a narrow version of the probabilistic
distribution of the training data.

The problem of vanishing gradients instead is a consequence of the nature of the training
itself. At the beginning of the training, both the generator and the discriminator are
not optimized for their tasks, however, for the discriminator, it is easier to discern a
generated sample from a real one than for the generator to learn to generate real looking
samples. Due to the form of the JS divergence based loss, the discriminator can end up
converging while the generator is still training. This causes the discriminator to stop
reporting gradients on which the generator is being trained leading to a model failure as
the learning process can no longer continue.

In order to solve the training instability, in [5] they proposed to use the Wasserstein
distance or Earth-Mover’s distance (EM) Equation 5.2 as the loss function which yielded
the Wasserstein GAN (WGAN) architecture. The loss measures the distance between
two probabilistic distributions in form of the "cost" γ that will take to transform the
generated distribution Pg into the real distribution Pr.

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ[∥x − y∥] (5.2)

where Π(Pr,Pg) is the set of all joint distributions γ(x, y) whose marginals are respectively
Pr and Pg. Unlike JS divergence, [5] proved that Wasserstein distance is continuous

65

Anomaly detection

and provides usable gradients everywhere, thus avoiding the vanishing gradient problem
encountered in the original GAN proposal. The original form of the Wasserstein distance
is intractable as it requires exhausting all joint distributions in Π(Pr,Pg) to find the
optimum Pg that minimize the distance, so it becomes not applicable as a loss function.
In order to overcome this limitation, the Kantorovich-duality was employed to simplify
the equation turning it into the loss function in Equation 5.3.

min
G

max
D∈f

= E
x∼Pr

[D(x)] − E
x̃∼Pg

[D(x̃)] (5.3)

where f is a set of 1-Lipschitz functions, and Pr and Pg are again the training data
distribution and the model distribution respectively. In this case, under the optimal
discriminator, renamed to "critic" as it does not classify now, there will be gradients for
the generator to train. By minimizing the loss function with respect to the generator
parameters, the Wasserstein distance between Pr and Pg will be minimized.

Nevertheless, the weights in the critic need to lie in a compact space [−c, c] that fulfill
the 1-Lipschitz constraint. To enforce that condition, the weights were clipped after the
gradient update at an arbitrarily defined value. However, a wrong clipping value can
make it harder to optimally train the network, so in a future work [45], they extended the
loss with a gradient penalty term (WGAN-gp) Equation 5.4 that dynamically performs
the weight clipping enforcing the 1-Lipschitz constraint based on the input.

LW GAN = E
x̃∼Pg

[D(x̃)] − E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[∥∇x̂(D(x̂)∥2 − 1)2] (5.4)

where x̃ = G(z), x̂ = αx + (1 − α)x̃ with α ∼ U(0, 1) and λ is the penalty coefficient.

f-AnoGAN [84] uses the WGAN-gp as base architecture that helps having a stable
training while keeping the capability for generating realistic images used for a successful
anomaly detection. The network was originally proposed for anomaly detection in the
medical domain where it is also difficult to obtain anomalous samples (e.g., diseased
samples). The original network design does not contemplate the processing time as a key
aspect, which makes the network too slow for its application under real industrial cycle
speed (more than a second per image). For this reason, the network has been adapted to
reduce the processing time and also improve the detection rates.

66

5.1 Anomaly Detection

5.1.1 Anomaly detection model (f-AnoGAN)

f-AnoGAN is composed of three different sub-networks (a generator G, a discriminator
D, and an encoder E) that are trained in two phases.

In the first training phase, the generator and discriminator are trained in an adversarial
manner to learn a latent space of normal data variability using just normal data. In
this work, defect-free samples are considered as normal data and defective samples as
anomalous data.

In the second phase, the encoder is trained to map normal data from the image space to
the learned latent space while the Generator and Discriminator are kept unaltered. Once
these two phases have finished, the encoder can map test images from the image space
to the latent space, and the generator can reconstruct the encoded version of the images
from the latent space back to the image space. As the network is trained on normal data,
it only learns to encode and reconstruct correctly normal features; thus, when processing
anomalous samples, deviations from the reconstructed images can be used for anomaly
detection and location.

Phase 1 - WGAN training

The objective of the first phase consists in learning the variability of normal data. For
this purpose, the generator and the discriminator are trained following the architecture
of WGAN and the gradient penalty based loss in Equation 5.4 to minimize the Wasser-
stein distance between the real normal data probability distribution Pr, and generator
synthesized data probability distribution Pg is minimized.

During the training, the generator is fed with a noise input vector z, sampled from
a latent space Z, and tries to learn the mapping from that latent space to the image
space X. The synthesized data G(z) should follow as close as possible the real data
distribution Pr. Simultaneously, the discriminator is given the generated sample x̃ and
the real sample x so it outputs a scalar about how close both distributions are. The
training and the components in this phase are illustrated in Figure 5.1.

After the first phase of training, 1) a latent space that represents the variability of the
normal data, 2) a generator that can map samples from this latent space to image space,
and 3) a discriminator that can detect samples that do not follow the normal data
distribution are obtained. However, at this stage, there is no network component that

67

Anomaly detection

Figure 5.1: The schema of phase 1 of f-AnoGAN training.The Generator takes a vector z
and tries to generate an image that follows the same distribution of the real data. Then, the
Discriminator measures the difference between the generated data distribution and the real
data distribution.

can perform the inverse mapping, i.e., from image space to latent space. The next phase
will focus on learning this mapping.

Phase 2 - encoder training

In the second training phase illustrated in Figure 5.2, the objective is to make the encoder
learn to map a real image to the latent space such that the generator can map it back to
the image space. During this stage, both the generator’s and the discriminator’s weights
remain unaltered. This network configuration is denoted as izi in [84]. In this case, the
encoder is optimized by minimizing the Mean Square Error (MSE) with respect to the
difference between the original image x and the reconstructed one G(E(x)). Additionally,
the reconstruction error from the izi architecture loss is extended by feature residuals
from an intermediate layer in the discriminator, yielding the izif architecture.

By taking into account these residuals in the feature space, the reconstruction is improved
[84]. The final loss function of izif is defined by Equation 5.5:

Lizif
= 1

n
∥x − G(E(x))∥2 + k

nd

∥f(x) − f(G(E(x)))∥2 (5.5)

where f(·) are discriminator’s intermediate layer features, nd is the dimensionality of the
intermediate feature representation, and k is a weighting factor.

68

5.1 Anomaly Detection

Figure 5.2: The schema of phase 2 of f-AnoGAN training. In the second phase, the Generator
and Discriminator are kept unaltered while an Encoder is added and trained to learn to encode
the images to the latent space so the Generator can reconstructed them back.

Anomaly detection

Once the training has finished, all the components are fixed and ready to be used for
anomaly detection. During the detection, the images are processed as in the encoder
training. First, the encoder maps the images to the latent space, and then, the generator
maps them back to the image space. Finally, the difference between the reconstructed
and the original image defined in Equation 5.6 is used for anomaly detection.

A(x) = AR(x) + k · AD(x) (5.6)

where AR(x) = 1
n
∥x − G(E(x))∥2, AD(x) = 1

nd
∥f(x) − f(G(E(x)))∥2 and k is a weighting

factor from Equation 5.5.

As mentioned at the beginning of the chapter, in anomaly detection in the context of
DL only defect-free cell samples are used for training, therefore the network just learns
to reconstruct normal samples. In the case of defect-free samples, the network outputs
an image similar to the input image, thus there is not much deviation when subtracting
one image from the other. Instead, when processing a defective cell, the output is a
defect-free version of the input sample. As a consequence, the deviation between the
original and reconstructed images can be used to detect anomalous parts. This behavior
is shown in Figure 5.3.

69

Anomaly detection

Figure 5.3: Example of anomaly detection with f-AnoGAN. In a) the final structure of the
network used for anomaly detection, and in b) some example results obtained when the network
processes a defect-free cell and a defective cell.

The absolute value of the pixel-wise difference between the original and the reconstructed
image, |x − G(E(x))|, is used for pixel-wise anomaly detection. By applying a threshold
c, defined in Equation 5.7, to the residuals image obtained from |x−G(E(x))|, the binary
image y ∈ {0, 1} is obtained.

y =

1, |x − G(E(x))| ≥ c

0, otherwise.
(5.7)

5.1.2 Experiments and results

Before experimenting with the network, first, the original f-AnoGAN was employed in our
dataset to ensure its applicability in this specific industrial context. Then, two different

70

5.1 Anomaly Detection

modifications were incorporated to improve the results regarding the defect detection
rate and processing time.

f-AnoGAN modifications

With f-AnoGAN, the images are processed in patches of size 64×64 pixels, which requires
multiple executions of the network, increasing the time to process an entire cell. As a
consequence, the network does not meet the industrial production cycle time (under
half a second per cell). In order to reduce the inspection time, 1) the encoder input
and the generator output layers’ dimension was increased. Thus, whole cell images will
be processed in a single pass, reducing processing time drastically with respect to the
original sliding window approach Figure 5.4.

In addition, 2) the training scheme was also modified. In f-AnoGAN, the generator is
frozen during the second training phase in Section 5.1.1; thus, only encoder weights are
modified. This can limit the network’s capability in terms of reconstructing the input
image. In order to maintain a stable training without restricting the reconstruction
capability, the generator is also trained at a certain number of the encoder training
iterations with a lower learning rate, while keeping the discriminator unaltered. By
training the generator, the reconstruction of defect-free samples will improve. Therefore,
the deviation between the original and the reconstructed images of normal data will be
reduced. Consequently, both the anomaly score and the pixel differences will be lower
for defect-free samples, but higher for defective ones; thus, the model’s detection rate
will improve.

From now on, the original architecture and the architecture with the modifications will
be referred to as f-AnoGAN-64 and f-AnoGAN-256 respectively.

The hyperparameters in both models were all kept the same as in [84]: The z vector
was sampled from a Normal distribution and had a size of 128, the value of λ parameter
for the gradient penalty was 10, and the value for the weighting factor k in Equation
5.5 was set to 1. The optimization algorithm for the first training phase was Adam [54]
and for the second RMSprop [49]. For both models, all the images were rescaled to a
range [−1,1] as in the original work [84]. In this way, the pixels in the images will match
the range of the Generator output layer activation function (i.e., Tanh), and it will help
the network have a stable training [28]. The only hyperparameter that was modified
was the batch size for f-AnoGAN-256 training in order to fit the model in memory. This

71

Anomaly detection

Figure 5.4: Schema of the changes performed in f-AnoGAN architecture.

was due to the increase in trainable parameters resulting from the modification of the
architecture. The training took a different number of iterations depending on the phase.
Both models required 40,000 iterations in the first phase and 70,000 iterations in the
second phase to converge.

Baseline models

In addition to the mentioned models, two Convolutional Deep Autoencoders were also
trained. These models were used to establish a base with which the results from the
previous two models could be compared. In addition, the results from these two base
models served to check if a more simple network architecture could be enough to obtain
high defect detection rates in this specific context. Following the two approaches from
previous models, one Autoencoder was trained to process the images in patches, and
the other Autoencoder was trained to process the images in an image-wise setup. These
models will be referred to as AE-64 and AE-256.

Regarding the architectures, both networks are composed of an encoder and a decoder
with several convolutional layers. In the case of AE-64, the encoder has two convolutional
layers with 64-32 filter distribution, followed by 4 Fully Connected layers of 128 units
each, and finally a decoder with the inverted shape of the encoder part. In the case of
AE-256, the architecture is two convolutional layers deeper than the AE-64 such that the
output dimension before the Fully Connected layers is the same. The filter distribution
is 8-16-32-64. After each Fully Connected layer, a dropout layer with a drop rate of 0.25

72

5.1 Anomaly Detection

was set. Both networks were optimized with the MSE loss function and Adam as the
optimization algorithm. The AE-64 model training took about 30k iterations with a
batch size of 32, and the AE-256 model training took about 6k iterations with a batch
size of 8.

Results

The experiments in this section were carried out using the dataset of monocrystalline cells
described in Section 2.4. In this case, the network only requires defect-free samples for
training, thus, the defect-free samples were separated into the train, validation, and test
sets. In addition, in order to perform a quantitative analysis, defective samples were also
employed for testing. In the dataset there are certain defects that do not contain a great
number of samples to compute representative performance metrics, thus only Cracks,
Microcracks, and Finger interruptions were used for the quantitative analysis while the
other types were only employed for the qualitative analysis. The dataset distribution
used in this part is illustrated in Table 5.1.

Train Val Test Total
Defect-free 750 373 375 1,498
Defective - - 375 375

Crack - - 18 -
Microcrack - - 240 -

Finger interruptions - - 117 -

Table 5.1: Dataset sample distribution for unsupervised part experiments.

The Crack class does not have either a great number of samples, however, this type
of defect is one of the most common and important classes of defect to be detected
at inspection due to its consequence on the cell’s future performance. Because of this,
Cracks were also kept in the dataset for the quantitative analysis.

f-AnoGAN-64 and AE-64 were designed to process the images patch-wise. For these cases,
each image was split into 256 patches using a sliding window. The final train, validation,
and test sets were composed of 192,000, 95,488, and 192,000 images, respectively. For the
other networks, the images were resized to the network input size (i.e., 256×256 pixel
resolution).

73

Anomaly detection

To compare the performance between the models, the results from the patch-based models
were post-processed. While, in the image-wise models, it was enough to apply a single
threshold so as to classify a sample as anomalous or normal, in patch-based models, the
errors of all patches belonging to the cell must be taken into account. So, in the latter,
the same threshold was applied to every patch, and, if a single patch was evaluated as
defective, the entire cell was also evaluated as defective.

Regarding the image-level results, the network modifications had a positive impact on the
results. f-AnoGAN-256 was able to detect more defects (higher Recall values) than the
original f-AnoGAN-64 without incurring in more False Positive cases (higher Precision
and Specificity values). This is particularly visible in Table 5.2 for the case of the finger
interruption and microcrack defect classes where all the metrics improved by over 10
points. This improvement can also be appreciated in the ROC curves and the AUC
values in Figure 5.5 where the curve reflecting the performance of f-AnoGAN-256 appears
closer to the top left corner that represents the perfect classifier, and the AUC value that
changed accordingly.

If the results of f-AnoGAN models are compared with the ones from the Autoencoders, it
is further underlined that the incorporation of the modifications brought an improvement
in defect detection rates. Setting aside the case of finger interruptions, f-AnoGAN-
64 obtained worse detection rates than its Autoencoder counterpart (i.e., AE-64) and
also AE-256. But, when the proposed changes were incorporated, the obtained results
surpassed the ones from the Autoencoders for all the classes and all the metrics, which
means higher True Positives cases and lower False Positive cases for all defect classes.

The results in the ROC curves in Figure 5.5 and the metrics in Table 5.2 show that all
models could detect all samples with cracks, but they could not detect all samples with
microcracks and finger interruptions. This is caused by the fact that cracks are defects
that cover a larger area of the cells than finger interruptions or microcracks, therefore
having defective pixels that result in a higher anomaly score. The same happens in the
case of finger interruptions and microcracks. The first appears in groups of three or
more, whereas the latter appears isolated. Because of this, the sum of defective pixels
in samples with finger interruptions contributes to higher anomaly scores resulting in
higher detection rates.

With respect to the defect location results, Figure 5.6 shows that all the models were
able to properly locate the different defect classes. Nevertheless, the segmentation results
were more refined in f-AnoGAN-256 and AE-256 models. Although the patch-based

74

5.1 Anomaly Detection

Figure 5.5: ROC curves from the different models in the unsupervised part experiments.

models were able to point out the presence of defective areas, the borders and shape of
the predictions were not as accurate as those from the image-wise models.

Also, the patch-based models have more False Positive cases. An example of this behavior
is the sample from the second row, where the buses in the cell were mistakenly detected
as defects. The same happened on the defect-free samples, where patch-based models
classified defect-free areas as defective (e.g., samples seven and eight), whereas the
image-wise models obtained clean predictions. Although not illustrated in Figure 5.6,
this behavior was shared across several other samples in the test set.

In addition, in Figure 5.6 there are also some results illustrated in regard to samples
that contain breaks and bad soldering types of defects (in the bottom-right of the first

75

Anomaly detection

Model AUC Precision Recall Specificity f1-score
All test samples

f-AnoGAN-64 66 61.3 62.8 61 62
f-AnoGAN-256 81.5 75 78 75 77
AE-64 72 65.6 64 68 65
AE-256 73 68.4 58 72 63

Cracks
f-AnoGAN-64 99 66.7 100 50 80
f-AnoGAN-256 100 95 100 94 97
AE-64 98 78 100 100 87.7
AE-256 100 95 100 94 97

Micro
f-AnoGAN-64 63 58.7 59 59 58.9
f-AnoGAN-256 78 73 73 74 73
AE-64 71 66.5 63.7 67.9 65
AE-256 70 66 53 72 59

Finger int.
f-AnoGAN-64 70 66 64.9 66.7 65.5
f-AnoGAN-256 86 78 85 75 81
AE-64 69.7 61.9 59.8 63 60.8
AE-256 75 69 63 71 66

Table 5.2: The results of anomaly detection at the image-level. Precision tells how accurate
the classifier is when classifying a sample as defective. Recall tells how many samples have
been correctly classified as defective from all defective samples. Specificity describes how many
defect-free samples have been correctly classified as defect-free samples. The F1-score is the
harmonic mean of the Precision and Recall. In all metrics, the higher the value, the better the
classifier is.

row sample and on the right in the third row sample) that were put aside from the
quantitative analysis due to the lack of available samples. In the case of the break,
image-wise models were able to output a relatively precise segmentation. The AE-64
model results indicated the defect location; however, they did not have much precision.
Instead, in the case of f-AnoGAN-64, it can be noticed that, at the defect location, there
is a certain anomalous pattern but very vaguely segmented. Regarding the bad soldering,
f-AnoGAN-256 was the only model that presented a reasonable segmentation result.

Regarding the processing time, Table 5.3 shows how the architecture modification made
f-AnoGAN able to reduce the time required to process each cell. While patch-based
models required more than half a second to process the cells (maximum stipulated time

76

5.1 Anomaly Detection

Figure 5.6: Defect localization results from each model.

77

Anomaly detection

per cell), f-AnoGAN-256 and AE-256 required only 0.05 and 0.02 s, respectively, to
process each cell.

Model time per patch time per image

f-AnoGAN-64 0.02s 5.12s
f-AnoGAN-256 - 0.05s
AE-64 0.012s 3.07s
AE-256 - 0.02s

Table 5.3: Time required to process a cell for each model.

Additional experiments

In addition to the experiments in the previous section, supplementary tests to check
the individual influence of each of the modifications incorporated into the network on
the detection rates were also carried out. Four different network configurations were
trained: the original network (f-AnoGAN-64), the network with the input and output
layer size modification (f-AnoGAN-256), and the same two architectures but trained with
the modified training scheme modification (f-AnoGAN-64* and f-AnoGAN-256*). Note
that the configuration f-AnoGAN-256* in this section is the same as the configuration
f-AnoGAN-256 with both modifications that is illustrated in the results in previous
sections. The detection rates from each of the configurations are presented in the charts
in Figure 5.8. The detection rates are shown as if all the defects belonged to the same
class, and taking each of the defect types separately.

And in Figure 5.8, the pixel level results from these additional experiments are reported.
To ease the comparison, the image to describe the pixel level results in the previous
section is reused and just the results from these latter experiments are incorporated.

As can be appreciated, the input and output layer dimension modification did not improve
the results much (f-AnoGAN-64 vs f-AnoGAN-256). The Recall value was worse than
with the original network in all the cases. In the case of Precision and Specificity instead,
the results were better. The only clear positive side of this modification was the reduction
of processing time, which was reduced from 5s/image to 0.05s/image making the network
able to meet the established maximum inspection time.

With respect to the training scheme modification (f-AnoGAN vs f-AnoGAN*), it can be
concluded that it was overall beneficial for the defect detection capability of the networks

78

5.2 Automatic labeling

Figure 5.7: Detection rates results from each of the network configurations.

as all metrics improved. Nonetheless, the change is more noticeable for f-AnoGAN-64
than for f-AnoGAN-256 where the initial detection rates were higher. The detection
rates from f-AnoGAN-64* were a bit higher than the ones from f-AnoGAN-256*, but
it still required more than a second to process a cell, making it still not applicable for
inspection. In the case of f-AnoGAN-256*, the architecture was not modified so the
processing time was not altered leveraging the benefits of detection rates but remaining
applicable under real inspection time requirements.

5.2 Automatic labeling

In anomaly detection, the model is taught to find everything that is not considered
normal. In a supervised training like the ones presented in Chapter 4 the model is instead
trained with labels to search for specific defective patterns in the data, which usually
yields more precise models. Using the anomaly detection approach as an automatic
labeling method, one may benefit from the precision of supervised learning models while

79

Anomaly detection

Figure 5.8: Pixel level defect detection of additional experiments.

80

5.2 Automatic labeling

avoiding the time-consuming, and not always trivial, pixel-level labeling task and thereby
considerably reducing the effort dedicated to the setup of a new inspection system.

5.2.1 Experiments and results

The hypothesis of using the anomaly model as an annotator was validated in the
following experiment where a network trained using expert generated manual labels and
the mentioned automatic labels were compared. The automatic labels were generated
with the model f-AnoGAN-256. Among the trained models, f-AnoGAN-256 showed
the highest detection rates, short enough processing time for industrial inspection, and
precise pixel-level results. Taking into account that the defect location results in Figure
5.6 were close enough to what human experts annotated, it was decided to choose this
model as the automatic annotator. Some samples of the automatic labeling used for
training are shown side by side with their corresponding manually labeled in Figure 5.9.

For both manual and automatic labeling models, the same U-net employed in Section
4.2 was used. The network configuration was kept as in the previous experiment. The
networks were trained also to minimize the dice loss in Equation (4.2) and using Adam
as the optimization algorithm with a learning rate of 1e−4.

Unlike the experiments with the anomaly model section, in the experiments in the
supervised part, just defective samples were used for training. So the defective samples
were split into train, validation, and test sets following the next distribution: 300 for
training and validation, and the remaining 75 for testing (4 crack images, 48 microcrack
images, and 23 finger interruptions images). In addition, the defect-free samples used in
the evaluation in the unsupervised part experiments were also employed to evaluate the
models in this section.

After training U-net separately with the two versions of the dataset (manual and au-
tomatic), the 75 defective and 375 defect-free samples were employed to compute the
metrics and evaluate the performance of the models. The results are shown in Table
5.4. In addition to the U-net-based models, the model from the previous section (i.e.,
f-AnoGAN-256) was also executed on the same test to validate that the supervised
training with automatic labels improved the detection rate compared with the anomaly
model.

As shown in Table 5.4, both supervised models yielded higher detection rates than the
anomaly detection models without incurring more False Positive cases. If supervised

81

Anomaly detection

Figure 5.9: Manual and automatic labeling for different samples. The automatic labeling
kept the segmentation of the labeled defects, but at the same time introduced some additional
areas. This is especially noticeable in the samples from the first row, where the manual labeling
only considered the defect itself, but the automatic labeling also considered the darker areas
created by the effect of the defect.

Model Recall Precision Specificity
U-net w/ manual labels 80 95 99
U-net w/ auto. labels 93 81 95
f-AnoGAN-256 79 73 73

Table 5.4: Image-level results from U-net trained on manually created labels, U-net trained on
automatically created labels, and also, the results from the anomaly model used for annotation.

models are compared with each other, U-net trained with automatic labels was able
to detect more defective samples (Recall of 93%) than U-net trained on manual labels
(Recall of 80%).

However, using automatic labels resulted in more False Positive cases, making the
Precision and Specificity values decrease from 95 to 81 and 99 to 95, respectively. Note

82

5.2 Automatic labeling

that the increase of False Positives has a larger impact on the Precision because of the
imbalance of defective and defect-free samples in the test set.

As for the segmentation results, some samples are illustrated in Figure 5.10 where Samples
1, 2, 3, and 4 are defective samples with defects contemplated at training and metrics
evaluation, and samples 5 and 6 are defect-free samples. Samples 7 and 8, instead contain
defects that were not considered during training and testing but illustrate the effect of
the automatic labels in the segmentation results.

As can be seen that the defects were more thoroughly marked with U-net trained with
automatic labels than with manual labels. The second and third samples in Figure
5.10 are an example of this. However, impurities in the cells that were not taken into
account during manual labeling were also detected as defects (e.g., black spots under
the crack in the second sample or around the finger in the third sample). This caused
certain defect-free samples with such impurities to be classified as defective cells, which
increased the number of False Positives resulting in an impact on the image-level metrics.
Nevertheless, few defect-free samples present these False Positive cases.

In addition, even when not considered during training and when the metrics were
calculated, the automatic labels enable U-net to segment other kinds of defects in the
seventh sample where both models were able to detect the microcrack, but the break at
the bottom right was only detected by the models trained with automatic labels. The
same happened in the eighth row sample where the bad soldering was not segmented
when using manual labels.

Concerning the annotations, it seems that annotating dark areas around the defects has a
positive effect on the models’ pixel-level results. For example, in the first sample in Figure
5.9, the manual label does not cover the areas around the defect, whereas, with automatic
labeling, these areas are annotated as defective. The experts did not consider these areas
during the labeling as they are not part of the defect, but a consequence of the defect
itself. However, these dark areas will not appear in defect-free cells. Because of that, the
anomaly detection network annotated them as defective areas. When considering these
dark areas as part of the labels, the network trained on automatic labels recognized dark
areas around defects as defective.

Consequently, as shown in the eighth sample in Figure 5.10, even if the class was not
included in the training, the dark area on the right that belongs to a bad soldering defect
was segmented when using automatic labels and not when using manual annotations.
The same happened with the break in the first sample. Moreover, the segmentation of

83

Anomaly detection

Figure 5.10: Results from supervised training models and from the anomaly model used for
annotation for comparison. Label refers to the annotation made by experts, manual refers
to the segmentation results obtained from the supervised segmentation model trained with
manually labeled samples, and automatic refers to the segmentation results obtained from the
supervised segmentation model trained with automatically labeled samples as ground truth.

84

5.3 Concluding remarks

other defects, like the finger interruption in the third sample and the microcrack in the
fourth, have been more accurately segmented. Nonetheless, by annotating dark areas
as defective, certain impurities that were not considered as defects were also segmented.
So, including dark areas as part of the labels was beneficial for pixel-level results and to
detect more defective samples, even if it made some new False Positive cases arise.

5.3 Concluding remarks

In this chapter, it has been shown that the anomaly detection approach provides prac-
titioners with a tool to obtain an inspection model using only defect-free samples as
training data. This feature is key for the development of a PV module inspection system
as it permits companies to have an inspection model from the very beginning stage of a
new production line setup, without waiting for defective data to appear.

In order to apply anomaly detection for industrial inspection, a GAN proposed to detect
and locate anomalies in the medical domain has been adapted. The adaptations have
been two-fold: First, the architecture has been modified such that the images can be
processed in a single step instead of processing them by patches. In this way, less time is
required to process a cell, and therefore the established inspection time mark of less than
a second per cell has been met. And second, the training scheme has also been modified.
This modification has resulted in an improvement in the defect detection capabilities of
the model.

Furthermore, it has been experimentally demonstrated that the results from the anomaly
detection are potential pixel-wise labels that can be used in a supervised training. In the
experiment, the defect localization results obtained from a model trained with expert
generated labels and a model trained with automatically generated labels have been
compared. The comparison has shown that using automatic labels is comparable to
using manual annotations, thus, it is feasible to use anomaly detection as an automatic
annotator which can notoriously reduce the effort needed to prepare an inspection
system.

85

Chapter 6

Model Adaptation

The previous two chapters have described the application of DL for anomaly detection
purposes using unsupervised learning, and for classification and segmentation using
supervised learning. Also, it has been described how the anomaly detection approach
can be used to obtain automatic annotations for a supervised learning which avoids the
need for manual labeling.

With both models, the anomaly model and supervised model, practitioners can build a
robust quality inspection system that can detect defects in the production line, and at
the same time, check for new anomalies in the cells. This setup would work flawlessly
if the production lines will remain unaltered. However, industrial environments can be
very dynamic and present situations where models need to be adapted to some changes.

For example, a customer might come asking to introduce some variations in the produced
cells, like cells made of a different material or that contain a different internal structure.
In this case, the trained model could experience some difficulties handling new case
particularities by evaluating them always as anomalies or maybe as false positives in the
case of the supervised model.

Another new situation could consist in the need for incorporating a new defective pattern
to be detected by the supervised model, but not having access to enough samples of
that particular pattern to retrain the model. For example, while the supervised model
is detecting defects that were part of the training dataset, the anomaly model could

87

Model Adaptation

detect a new specific anomaly pattern on a recurring basis. After some analysis, this
new anomaly type could become relevant and its detection necessary.

For the first situation, one possible solution could consist in repeating the unsupervised
training followed by the supervised training described in the previous chapters to obtain
the anomaly model and supervised model for the new domain. In the second case instead,
a possible solution could be to wait until the anomaly model detects enough instances of
the new anomaly, and at that moment, retrain the supervised model with the new class
as part of the training set. However, these solutions might take some time in order to
adapt everything, which is not always desirable.

The following sections will focus on describing two techniques as alternative solutions
for these cases that will not require much time in their application. On the one hand,
how to take advantage of already trained models as a starting point and thus achieve
inspection models for the new domain in a fast way will be described. On the other hand,
a technique with which it is possible to incorporate new classes into a model using a few
defective samples for that will be described. These techniques will compose the final
stage of the proposed methodology which consists in adapting the models obtained in
the previous stages to changes in production.

6.1 Transfer Learning

When training a neural network, the main objective consists in making the network learn
to extract meaningful representations from the data such that it can successfully perform
the given task. The ideal scenario for such training would contain a big and diverse
training dataset for the network to be able to learn. However, in a real world scenario,
it is not always easy to gather enough data samples for every possible defect or even
enough defective samples limiting in this way such training. In order to overcome such
limitations and still be able to train a neural network when there is a scarcity of training
data samples, there is a technique called Transfer Learning (TL) that takes advantage of
the already acquired knowledge from a trained network as a way of network initialization.

[113] describes how after completing the training, the first layers in the network tend
to focus on extracting simple and general features (e.g., edges, borders...etc) that are
shared across domains, and as you go deeper, the layers start focusing on extracting more
domain specific and complex features (e.g., eyes, noses...etc). TL leverages the general
feature extraction capability from already trained networks by transferring the weights

88

6.1 Transfer Learning

into non-trained networks as a form of network initialization. In this way, the network
can in some way avoid spending the initial training iterations and focus on learning to
extract domain specific features, which will overall accelerate the optimization process.

In [29] they define two ways of performing the Transfer Learning: 1) training the new
classifier (last layers in the network) while keeping transferred layers frozen [119, 74], or
2) performing a fine-tuning of the transferred layers using a low learning rate [2, 20, 109].
The first approach consists in employing the transferred layers as a feature extraction
module and just replacing the trained classifier with a brand new classifier that will be
randomly initialized. Then, the training will only have an effect on the weights in the
added new classifier as the other layers will be kept unaltered. The second approach
instead, consists in using the weights from the trained network as a kind of specialized
initialization such that just a few updates will be required to adapt the network to the
target domain. In order to avoid "overwriting" the transferred learned pattern extraction
capabilities, a very low learning rate is usually employed so the weights only experiment
with small variations. Figure 6.1 shows a simple schema of these two types of Transfer
Learning.

Figure 6.1: Different Transfer Learning schemas.

Moreover, both forms of TL can be sequentially applied. First, transfer the initial layers,
freeze them, and only train the added new classifier, and then, once the classifier is

89

Model Adaptation

trained, unfreeze the initial layers and slightly tweak all the layers with a very low rate
to end adjusting the network to the target domain. It is recommended not to mix both
Transfer Learning schemas at the same time as a randomly initialized classifier can lead
to high error values that will be backpropagated through the network making the network
lose the transferred pattern extraction capabilities.

As stated, both Transfer Learning approaches reduce the need for training data, never-
theless, the fine-tuning approach is a more suitable solution for scenarios where more
training data is available as all layers in the network will be part of the training process
and this will require more data. Instead, in the other approach, just the parameters in
the new classifier will be modified, which will demand a lower amount of data samples.
Based on this, the freezing approach was used for the experiments in this section.

6.1.1 Experiments and results

The experiments in this section have consisted in using different dataset combinations to
explore the applicability of TL in our datasets. Three different experiments have been
conducted in order to test the use of transfer learning methods in this thesis context:
transfer from monocrystalline cells to polycrystalline cells, transfer from polycrystalline
cells to monocrystalline, and a transfer from a model trained on polycrystalline cells with
3 and 4 buses to cells with 5 buses.

The three experiments wanted to show how a model trained on a source domain can be
adapted to work on the target domain using just a few defective data from the target
domain in the adaptation. The experiment was done as follows: first, a base model was
trained using all the defective data available in the source domain. For instance, in the
first experiment where the transfer was from the monocrystalline cells to polycrystalline
cells, the base model was trained on all the data available from the monocrystalline
cells dataset. Then, once the base model was trained, few samples, 20 in this case,
were selected from the target dataset and the transfer was performed. As stated above,
the transfer was done using the layer freezing strategy. Finally, the adapted model
was executed on a test set composed of the samples from the target domain to extract
quantitative metrics as well as some segmentation results.

In all the experiments the transfer operation using the supervised sliding window based
and the U-net models from the supervised training chapter 4 following the layer freezing
strategy is performed. In the case of the sliding window based approach, the convolutional

90

6.1 Transfer Learning

blocks in the network were frozen, and in the case of U-net, the layers that composed
the encoder part were frozen. Moreover, the objective of the experiments consisted
in comparing the metrics obtained for models adapted to the target domain through
Transfer learning against the metrics from models in supervised training chapter 4 that
were directly trained on the target domain. Taking into account this, the samples for the
transfer operation were carefully chosen thus the same test set used in the supervised
chapter 4 experiments could be replicated. Note that in the case of U-net based models,
just defective samples were used both for transfer and training the base model as it
showed that this model had troubles when employing defect-free samples for training.

In the next subsections, the results obtained in each of the experiments performed are
going to be described.

Transfer from Mono to Poly

This first experiment consisted in training the base network on the monocrystalline
dataset in ordinary supervised training and then using it to perform the transfer on
the polycrystalline cells. As the samples from the monocrystalline were not required at
testing, all the available samples were used to train the base network. The quantitative
results from these experiments are shown in Table 6.1.

Recall Precision Specificity
Poly. base slid. Wind. 100 69.5 73
Mono. to Poly. slid. Wind. 83 72 78.8

Poly. base U-net 87.5 82.3 88.4
Mono. to Poly. U-net 86 89 93

Table 6.1: Results from training both approaches, first if the network was trained directly
on the target dataset (i.e. polycrystalline cell images), and then, the same network but using
Transfer Learning (i.e. from monocrystalline cells to polycrystalline cells). Note that the base
results are taken from the supervised chapter 4).

As can be observed, the transfer from monocrystalline cells to polycrystalline cells yielded
similar results to the ones obtained through "ordinary" supervised learning. The network
with Transfer Learning was able to detect fewer defective samples (lower Recall values)
than the completely supervised model by just a small margin. This is more appreciable
in the case of the sliding window based networks where the value of Recall dropped

91

Model Adaptation

from 100% to 83%. The base sliding window based network was able to detect all
defective samples but this was at expense of a greater number of False positive cases
(lower Precision and Specificity) than the same network with the transferred weights.
In other words, as more areas were classified as defective more defective samples were
finally detected correctly, but at the same time, more areas in defect-free samples were
classified as defective i.e., FP cases. With regards to the U-net network, a similar effect
can be appreciated. The base network detected more defective cases, but it incurred
in more False positives cases, whereas in U-net with transferred weights less defective
samples were detected but also a lower number of False positives were obtained. With
respect to the qualitative results, Figure 6.2 shows a couple of examples of defective and
defect-free cell segmentation results.

Figure 6.2 shows how the networks had large FP cases, especially the sliding based
approach that confused all the buses as they were defects. Nonetheless, these results
were expected due to the difference between the monocrystalline and polycrystalline
cells. If a network that has been trained on monocrystalline cells is employed directly
on polycrystalline, it can be anticipated that background noise (i.e., crystal grains) will
confuse the network and yield a large number of FP cases. Nevertheless, after the Transfer
Learning, almost all these False Positive cases were almost completely removed from
the predictions. There were certain cases, some areas from the sliding window based
results that were still classified as defective (e.g., fourth sample). However, these cases
have no major relevance in overall results as they can be easily removed using a proper
threshold taking into account that they present lower accumulated probability values
that the prediction over the real defects.

Transfer from Poly to Mono

In this second experiment, the based models were networks trained with polycrystalline
cells and transfer consisted in adapting them to monocrystalline cells. The quantitative
results from this experiment are presented in Table 6.2.

The results in the table show that there is not much difference between training directly on
the target domain (i.e., monocrystalline cells) or performing a transfer from polycrystalline
cells. The results were not much different in either of the networks, maybe a slight
improvement can be appreciated in the case of sliding window based network results,
and a slight increase of Recall at expense of a decrease in Precision in the case of U-net
network.

92

6.1 Transfer Learning

Figure 6.2: The results of the networks before the transfer (trained just on mono. samples)
and after the transfer. From left to right: a) the EL image of the cell, b) the pixel level manual
label, c) the result of sliding window based network on the poly. cells before the transfer, d)
the result from the same network after the transfer is performed, e) the result of U-net on the
poly. cells before transfer, and f) the result from U-net after the transfer is performed.

Regarding the segmentation results, some examples of defective and defect-free samples
are presented in Figure 6.3.

The results in this experiment were less different than the ones obtained in the previous
section. Even though the networks were not specifically trained on monocrystalline cells,
they did not have as much FP as when the networks were trained on monocrystalline
and tested on polycrystalline. However, as with the quantitative results, these results
were more or less expected. If one takes into account the fact that the base network
was trained on polycrystalline cells where there are both defects and crystal grains in

93

Model Adaptation

Recall Precision Specificity
Mono. base slid. Wind. 86 74 94
Poly. to Mono. slid. Wind. 87 77.6 95

Mono. base U-net 80 95 99
Poly. to Mono. U-net 81 89 98

Table 6.2: Results from training both approaches, first if the network was trained directly on
the target dataset (i.e. monocrystalline cell images), and then, the same network but using
Transfer Learning (i.e. from polycrystalline cells to monocrystalline cells). The base results are
taken from the anomaly detection Chapter 5

the cells, and also that the network must have learned to pay attention only to defects.
Correct segmentation results and FP cases close to zero can be expected to be obtained
as if the same network were run on monocrystalline cells that have no structures but
defects.

The only place that showed to be problematic for the networks was the corners of the
cells. Polycrystalline cells do not have corners like monocrystalline cells. Because of this
difference, before the adaptation, the networks considered these structures as they were
part of a defect since they present a big gradient similar to the one that can be found in
real defects. This is more noticeable in the case of the sliding window based network
results. Nonetheless, this effect disappeared after the transfer was performed for both
cases. Also, it seemed that the transfer improved the segmentation for certain defects
such as the microcrack at the bottom-left of the third cell.

Transfer from Poly with 3 and 4 buses to 5 buses

The last experiment focused on a subtle case of transfer. In this case, the objective was
to adapt a model trained on cells from the polycrystalline dataset with 3 to 4 buses to
cells with 5 buses. As mentioned in Section 2.3, nowadays the solar industry is moving
towards an increase in the number of buses in the cells as it has been proved that in
this way the performance that the panel shows at generating energy improves. This
experiment simulates a situation where a company that has been producing panels with
cells of 3 and 4 buses might want to extend the production to also generate panels with
cells with 5 buses in order to provide the clients with a more advanced class of panels.

94

6.1 Transfer Learning

Figure 6.3: The results of the networks before the transfer (just trained on mono. samples)
and after the transfer is performed. From left to right: a) the EL image of the cell, b) the pixel
level manual label, c) the result of sliding window based network on the mono. cell before the
transfer, d) the result from the same network after the transfer is performed, e) the result of
U-net on the mono. cell before transfer, and f) the result from the same network after the
transfer is performed.

Unlike in the previous experiments, in this case, there were just 7 defective samples
available with 5 buses. Thus, the transfer was performed using only four samples
of the cells with 5 buses, and leaving in this way at least 3 samples for testing. It
was considered that 3 samples are not enough to compute any sort of representative
quantitative evaluation, so it was decided to just report qualitative results exhibited in
Figure 6.4.

As it was anticipated, when executing the network before the transfer the buses were
considered as they were a kind of defective structure. It is interesting to see that the

95

Model Adaptation

Figure 6.4: The results of the networks before the transfer (just trained on poly. samples
with 3 and 4 buses) and after the transfer is performed on cells with 5 buses. From left to right:
a) the EL image of the cell, b) the pixel level manual label, c) the results of sliding window
approach based network on the poly. cell with 5 buses before the transfer, d) the results from
the same network after the transfer is performed, e) the result of U-net on the poly. cell with 5
buses before transfer, and f) the results from U-net after the transfer is performed.

sliding window based network also performed badly on the buses. It was thought that
when using the sliding window, the network could be abstracted from the global structure
and not differentiate a patch coming from either of the cells with 3, 4, or 5 buses. In other
words, by processing the cells by patches, it should not be affected and perform almost
identically in any sort of cells if they were from the same family (i.e., polycrystalline
or monocrystalline). However, the results show that the whole structure has an effect
on the network performance. The differences in bus structure between cells may not be
visible to the naked eye. But at the pixel level, there may be some variations, either at

96

6.2 Few-shot learning

the structure level or at other levels (e.g. illumination) that can affect how the model
acts. In the case of U-net based network instead, the performance was as expected due
to the way the network processes the images. When processing the whole image in one
forward pass, the number of buses in the cell completely changes the global structure
and as a consequence affects how the features are extracted. Nevertheless, after the
transfer, the False positives were removed from the results leaving just defective areas in
the predictions.

Transfer Learning is an interesting method to obtain a model where there are not lots of
samples available for ordinary supervised training. The results in this section have shown
that this method is actually applicable in the solar cell industrial domain in a variety
of data configurations, which means that it really can save resources to the companies.
Nonetheless, it should be taken into account that Transfer Learning might still require a
certain amount of defective samples to be applicable.

6.2 Few-shot learning

In recent years, a new method denominated Few-shot learning has been gaining the
attention of the DL community as it focuses on making neural networks learn to deal
with new classes at testing time in a data scarce regime. Although this section will be
focused on Few-shot learning, in the literature this method can also be found under the
tags of One-shot or Zero-shot learning which in the end seek the same objective but
under more strict data availability.

Few-shot learning has been employed for different well known computer vision problems
like image classification, object detection, or image segmentation. However, as this thesis
has focused on the image segmentation task, just proposals that were designed for this
specific problem will be considered.

The first to apply this method was [85], where they proposed a two-branch FCN (base
branch and auxiliary branch) architecture. While the base branch, an already trained
network, is processing a query image (an image that contains the new class), the auxiliary
branch processes a support set that will serve to extract guidance parameters that will
guide the base network in segmenting the query image. The support set in this case
would be composed of a set of pairs of images and pixel-level annotations, that will
contain other instances of the new class that will be trying to segment. In other words,
if our new class consists of a "cow", the query image will contain a cow for example in a

97

Model Adaptation

Figure 6.5: Schema of two-branch based network for few-shot image segmentation.

meadow, and the support set will contain pairs of images and pixel level annotations
of cows in other locations or positions within the image such as cows in a farm, in the
road...etc. Figure 6.5 illustrates a simple sketch of how this method works.

From that paper on, several works have been published [79, 111, 35, 115, 117] where
they also follow this two-branch based network architecture. Nonetheless, in these works,
they do not contemplate a continuous learning scenario where the network would be
increasingly incorporating the capabilities to segment new classes. The learning process
is limited to guiding the network in segmenting the instances from the new class without
paying attention if the network is forgetting how to segment previously learned classes.
From an industrial application perspective, a continual adaptation of the system would
be a more interesting approach since both, old and new class instances, will be important
to be detected in production. Thus, this section has focused on the incremental learning
scenario where the network needs to incorporate the capability of segmenting new classes
but it still needs to be able to keep segmenting old class instances.

Specifically, the experiments have focused on the recent proposal in [86] as it contemplates
both Few-shot learning and incremental learning scenarios. For this section, the proposal
at [86] which employs the "weight imprinting" technique as a way of incorporating new
classes into the network without any additional training procedure has been explored.
All the experiments have been carried out in the industrial context of solar cell quality
inspection. The experiments have consisted in training a network on the previously used
defect classes (i.e., cracks, microcracks, and finger interruptions), and trying to extend
its capabilities to also be able to work with defect classes that have only a couple of
samples in our data set (i.e., black spots and bad soldering). In addition, the original
network in [86] has also been modified with the goal of improving segmentation results.

98

6.2 Few-shot learning

The work in [86] is deeply rooted in two papers: Proxy-NCA in [72] and the proxies
method applied to few-shot classification in [75]. In the first paper, they proposed a
proxy-NCA loss function as a way of reducing the computation burden, thus, speeding
the time to converge of methods applied in metric learning that use triplets based
loss. Triplets loss aims to minimize the distance between similar points and maximize
distance with dissimilar points using pairs of triplet points (anchor point, a positive
similar point, and a negative dissimilar point). If there are a lot of points in the training
set, the combinations of triplets that can be composed can rapidly escalate making the
optimization problem hard to be solved. In order to reduce the amount of possible
triplets combinations, they proposed to use sets of proxies as the representative point for
every class. Thus, instead of computing the loss for all possible triplet combinations, the
triplets combinations will be reduced to each point, the positive proxy of the point, and
the different negative proxies.

Following this idea, in [75] they established a similarity between the proxy-NCA loss
and the Softmax cross-entropy loss used in neural networks if both point vectors and
proxy vectors are normalized to the same length. They argued that, if both vectors are
normalized to the same length, minimizing the euclidean distance between a point and its
proxy is equivalent to maximizing their cosine similarity. Thus, the euclidean distance in
proxy-NCA loss can be substituted by the cosine similarity, making the loss resemble the
Softmax cross-entropy. Following this similarity, they proved that normalized embeddings
from the neural network can act as weights for a new class in the final fully connected
layer of the network, such that one example will be sufficient to extract embeddings and
perform what they called weight imprinting to the number of classes in the classifier.

However, unlike the classification, in the context of segmentation the embeddings have
not a vector shape but three dimensional shape containing features from different classes.
To adapt the weight imprinting from classification to segmentation, [86] proposed an
architecture that incorporated a Normalized Masked Average Pooling (NMAP) layer
where the output embeddings are pixel-wise masked for the new class with a given support
set that contains samples with instances of the new class and their corresponding labels
and then are averaged and normalized by procedures in Equation 6.1 and Equation 6.2.
In this way, just relevant features for the new class remain in embeddings that will be
used as the proxy for the new class c.

Pc = 1
k

k∑
i=1

1
N

∑
x∈X

F i(x)Y i
c (x), (6.1)

99

Model Adaptation

P̃c = Pc

∥Pc∥2
, (6.2)

where Y i
c is a binary mask for the ith image with the new class c in the support set, F i

is the feature maps for ith image. X is the set of all possible spatial locations and N is
the number of pixels that are labeled as foreground for class c. Moreover, they extract
features at different layers in the network when computing the proxies so information at
several resolutions is taken into account, and thus improve the final segmentation result.
The network architecture is shown in Figure 6.6. The base architecture is VGG-16 [87],
with additional skip connections to extract different resolution embeddings which are
composed of 1x1 convolution layers. The embeddings at these layers are mapped to the
label space to then perform the weight imprinting for the new class.

Figure 6.6: Original network architecture for few-shot segmentation in [86].

In addition, they also considered the continual learning scenario by updating weights
from the learned classes with the information coming from the support set at every
imprinting procedure. When an instance of a learned class is present in the support set
along with the new classes, the embeddings from that instance are also extracted. Then,
at imprinting, the weights from old classes are updated with their corresponding proxies
by Equation 6.3.

100

6.2 Few-shot learning

W̃c = αP̃c + (1 − α)Wc (6.3)

where Pc is the normalized proxy for the class c, Wc are the weights from the previously
learned classed at the 1x1 convolution layers, and α is the updating rate. In this way,
as new samples from the last imprinted classes arise, the features that were not present
when the first imprinting was performed can be incorporated into the network. Thus,
the weight related to the new class can be consolidated.

For this section, first, the architecture in [86] was employed on our dataset, and then
the architecture was modified so it resembled U-Net shape as illustrated in Figure 6.7
aiming to improve the segmentation results. After some first tests, it was seen that the
original architecture yielded poor and coarse segmentation results regarding the shape of
big defects and the number of detected defects. Precise results are key for establishing
the severity of the defect and determining if the cell needs to be completely discarded or
could be repaired to put it back in the panel.

The original U-Net architecture was designed to follow an encoder-decoder shape with
skip connections between the blocks in both parts. These connections were incorporated
to allow the network to use the full potential of the features for the segmentation. In this
experiment, the network was extended by adding more skip connections composed of 1x1
convolutional layers to perform the weight imprinting. Figure 6.7 shows this extension
where the original connections are in gray and the new ones in green and purple.

6.2.1 Experiments and results

Before modifying the network architecture, first, it was experimented with the original
network on our dataset to check if it was applicable and also to establish some base
results that were needed to improve with the modification. The first experiment was
carried out by training the network on the base classes in the training set, i.e., cracks,
finger interruptions, and microcracks, and then, executing the trained network on the
test samples that contained the same defects. The results of this first experiment are
shown in Figure 6.8.

These first results show that the original network (i.e. FCN8) was able to locate almost
all defects in the cells. In the case of the smaller defects such as the finger interruptions
in the third sample in Figure 6.8, the FCN8 network could not segment any of them.
In addition, even though bigger defects were detected, the network output a coarse

101

Model Adaptation

Figure 6.7: The adapted network for few-shot following U-net architecture.

segmentation. After these results, the architecture was substituted with a U-net based
network, and the same training and testing were performed.

As mentioned above, U-net was extended with extra skip connections to allow us to
perform the weight imprinting. The rest of the architecture with respect to the blocks at
the encoder and decoder parts was kept as in [81]. The training was performed using
the cross-entropy loss and RMSprop optimization function. In this case, weighted cross-
entropy was required for training to alleviate the effect of the unbalance between defective
and non-defective pixels, especially for the cases of microcrack and finger interruptions
where the defective pixels suppose less than 0.1% of the pixels in the samples.

As can be seen in Figure 6.8, the segmentation results with U-net were more refined than
with the original network, and also, the lack of detection with respect to the smaller
defects was solved.

After the base training, two sequential imprinting operations were performed: first the
black spots defect class was incorporated, and then, the bad soldering defect class was

102

6.2 Few-shot learning

Figure 6.8: Results on the base defect classes (cracks, microcracks and finger interruptions)
with the original network and with the U-net based architecture

incorporated. Figure 6.9 exhibits two examples that contained instances of these two
defect classes. In the end, a network that can segment 5 classes (3 base + 2 new) was
obtained. For this operation, the samples allocated for imprinting in Table 6.3 were
employed.

Figure 6.9: Bad-soldering (left) and black spots (right) defect classes examples highlighted
with bounding boxes.

103

Model Adaptation

Train Imprin. Test Total
Defect-free - - 375 375
Defective 386

Crack 14 - 4 18
Microcrack 192 - 48 240

Finger inter. 93 - 24 117
Black spots - 4 3 7

Bad Soldering - 2 2 4

Table 6.3: Sample distribution in the dataset

In order to check the impact of every imprinting, after every imprinting operation, the
network was executed on the entire test set. Some samples from these executions are
shown in Figures 6.10 and 6.11. The samples in Figure 6.10 illustrate samples with the
base classes (cracks, microcracks, and finger interruptions), while the samples in Figure
6.11 show some instances of the new classes (i.e. bad soldering on the left cell and black
spots on the right cell).

Figure 6.10 shows that the base network (i.e. U-net trained on base classes) segmented the
base classes with high precision. As expected, the segmentation was more accurate when
the defects were bigger and present higher contrast with respect to the cell background.
This is especially visible in the finger interruptions in the third sample, where the darker
instances are more thoroughly segmented than the lighter ones. With respect to the
samples with the new classes in Figure 6.11, the black spots instances were not segmented
in any of the samples. In the case of the bad soldering class instead, the network very
vaguely detected some defective features in the top-right corner of the cell that belongs
to a bad soldering defect.

After the first imprinting (i.e. black spots class addition), the instances from black spots
were segmented as can be appreciated in the first and second samples in Figure 6.11.
In this case also, the darker the defect, the better the segmentation was. However, the
imprinting affected the segmentation of the base classes as can be seen in samples from
the second row in Figure 6.10. The network segmented some pixels at the borders of
the "older" defects as they belonged to pixels from a black spot class, for example, the
microcrack in the second sample.

After the second imprinting with the bad soldering class, the same effect as the first
imprinting was appreciated. The network was able to segment the bad soldering instances

104

6.2 Few-shot learning

Figure 6.10: Segmentation results on samples with base defect classes before imprinting
and after each imprinting. The colors of the classes are: blue-cracks, light green-microcracks,
red-finger interruptions

as can be observed in the last two samples in Figure 6.11, but at the same time, it
implied the appearance of some false positives around the previous segmentation results.
Nonetheless, as it is clearly visible, the segmentation of the bad soldering was poorly
accomplished.

Overall, the weight imprinting allowed the network to segment new classes using just a
few defective samples from each new classes (2 for bad soldering and 4 for black spots).
Nevertheless, after the imprinting, the network started mistakenly classifying certain
areas around the "older" defects as they were new defect class instances.

In addition to the qualitative results, quantitative metrics were also computed to also
illustrate the effect of the imprinting on the model performance. The results for these
metrics are in Tables 6.4 and 6.5. As with the segmentation results, the results in

105

Model Adaptation

Figure 6.11: Segmentation results on samples with new defect classes before imprinting and
after each imprinting. The colors of the classes are: brown-black spots, and dark green-bad
soldering.

the tables represent the performance with the base network, and after each imprinting
operation.

Recall Precision Specificity

Base network 88 86 99
1st Imprint. 96 81 96
2nd Imprint. 97 77 94

Table 6.4: Results at image level before and after each imprinting.

As can be observed, in general terms the imprinting allowed the network to detect more
defects within the cells, and thus, detect more defective cells making the Recall increase
after each imprinting operation. Also, the imprinting made the network segment some
instances of the base defects that were initially very vaguely segmented, turning some

106

6.2 Few-shot learning

Orig. model
(FCN8)

Base model
(Unet)

Imprint. 1 Imprint. 2

Crack 100% 100% 100% 100%
Microcrack 64% 71% 90% 90%

Finger inter. 65% 88% 90% 90%
Black spots 0% 0% 77% 77%

Bad Soldering 0% 0% 0% 100%

Table 6.5: Percentages of detection of each model per defect class.

False Negative into True Positive cases. If the results are broken down by defect classes
as shown in Table 6.5, the effect of the imprinting is easily appreciable in the case of the
new classes, but also in the case of samples with microcracks. In the case of the latter,
the models went from detecting about 71% of the microcrack instances to around 90% of
the samples.

The improvement in microcracks is given by those instances that are very small and in
some cases resemble black spots. In these cases, previous to the imprinting, the network
classified the pixels corresponding to the defect as background, thus they were considered
as undetected. But after the imprinting, these pixels were classified as black spots and
microcracks. From the defect detection point of view, as the main objective is to highlight
the presence of defects in the cells, the defect instances were considered detected as
reflected in the results. However, from the pixel segmentation point of view, as mentioned
when describing Figure 6.11 the pixel classification got a bit noisy after the imprinting
operations.

In addition, the network started to segment certain areas in defect-free samples as they
were defective (mainly dark areas that resemble black spots). After a manual analysis of
these cases, it was found that some of them could be classified as defective as they really
contained these black spots, in others instead, they were just False Positive cases. In
total from the 375 defect-free samples, there were 15 samples that could be considered
as defective based on the presence of black spots. Taking this into account, these 15
cases were put aside and the remaining 360 defect-free samples were employed for the
metrics computation. As mentioned, the imprinting operation makes the model start
to segment certain areas within the defect-free samples as they were defective areas.
This translates to more False Positive cases making the Specificity as well as Precision
decrease as reflected in Table 6.4 and Table 6.5.

107

Model Adaptation

6.3 Concluding remarks

In this chapter, two alternatives with which the models can be adapted to new scenarios
in the production line using few defective samples have been described. These techniques
can be included in what could be denominated as the adaptation stage, which would
be the third and last phase of the proposed methodology. In this way, the methodology
would consist of three phases in which inspection models would be obtained and improved
to adapt them to the production line.

The techniques that were explored were two: Transfer learning, where the models can be
adapted to different data domains using the weights from trained models as a kind of
specialized initialization. And Few-shot incremental learning, where new defect classes
can be sequentially incorporated into a model using just a few representative samples
from those new classes.

In order to check the applicability of the techniques as model adaptation techniques in
the methodology, several experiments have been carried out in the context of quality
inspection of solar cells.

In the case of transfer learning, three experiments have been conducted where models
trained on one type of solar cells have been adapted such that they could work on
other types of cells. The first experiment focused on adapting models from working on
monocrystalline cells to working on polycrystalline cells. In the second experiment instead,
the objective was the opposite adaptation, i.e. from polycrystalline to monocrystalline.
And in the third experiment, the adaptation consisted in adjusting models trained on
polycrystalline cells with 3 and 4 buses to be applicable on cells with 5 buses. The
results from the experiments have shown that Transfer Learning can be a tool to take
advantage of already trained models to quickly obtain models for different production
lines. With few defective samples, it is straightforward to adapt inspection models from
other production lines to new lines, and thus, speed up the commissioning process.

In the case of Few-shot incremental learning, a base network was trained to detect three
types of defects, then two additional types of defects have been incorporated achieving
a model capable of detecting 5 classes of defects. The results from the experiments
have shown that the few-shot incremental learning technique has the potential as a
model adaptation tool. It has been shown that it can be employed to incorporate new
defects into the models and keep them updated across the life cycle of the production
line. However, it has also been seen that each time a new defect has been incorporated,

108

6.3 Concluding remarks

the results at the pixel level have turned noisier, which should be improved in future
iterations of the work with this technique.

109

Chapter 7

Methodology deployment

7.1 Introduction

The previous three chapters have introduced several DL based techniques to build an
industrial inspection system. Each technique has focused on a different scenario that a
production line will commonly face during its life cycle. The anomaly detection based
approach, described in Chapter 5 focuses on the commissioning of a new production
line where few defective samples are usually available for a proper supervised training.
Because of that, the use of defect-free samples is proposed in order to obtain an initial
inspection model. Then, in Chapter 4, supervised learning techniques have been described
which are thought to be used in a more advanced stage of the production line where
defective samples will be more abundant. And lastly, model adaptation techniques are
described where the objective is to try to adjust already trained models to changes that
may occur in the production line, like the need for detection of new defects or the need
to handle slightly different cells.

Each technique is defined to solve different problems in production, however, the ap-
proaches can be understood as different building blocks that together can define a
methodology to build an inspection system as illustrated in Figure 7.1. Each block tack-
les specific circumstances and can be applied independently from the others, nonetheless,
the output from one block can be considered as the input for the next block. In this
way, a methodology can be outlined where the techniques are applied in a sequential

111

Methodology deployment

manner from the beginning of a production line to then smoothly, adapt the models as
the production line evolves.

Figure 7.1: Diagram on how could be applied the proposed methodology. Note that this
schema is a simplification of the schema in Figure 1.3.

This chapter is going to focus on describing how the different building blocks can be used
within a methodology applicable to many quality inspection industrial cases. Also, an
experiment will be described with which the feasibility of its application in the context
of industrial solar panel production will be proved.

7.2 Methodology outline

Before starting with the description, it should be remarked that even though the steps
in the methodology are thought to be sequentially applied, is by no means the only
way to do it. The premise from which the methodology was designed consists in a
scenario where there is neither an already trained model nor defective samples available
to start from. However, this might not always be the case, sometimes defective samples
or trained models might be already available from the very beginning of the process.
Apart from that, the methods that were chosen are not the only options available in
the literature. The practitioners have access to a vast amount of network architectures,
modules, approaches... in the literature to choose from to reach the same point described

112

7.2 Methodology outline

in the preceding sections. In this sense, the methodology described just outlines the
steps that were found interesting to follow to build an inspection system. Therefore,
practitioners can safely skip stages and employ different techniques if they find them
more convenient or match better their use of case.

Nonetheless, the description below consists in a summary of how the stages in the
methodology were thought to be applied in order to build a solar panel inspection system
from scratch.

Initial stage - anomaly detection: As stated above, at the beginning of the deploy-
ment of a new production line there is commonly a scarcity of pre-trained models or
defective data samples that can be leveraged to build an inspection system. However, in
these cases, there is usually plenty of defect-free data samples to access. Taking into ac-
count such scenario, it would be interesting to take advantage of these defect-free samples
and try to build an initial inspection model using the anomaly detection approach.

In Chapter 5, the architecture called f-AnoGAN was described as one of the possible
network architectures that can be used to build this initial anomaly detection model.
The training of this network aims to make the network learn the probability distribution
of defect-free samples, such that, the network will only be able to encode and reconstruct
those samples that closely follow the defect-free distribution. This reconstruction based
anomaly model can then be used to process new upcoming data and detect anomalous
samples as well as locate anomalous areas within the samples. Moreover, the anomaly
location feature can be exploited and turn the anomaly model into an automatic annotator
as can be seen in Figure 7.2, and thus, used it to build an annotated defective dataset
with the upcoming defective samples without any major human intervention. In this way,
the first stage of the methodology can provide the practitioners with an inspection model
to start inspecting cells in production from the very beginning phase of the production
line life cycle and also automate the data labeling process that will come in handy in the
subsequent methodology stages.

Second stage - supervised learning: Once the anomaly detection model is deployed,
it will start separating samples into anomalous and no anomalous classes, as well as
identifying anomalous areas within the samples. After a while, the production line will
have produced enough defective cells making it possible to build a dataset containing
enough representative defective samples for an adequate supervised training. As shown

113

Methodology deployment

Figure 7.2: Basic diagram on how the automatic labels are obtained.

in Chapter 5, this procedure not only outputs a model that improves the results from
the anomaly model, but also can reach a similar outcome as if the model was trained on
laborious manual labels. However, the training of the model using this procedure can be
greatly automated and can be used to avoid the time-consuming data annotation task.

The idea at this stage is to take advantage of the annotation capabilities of the anomaly
model and employ it to automatically generated annotations to train a supervised model
to reach higher rates of accuracy. In this way, the initial two stages of the methodology
can be connected and a smooth transition from the first stage to the second can be
defined. This procedure will not require major human intervention. The only effort that
the operator will need to do is to review the automatically generated labels and refine
them if necessary to reach the most accurate supervised model possible.

In Chapter 4, the reader was provided with two possible alternatives for conducting the
supervised training stage. One technique followed the sliding window processing schema
where the images were processed by patches using a very simple CNN architecture.
Instead, the second technique focused on directly outputting a dense prediction after
one forward pass of the network using a Fully Convolutional Network architecture. As
mentioned previously, these options are not the only ones available in the literature
that can fulfill the purpose of the second stage in the methodology. However, in order
to take advantage of the pixel level labels coming from the anomaly model, it will be
appropriate to limit to those approaches that somehow work in the same way as the

114

7.2 Methodology outline

Figure 7.3: Results example from supervised and anomaly detection models. The supervised
model is able to keep the segmentation results obtained from the anomaly model regarding
the defects, but at the same time reduce the number of false positives related to noisy or dirty
areas in the cells.

explored architectures as pixel level predictions can improve the interpretability of the
results.

Third stage - model adaptation: Finally, after the anomaly model and supervised
model are trained and deployed, they will be employed to both accurately inspect the
production line and detect new anomalies that will appear from time to time. As the
production continues, it could happen that the operator starts seeing that the anomaly
model is pointing out new types of defects in the cells, maybe because of a new material
that has been lately incorporated into the product, or maybe because of some parameters
or configuration in the production has been changed. It might also happen that the
manufacturer realizes that detecting the new feature in the production could help to
improve the overall product quality.

In this case, the adaptation techniques explored in Chapter 6 (i.e., Transfer Learning or
Few-shot learning) focus on adapting the supervised model to these new features. Note
that in the case of selecting the few-shot learning, the network architecture should follow
the architecture specified in the model adaptation Chapter 6. Otherwise, the original

115

Methodology deployment

U-net architecture will lack a mechanism to perform the weight imprinting as specified
in the model adaptation Chapter 6. Also, in the experiment carried out, the defects
were required to be grouped in classes in order to perform a multiclass segmentation to
then add new classes. The anomaly detection does not provide an anomaly classification
output but a binary classification (defect-free sample vs anomalous sample). In order to
perform that multiclass segmentation, this gap should be filled by manually clustering
the anomalies, for example, by size, location, or other kinds of features.

7.3 Experiments and Results

In order to show how the proposed methodology would work, an experiment that simulates
the first two stages in the methodology (i.e., anomaly detection and supervised learning)
was performed. The simulation consists in a scenario where there is neither a trained
model nor defective samples. Therefore, the anomaly detection approach will be the
initial approach to be used to then use these anomalies as automatic labels to train a
supervised model and reach an improved inspection model. This experiment was thought
of as a way to show the effectiveness of the proposed methodology by identifying how
many defective samples could be detected compared to a supervised model trained on
manually annotated data samples. For such a purpose, the unlabeled dataset composed
of 700 monocrystalline solar cell panels described in Section 2.4.4 was employed.

First, following the methodology, the just defect-free cells were selected from the first
panels. For this step, the f-AnoGAN with the included modifications was employed
as described in Chapter 5. Regarding the training samples, 750 defect-free cells were
employed as was done during the experiments in Chapter 5, which corresponds to about
12 panels. After that, the anomaly detection model was executed on all the cells in the
dataset to automatically detect and annotate the anomalous samples among all the cells.

Once the cells were separated as defective and non-defective and annotated at the pixel
level, four different supervised models using different amounts of defective cells were
trained. In this case, the same configuration of the U-net network described in Chapter
4 was employed as the network architecture for all the experiments. The only variation
between the models consisted in the number of samples in the training dataset.

The first model was trained with the samples from the first 20 panels with defective
cells (the first 20 panels with defective samples are within the first 35 produced panels).
From the first 1200 cells (20 defective panels × 60 cells) the defective samples that

116

7.3 Experiments and Results

were detected were 69, from where 6 contained a crack, 12 microcracks, and 67 finger
interruptions. Note that the numbers do not sum up to the total. This is because
almost all the defective samples, the ones with cracks and microcracks also included
finger interruptions, but the inverse scenario does not hold. This must be clarified as
it will be repeated in the following experiments as well. Then, the second model was
trained with the same 69 defective samples used in the first experiment plus the defective
samples from the following 20 panels with defective samples in the panel sequence (the
total sequence was 78 panels). In the first 40 panels, 157 defective cells were detected,
from which 8 samples contained cracks, 28 contained microcracks, and 141 contained
finger interruptions. Then the following two experiments were done with the first 80
panels and first 100 panels with defective samples which were extracted from the first
148 panels and first 190 panels. The defective samples for the latter experiments were
298 (17 cracks, 75 microcracks, and 256 finger interruptions) and 392 (21 cracks, 102
microcracks, and 339 finger interruptions), respectively.

Once the models were trained, they were executed over the remaining sequence of panels.
The chart in Figure 7.4 illustrates the accumulated defective cells detected by each model
across the sequence of the panels. To count a sample as defective, the prediction by the
models must have over 40 pixels. This threshold was set taking into account that the
smallest predictions in the results were regarding small finger interruptions defects that
had about this size and from our perspective were good enough to be considered as good
detection. From now on, for the sake of making the reading easier, the models obtained
from these experiments will be referred to as panel20, panel40, panel80, and panel100.

Note that when plotting the results, the initial values in the experiments with automatic
labels were set the same as the ones from the model trained on manual labels. In other
words, in the case of panel20, the first 35 results (35 panels) were set equal to the first
35 results from the model trained on the manual labels. This was repeated with the
other models too. This was done because in each experiment the initial panels were
used as training samples. Any model had either too many false positive cases or too
many false negative cases. The only model that showed a slightly different amount of
detected defective samples was the model panel100, which showed lower detection rate
capabilities.

As can be seen, this latter model seems to detect many more defective samples than the
other models, however, within these samples a great chunk could be considered as false
positive cases.

117

Methodology deployment

Figure 7.4: Results from the model trained with manual labels and models trained with
automatically generated labels.

In total, the supervised model trained on manual labels was able to detect 12,234 defective
cells out of 42,000 processed samples. In contrast, the experiment with automatic labeling
detected 13025 in the case of model panel20 (6% more), 12,814 in the case of the model
panel40 (4% more), 12,049 in the case of the model panel80 (2% less), and 10,630 in
the case of the model panel100 (12% less). Despite the differences, the detection of
severe defects like cracks and major microcracks was not much different among models.
All of them (including the model panel10) were able to detect all the samples with
cracks (77 samples), and the majority of the samples with medium-big size microcracks
(405 samples) like the ones illustrated in Figure 7.5. In the latter defect class case, the
detection rates were 96.3% in the case of model panel20, 97% for model panel40, 96.8%
for model panel80, and 90% for model panel100. The differences in the results that can
be appreciated in the chart come from the detection of finger interruptions that consisted
in the defect class with a greater amount of instances (almost 90% of the defective cells
had some sort of finger interruptions), and from some samples with peculiarities that
were considered as defective by the models. In this sense, one of the conclusions that
can be drawn from the results is that does not matter the number of defective samples
used for training. The models with few defective samples can detect the most severe and
crucial defective samples as well as the models trained with more samples.

118

7.3 Experiments and Results

Figure 7.5: Examples of the results of the different models on a crack and a micro defect
classes.

Regarding less severe defective cells, almost every defective sample in the dataset that
was used for this section contains some sort of finger interruption defect class instance.
Some of these samples contained severe types of finger interruptions like the one exhibited
in the first row in Figure 7.6. In this case, none of the models had any problem detecting
them as they presented a big gradient with respect to the background. Nonetheless, some
samples contained a very light type of finger interruption cases like the one illustrated in
the second row in Figure 7.6. In this latter case, the behavior of the models was not that
homogeneous. This is one of the primary sources of the differences shown in the chart.

Figure 7.6: Examples of the results of the different models on a severe and light finger
interruption defect class.

119

Methodology deployment

The other reason for the differences in the results are the samples like the one exhibited
in Figure 7.7 with kind of dirty looking areas in the cells. Some cells present dark areas
around the edges may be because some dirt interfered during the EL image capturing
or because there was a problem when capturing the images. These areas have been
sometimes detected as defective, and thus, have increased the overall amount of defective
samples detected.

Figure 7.7: Example of the results of the different models on a sample with noisy area.

It is believed that one factor that might have affected the results could be the balance of
defect classes in the training set, and correlated to that, the number of defective pixels
over the background pixels. In the training of model panel20, 6 samples with cracks out
of a total of 69 samples were employed. Although the cracks can be considered relatively
big compared with the size of the cell, the number of defective pixels compared to the
overall number of pixels in the cell is not that much. This can challenge the model
during its training. This is more accentuated when contemplating the microcrack and
finger interruption samples where the difference is even greater. As new panels have been
considered as part of the training process, more microcracks and finger interruptions
have been included and not so many cracks. I believe that increasing the unbalance
between defective and background pixels has had an impact on the results.

7.4 Concluding remarks

This chapter has outlined how the techniques described in the previous chapters can
be understood as independent building blocks that when put together, they define a
methodology that can serve to build an inspection system. Each block tackles a different
scenario that production lines face during each life cycle making the most out of the
available resources at each time. Nonetheless, as illustrated in Figure 1.3, there are links
between the blocks that show how the output from one block can constitute the input
to another block. In this chapter how these links could be followed and sequentially

120

7.4 Concluding remarks

employ the techniques in each block to obtain inspection models and refine them has
been explained. In addition to describing the methodology, an experiment has also been
carried out to show its applicability in an industrial case of quality inspection and to
show what has been obtained in the process.

121

Chapter 8

Conclusion and future

works

This chapter contains the final remarks about the thesis and also outlines some of the
possible future work lines that could be followed based on the limitations that were
during the thesis.

8.1 Conclusions

This document can be concluded by underlining that this thesis has described a three
stage based methodology that provides industrial practitioners with several techniques
that can serve as guidance to develop a DL based inspection system. The different
techniques focus on different stages that a production line can go through during its life
cycle so the practitioner can choose which technique can use in each case. All the works
that have been reported here have been focused on the solar panel production scenario,
but it is believed that should be extendable to other domains.

Before starting with the experiments, a literature review was carried out to identify the
proposals made in the field of quality inspection of solar cells. During the review, the
approaches were grouped into three categories based on the amount of human intervention
the techniques required for their application. From the three categories, the thesis focused

123

Conclusion and future works

on DL based methods as they present higher levels of flexibility than more traditional
approaches as stated in the state of the art chapter.

In Chapter 4, two supervised learning based techniques that worked fine with few
annotated data samples and also provide segmentation results for pointing out defective
regions are described. The first technique consisted in a Convolutional neural network
designed for classification which is mixed with the well known sliding window processing
scheme. By mixing these two concepts, the network can yield defect heatmap like results
that serve as defect location proposals for inspection. This approach was able to detect
most of the defective samples in the cells, but being subject to a somewhat lengthy
processing may face difficulties from the perspective of its actual application. On the
other hand, a Fully convolutional neural network approach is explored which allowed us
to process the entire image at once. This procedure notoriously decreased the processing
time and still provided us with a segmentation of the results.

The supervised learning approaches are accurate techniques as long as defective labeled
data samples are available for training. This requirement can not always be ensured,
and even less in a scenario like the industrial quality inspection. In order to overcome
such limitations, in the following chapter 5 the anomaly detection approach is explored.
In this approach, the training set is not composed of defective data samples but of
defect-free samples which are usually more accessible in industrial setups. In this way,
practitioners can avoid waiting to have defective data samples for training as they
would have to do with the supervised approach. For this second approach, a Generative
Adversarial Network was employed, more specifically f-AnoGAN network. In addition,
some modifications were included in the network which resulted in defect detection rate
improvement compared with the original network proposal. The motivation behind this
network consists in training it to learn the probabilistic distribution of the normal data
(i.e. defect-free samples) through the data encoding and reconstruction training scheme.
This scheme will force the network to only be able to reconstruct defect-free data no
matter the input data, which will allow us to detect defective cases as the difference
between the input and reconstruction will be bigger than in the case of defect-free cases.

Apart from its application as a defect detection and location model, its application as an
automatic annotation generator for supervised learning is also explored. The feasibility
of such application was tested by comparing the results between a model trained on
a manually labeled dataset and the same model but trained on labels automatically
generated by the anomaly model. The experiment showed us that the results are similar
to each other, and in both cases, more precise than the anomaly model. Thus, it could be

124

8.1 Conclusions

considered as a feasible approach to improve the anomaly model accuracy while avoiding
the usual manual labeling task.

Then, in chapter 6, different alternatives for model adaptation are explored. Once the
inspection models are deployed in production, they may encounter cases for which they
have not been trained and should be adapted to cope with. In order to adjust the models
to these kinds of situations two techniques are described. On the one hand, the Transfer
learning technique was tested. This technique is a well known technique that has already
become the way to go when trying to train neural networks and there are not many data
samples for it. The testing of this Transfer learning consisted in employing the technique
in three different scenarios where models trained on one type of cell were adapted such
they could work on another type of cell. On the other hand, a more recent technique
that lately has been gaining track called Few-shot learning was explored. This technique
focuses on trying to increment the number of classes that a trained model can work with
once it has been trained. To test this technique, an experiment was conducted where
an initial base model was first obtained, and then the base model was adjusted such
that it could work with additional classes. The initial base model was trained to work
on three different defect classes, and then, the sequentially two additional defect classes
were incorporated such that a final model that could work with five defect classes was
obtained. As for the model, the backbone structure of the network from the original work
was adjusted resulting in an improvement in defect detection with respect to certain
small defect classes.

Lastly, a final experiment was carried out where the scenario of a company that wants to
start with a new production line and does not have either a previous model or defective
samples for a supervised training was emulated. Thus, how the proposed methodology
could be applied and what kind of results could be obtained on a dataset composed of
700 monocrystalline cell panels is described. The emulation started with the anomaly
detection approach and then turned to the supervised approach taking advantage of the
results from the anomaly model. In the supervised training, a comparison between the
results using a model trained on manual labels and the results from several models using
different amounts of defective cells extracted from different amounts of sequential panels
is performed.

This thesis primarily focused on DL methods to define methodology mainly motivated
by the flexibility these methods provide in dynamic industrial scenarios compared to the
more traditional methods. Nonetheless, traditional methods are still very valuable when
designing inspection systems. It is thought that both DL and traditional techniques

125

Conclusion and future works

should be part of the brainstorming process when designing a robust inspection system.
This should be emphasized to avoid conveying the idea that DL techniques are always
the way to go and that more traditional techniques should always be discarded.

In addition, among the different neural network architectures available in the literature,
just the ones that were found suitable for interpretable defect detection under a data
scarce industrial scenario were selected. Nonetheless, by digging a little into the field of
DL, one can easily realize how many variants of neural networks exist and can be used
for the same purpose. The objective of this thesis was to outline a methodology that
practitioners could use when designing the inspection system. In this sense, practitioners
could, and should, also explore other architectures in order to pick the optimal for each
use case.

Finally, it should be also remarked that even though not mentioned in its corresponding
section across the document, some of the techniques described have been already incor-
porated or are in an advanced phase of being incorporated into real industrial quality
inspection solutions. This might not be a great contribution, but the point of seeing that
the techniques explored in the thesis have real industrial applicability is another point
that is believed that should be underlined.

8.2 Suggestions for further research

During the development and evaluation of the different methods, several limitations and
improvement areas were identified. In the following, some of the ideas that are believed
that should be addressed as the following steps of the works in this thesis are going to
be enumerated:

Evaluation metric: the main objective of the quality inspection is to detect defective
samples among all samples that are being produced. If this is done through images,
it can be translated as image classification. In this thesis, apart from focusing on the
classification task, the methods employed have also been focused on image segmentation
to improve the interpretability of the results. In the case of evaluating classification,
there has not been any problem. In our case, an arbitrary threshold was taken with
respect to the number of defective pixels detected in the samples to decide whether the
samples should be considered defective or non-defective. Once this is done, the objective
evaluation of the models is pretty straightforward to perform using the already available

126

8.2 Suggestions for further research

Figure 8.1: Three different prediction cases where the PRO metric will output a perfect score.

metrics. The criteria to decide if a cell is defective or not can be done in this arbitrary
way, or also by training the network to output this assessment directly.

In the case of segmentation, as perfect segmentation results were not sought but just
reasonable defect segmentation, a qualitative assessment was thought to be sufficient to
describe results. However, a qualitative evaluation is not always enough and a quantitative
assessment should be pursued. In image segmentation related problems, there are different
available metrics to numerically analyze the results. For example, in the literature, the
Intersection Over Union (IoU) is quite an extended metric to provide an evaluation of
the results. There are also other region-based and contour-bases metrics like Trimap[58],
Hausdorff distance [30], per-region overlap (PRO) [13], Saturated Per-Region Overlap
(sPRO) [14], or the ones in [31, 39] that go a step further and consider the predictions as
blobs (i.e., same class groups of pixels) to try to assess whether the object in the ground
truth can be considered detected or not. These latter, [31, 39], are for overall image score
using boundaries.

In the case of IoU, it was employed as an evaluation metric, but in our opinion is quite
severe at penalizing slightly over-segmented areas. In our case, the defects in the cells
are very narrow structures, thus a slightly over-segmented prediction, even following
the structure of the defect and considered good quality by human operators, can yield
very low evaluation results using these metrics. In the case of the other metrics, they
mainly contemplate 1-vs-1, prediction vs ground truth blob scenario. In some of the
predictions obtained in this thesis, the scenarios that were found were more like N-1
prediction vs ground truth cases. Instead of a unique prediction, this can be composed
of multiple blobs that resembled the real defect but that are not connected to each other.
In this case, it was not found how to proceed specifically with the analysis. It is not
so straightforward to attribute a predicted region to a True-positive or False-positive
classification. From a human operator’s point of view, the analysis would be easier to do
like the overall shape of these groups of blobs would follow the real defect shape.

127

Conclusion and future works

In [8], a custom metric to evaluate individual ground truth regions that was very similar
to the PRO [13] and sPRO [14] metric was tested. [13] evaluates the prediction by
computing the average of the overlap between the regions in the ground truth and the
prediction. In other words, they evaluate whether the ground truth regions are overlapped
with the prediction and compute the average of all the overlapping values. However, do
not consider the over-segmentation cases, i.e., the case where the prediction does not
only overlap the area of the defect but exceeds it considerably as represented in the third
image in Figure 8.1. If a prediction consists of the entire area in the evaluated samples
as it is defective, the PRO metric will still output a perfect score since the ground truth
area is completely covered by the prediction. It is believed that the region coverage is
a good way of evaluating the detection, but it has to also take into account that the
prediction does not take too much of such area. If not, very bad predictions like the
excessive overlapping case can go unnoticed. In our proposal, these excessive overlapping
cases were taken into account but the results were not satisfactory enough. It was hard to
equally or similarly evaluate those predictions that resemble almost perfectly the defect
shape and those where the overlap rate was a bit higher even though the prediction
shape was fine.

Apart from that, in our case and in the case PRO metric is still difficult to attribute the
predictions to a True-positive or False-positive classification. For example, if the coverage
is not good enough, the regions that partially overlap the ground truth region should be
evaluated as one FP or each prediction region should be considered as independent FP
cases?

Taking this into account, one of the future works identified in the thesis consists in
designing an analytical and systematic way of evaluating the segmentation results that
somehow will resemble how humans will assess if the segmentation blobs should be
considered as good detection or not. A more objective way of evaluating the objective,
but at the same encode human perspective, will allow us to numerically compare models’
performance.

In the case of not being able to find such a metric, based on the experience during this
thesis, it would be more interesting to stick with the bounding box based object detection
concept as the way to go for defect detection, and add a segmentation layer over to
improve the results interpretability. The bounding box offers an easier way of objectively
analyzing the results using the IoU metric against the ground truth bounding box as
well as the Non-maxima suppression technique to stick with one prediction instead of a
bunch of blobs.

128

8.2 Suggestions for further research

Search for trends in production: The results from the inspection systems can reveal
more information about the production than just the status of the produced parts. By
storing and analyzing the results from the models, it could be possible to detect and
forecast trends in production, or also get more information about the status of the steps
prior to the inspection.

For example, in the context of solar panel inspection, the inspection system may start
to detect defects repeatedly in one of the cells on the edge of the panels. This can be
indicative of something that is not working well in production. by evaluating the results
holistically (at the panel level), it might be possible to go back in the process and search
for the source (or sources) of failure that has caused the defects to appear. Also, by
storing historical information about the quality control results, it might be possible
to identify the moment or circumstances that led the production line to produce the
defective cells. In this way, the occurrence of defective cells could forecast and avoid
them.

More configurations: As stated in the previous section, a selection of DL methods
that complied with the purposes of defect segmentation as well as worked with a few
defective data samples was performed. This selection is by no means the only possible
choice of methods that could be made. The main idea of the thesis was to outline a
methodology that industrial practitioners could follow to design an inspection system
based on DL methods. Regarding this aspect, other kinds of network architectures (other
base architectures, additional modules..), different training strategies, a mixture between
DL methods and more traditional approaches, different losses, and an endless list of
possibilities could be explored to find the best solution for every specific case. Some of
the possible ideas to implement over the architectures in this thesis could consist in:

• Adding attention modules to the network which seem to improve the original baseline
network results. Specially, if they can help with small defects like microcracks or
finger interruptions.

• Adding a classification branch to the networks (mainly U-net) such that, in addition
to the segmentation output a classification output will also come from the network.
In this way, it will avoid the need of defining an arbitrary rule to decide whether
the processed piece is defective or not.

129

Bibliography

[1] Akram MW, Li G, Jin Y, Chen X, Zhu C, Zhao X, Khaliq A, Faheem M, Ahmad
A (2019) Cnn based automatic detection of photovoltaic cell defects in electrolumi-
nescence images. Energy p 116319

[2] Akram MW, Li G, Jin Y, Chen X, Zhu C, Ahmad A (2020) Automatic detec-
tion of photovoltaic module defects in infrared images with isolated and develop-
model transfer deep learning. Solar Energy 198:175 – 186, DOI https://doi.org/10.
1016/j.solener.2020.01.055, URL http://www.sciencedirect.com/science/article/pii/
S0038092X20300621

[3] Anwar SA, Abdullah MZ (2014) Micro-crack detection of multicrystalline solar
cells featuring an improved anisotropic diffusion filter and image segmentation
technique. EURASIP Journal on Image and Video Processing 2014(1):15

[4] Arjovsky M, Bottou L (2017) Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:170104862

[5] Arjovsky M, Chintala S, Bottou L (2017) Wasserstein gan. arXiv preprint
arXiv:170107875

[6] Baier S (2012) Lumenistics - what is full spectrum lighting?
http://lumenistics.com/what-is-full-spectrum-lighting/

[7] Balzategui J, Eciolaza L (2022) Few-shot incremental learning in the context of
solar cell quality inspection. arXiv preprint arXiv:220700693

131

http://www.sciencedirect.com/science/article/pii/S0038092X20300621
http://www.sciencedirect.com/science/article/pii/S0038092X20300621

Bibliography

[8] Balzategui J, Eciolaza L, Arana-Arexolaleiba N, Altube J, Aguerre J, Legarda-
Ereño I, Apraiz A (2019) Semi-automatic quality inspection of solar cell based
on convolutional neural networks. In: 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, pp
529–535, DOI 10.1109/ETFA.2019.8869359

[9] Balzategui J, Eciolaza L, Arana-Arexolaleiba N (2020) Defect detection on polycrys-
talline solar cells using electroluminescence and fully convolutional neural networks.
In: 2020 IEEE/SICE International Symposium on System Integration (SII), IEEE,
Honolulu, HI, USA, pp 949–953, DOI 10.1109/SII46433.2020.9026211

[10] Balzategui J, Eciolaza L, Maestro-Watson D (2021) Anomaly detection and au-
tomatic labeling for solar cell quality inspection based on generative adversarial
network. Sensors 21(13), DOI 10.3390/s21134361, URL https://www.mdpi.com/
1424-8220/21/13/4361

[11] Bartler A, Mauch L, Yang B, Reuter M, Stoicescu L (2018) Automated detection
of solar cell defects with deep learning. In: 26th European Signal Processing
Conference, EUSIPCO 2018, Roma, Italy, September 3-7, 2018, IEEE, pp 2035–
2039, DOI 10.23919/EUSIPCO.2018.8553025

[12] Baur C, Wiestler B, Albarqouni S, Navab N (2018) Deep autoencoding models for
unsupervised anomaly segmentation in brain mr images. In: International MICCAI
Brainlesion Workshop, Springer, pp 161–169

[13] Bergmann P, Batzner K, Fauser M, Sattlegger D, Steger C (2021) The mvtec
anomaly detection dataset: A comprehensive real-world dataset for unsupervised
anomaly detection. International Journal of Computer Vision pp 1–22

[14] Bergmann P, Batzner K, Fauser M, Sattlegger D, Steger C (2022) Beyond dents and
scratches: Logical constraints in unsupervised anomaly detection and localization.
Int J Comput Vis 130(4):947–969, DOI 10.1007/s11263-022-01578-9

[15] Bin L, Xianghao H, Shuai F (2011) Automatic inspection of surface crack in solar
cell images. In: 2011 Chinese Control and Decision Conference (CCDC), IEEE, pp
993–998

[16] Cauchy A, et al. (1847) Méthode générale pour la résolution des systemes
d’équations simultanées. Comp Rend Sci Paris 25(1847):536–538

132

https://www.mdpi.com/1424-8220/21/13/4361
https://www.mdpi.com/1424-8220/21/13/4361

Bibliography

[17] Centre/BNEF FSU (2019) global trends in renewable energy. URL https://www.
fs-unep-centre.org/global-trends-in-renewable-energy-investment-2019/

[18] Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: A survey. ACM
computing surveys (CSUR) 41(3):1–58

[19] Chawla R, Singal P, Garg AK (2018) A mamdani fuzzy logic system to enhance
solar cell micro-cracks image processing. 3D Research 9(3):34

[20] Chen A, Zhou T, Icke I, Parimal S, Dogdas B, Forbes J, Sampath S, Bagchi
A, Chin C (2017) Transfer learning for the fully automatic segmentation of left
ventricle myocardium in porcine cardiac cine MR images. In: Pop M, Sermesant M,
Jodoin P, Lalande A, Zhuang X, Yang G, Young AA, Bernard O (eds) Statistical
Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges
- 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI
2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers,
Springer, Lecture Notes in Computer Science, vol 10663, pp 21–31, DOI 10.1007/
978-3-319-75541-0_3, URL https://doi.org/10.1007/978-3-319-75541-0_3

[21] Chen H, Pang Y, Hu Q, Liu K (2018) Solar cell surface defect inspection based on
multispectral convolutional neural network. Journal of Intelligent Manufacturing
DOI 10.1007/s10845-018-1458-z, URL https://doi.org/10.1007/s10845-018-1458-z

[22] Chen H, Zhao H, Han D, Yan H, Zhang X, Liu K (2018) Robust crack defect
detection in inhomogeneously textured surface of near infrared images. In: Chinese
Conference on Pattern Recognition and Computer Vision (PRCV), Springer, pp
511–523

[23] Chen H, Liu J, Wang S, Liu K (2019) Robust dislocation defects region segmentation
for polysilicon wafer image with random texture background. IEEE Access 7:134318–
134329

[24] Chen H, Zhao H, Han D, Liu K (2019) Accurate and robust crack detection using
steerable evidence filtering in electroluminescence images of solar cells. Optics and
Lasers in Engineering 118:22–33

[25] Chen H, Zhao H, Han D, Liu W, Chen P, Liu K (2019) Structure aware based
crack defect detection for multicrystalline solar cells. Measurement p 107170

133

https://www.fs-unep-centre.org/global-trends-in-renewable-energy-investment-2019/
https://www.fs-unep-centre.org/global-trends-in-renewable-energy-investment-2019/
https://doi.org/10.1007/978-3-319-75541-0_3
https://doi.org/10.1007/s10845-018-1458-z

Bibliography

[26] Chen H, Hu Q, Zhai B, Chen H, Liu K (2020) A robust weakly supervised learning
of deep conv-nets for surface defect inspection. Neural Computing and Applications
pp 1–16

[27] Chen L, Yang Q, Yan W (2019) Generative adversarial network based data augmen-
tation for pv module defect pattern analysis. In: 2019 Chinese Control Conference
(CCC), pp 8422–8427, DOI 10.23919/ChiCC.2019.8866155

[28] Chintala S, Denton E, Arjovsky M, Mathieu M (2016) How to train a gan? tips
and tricks to make gans work. URL https://github.com/soumith/ganhacks

[29] Chollet F, et al. (2018) Deep learning with Python, vol 361. Manning New York

[30] Crum WR, Camara O, Hill DL (2006) Generalized overlap measures for evaluation
and validation in medical image analysis. IEEE transactions on medical imaging
25(11):1451–1461

[31] Csurka G, Larlus D, Perronnin F, Meylan F (2013) What is a good evaluation
measure for semantic segmentation?. In: BMVC, Citeseer, vol 27, p 2013

[32] Deitsch S, Christlein V, Berger S, Buerhop-Lutz C, Maier A, Gallwitz F, Riess
C, Deitsch S, Christlein V, Berger S, Buerhop-Lutz C, Maier A, Gallwitz F,
Riess C (2019) Automatic classification of defective photovoltaic module cells in
electroluminescence images. Solar Energy 185:455–468, DOI 10.1016/j.solener.2019.
02.067

[33] Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: A Large-Scale
Hierarchical Image Database. In: CVPR09

[34] Deng Y, Guo X, Wei Y, Lu K, Fang B, Guo D, Liu H, Sun F (2019) Deep
reinforcement learning for robotic pushing and picking in cluttered environment.
In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp 619–626, DOI 10.1109/IROS40897.2019.8967899

[35] Dong N, Xing EP (2018) Few-shot semantic segmentation with prototype learning.
BMVC

[36] Dotenco S, Dalsass M, Winkler L, Würzner T, Brabec C, Maier A, Gallwitz F
(2016) Automatic detection and analysis of photovoltaic modules in aerial infrared
imagery. In: 2016 IEEE Winter Conference on Applications of Computer Vision
(WACV), IEEE, pp 1–9

134

https://github.com/soumith/ganhacks

Bibliography

[37] Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research 12(7)

[38] Ferguson MK, Ronay A, Lee YTT, Law KH (2018) Detection and segmentation of
manufacturing defects with convolutional neural networks and transfer learning.
Smart and sustainable manufacturing systems 2:10.1520/SSMS20180033, DOI
10.1520/SSMS20180033, URL https://pubmed.ncbi.nlm.nih.gov/31093604

[39] Fernandez-Moral E, Martins R, Wolf D, Rives P (2018) A new metric for evaluating
semantic segmentation: leveraging global and contour accuracy. In: 2018 IEEE
Intelligent Vehicles Symposium (IV), IEEE, pp 1051–1056

[40] Fuyuki T, Kitiyanan A (2009) Photographic diagnosis of crystalline silicon solar
cells utilizing electroluminescence. Applied Physics A 96(1):189–196

[41] Fuyuki T, Kondo H, Yamazaki T, Takahashi Y, Uraoka Y (2005) Photographic
surveying of minority carrier diffusion length in polycrystalline silicon solar cells by
electroluminescence. 86:262108, DOI 10.1063/1.1978979

[42] Gao X, Munson E, Abousleman GP, Si J (2015) Automatic solar panel recognition
and defect detection using infrared imaging. In: Automatic Target Recognition
XXV, International Society for Optics and Photonics, vol 9476, p 94760O

[43] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville
A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information
processing systems, pp 2672–2680

[44] Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press

[45] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved
training of wasserstein gans. In: Proceedings of the 31st International Conference
on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY,
USA, NIPS’17, p 5769–5779

[46] Haselmann M, Gruber DP, Tabatabai P (2018) Anomaly detection using deep
learning based image completion. In: 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA), pp 1237–1242, DOI 10.1109/
ICMLA.2018.00201

[47] He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 770–778

135

https://pubmed.ncbi.nlm.nih.gov/31093604

Bibliography

[48] He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision, pp 2961–2969

[49] Hinton G, Srivastava N, Swersky K (2012) Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent.

[50] IEA (2021) Renewables 2021. URL https://www.iea.org/news/
global-energy-investments-set-to-recover-in-2021-but-remain-far-from-a-net-zero-pathway

[51] Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: International conference on machine
learning, PMLR, pp 448–456

[52] ISE F (2019) Photovoltaics report

[53] Jiang Y, Zhao C, Ding W, Hong L, Shen Q (2020) Attention m-net for automatic
pixel-level micro-crack detection of photovoltaic module cells in electroluminescence
images. In: 2020 IEEE 9th Data Driven Control and Learning Systems Conference
(DDCLS), IEEE, pp 1415–1421

[54] Kignma DP, Ba J (2014) Adam: A method for stochastic optimization. Arxiv
preprint arxiv:14126980

[55] Ko J, Rheem J (2010) Anisotropic diffusion based micro-crack inspection in poly-
crystalline solar wafers. In: World Congress on Engineering 2012. July 4-6, 2012.
London, UK., International Association of Engineers, vol 2188, pp 524–528

[56] Ko J, Rheem J (2016) Defect detection of polycrystalline solar wafers using local
binary mean. The International Journal of Advanced Manufacturing Technology
82(9):1753–1764, DOI 10.1007/s00170-015-7498-z, URL https://doi.org/10.1007/
s00170-015-7498-z

[57] Ko SS, Liu CS, Lin YC (2013) Optical inspection system with tunable exposure
unit for micro-crack detection in solar wafers. Optik 124(19):4030 – 4035, DOI
https://doi.org/10.1016/j.ijleo.2012.12.024, URL http://www.sciencedirect.com/
science/article/pii/S0030402613000260

[58] Kohli P, Torr PH, et al. (2009) Robust higher order potentials for enforcing label
consistency. International Journal of Computer Vision 82(3):302–324

136

https://www.iea.org/news/global-energy-investments-set-to-recover-in-2021-but-remain-far-from-a-net-zero-pathway
https://www.iea.org/news/global-energy-investments-set-to-recover-in-2021-but-remain-far-from-a-net-zero-pathway
https://doi.org/10.1007/s00170-015-7498-z
https://doi.org/10.1007/s00170-015-7498-z
http://www.sciencedirect.com/science/article/pii/S0030402613000260
http://www.sciencedirect.com/science/article/pii/S0030402613000260

Bibliography

[59] Köntges M, Kunze I, Kajari-Schröder S, Breitenmoser X, Bjørneklett B (2011)
The risk of power loss in crystalline silicon based photovoltaic modules due to
micro-cracks. Solar Energy Materials and Solar Cells 95(4):1131–1137

[60] Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems
25:1097–1105

[61] Kumar SS, Abraham DM, Jahanshahi MR, Iseley T, Starr J (2018) Auto-
mated defect classification in sewer closed circuit television inspections using
deep convolutional neural networks. Automation in Construction 91:273–283,
DOI https://doi.org/10.1016/j.autcon.2018.03.028, URL https://www.sciencedirect.
com/science/article/pii/S0926580517309767

[62] Le Cun Y, Jackel LD, Boser B, Denker JS, Graf HP, Guyon I, Henderson D,
Howard RE, Hubbard W (1989) Handwritten digit recognition: Applications of
neural network chips and automatic learning. IEEE Communications Magazine
27(11):41–46

[63] Li WC, Tsai DM (2012) Wavelet-based defect detection in solar wafer images with
inhomogeneous texture. Pattern Recognition 45(2):742 – 56, URL http://dx.doi.
org/10.1016/j.patcog.2011.07.025

[64] Liu K, Han J, Chen H, Yan H, Yang P (2019) Defect detection on el images based
on deep feature optimized by metric learning for imbalanced data. In: 2019 25th
International Conference on Automation and Computing (ICAC), IEEE, pp 1–5

[65] Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 3431–3440

[66] Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 3431–3440

[67] Luo Z, Cheng S, Zheng Q (2019) Gan-based augmentation for improving cnn
performance of classification of defective photovoltaic module cells in electrolumi-
nescence images. In: IOP Conference Series: Earth and Environmental Science,
IOP Publishing, vol 354, p 012106

137

https://www.sciencedirect.com/science/article/pii/S0926580517309767
https://www.sciencedirect.com/science/article/pii/S0926580517309767
http://dx.doi.org/10.1016/j.patcog.2011.07.025
http://dx.doi.org/10.1016/j.patcog.2011.07.025

Bibliography

[68] Maestro-Watson D, Balzategui J, Eciolaza L, Arana-Arexolaleiba N (2018) Deep
learning for deflectometric inspection of specular surfaces. In: The 13th Interna-
tional Conference on Soft Computing Models in Industrial and Environmental
Applications, Springer, pp 280–289

[69] Maestro-Watson D, Balzategui J, Eciolaza L, Arana-Arexolaleiba N (2019) De-
flectometric data segmentation based on fully convolutional neural networks. In:
Fourteenth International Conference on Quality Control by Artificial Vision, Inter-
national Society for Optics and Photonics, vol 11172, p 1117209

[70] Maestro-Watson D, Balzategui J, Eciolaza L, Arana-Arexolaleiba N (2020) De-
flectometric data segmentation for surface inspection: a fully convolutional neural
network approach. Journal of Electronic Imaging 29(4):041007

[71] Mayr M, Hoffmann M, Maier A, Christlein V (2019) Weakly supervised seg-
mentation of cracks on solar cells using normalized lp norm. In: 2019 IEEE
International Conference on Image Processing (ICIP), pp 1885–1889, DOI
10.1109/ICIP.2019.8803116

[72] Movshovitz-Attias Y, Toshev A, Leung TK, Ioffe S, Singh S (2017) No fuss distance
metric learning using proxies. In: Proceedings of the IEEE International Conference
on Computer Vision, pp 360–368

[73] Otamendi U, Martinez I, Quartulli M, Olaizola IG, Viles E, Cambarau W (2021)
Segmentation of cell-level anomalies in electroluminescence images of photovoltaic
modules. Solar Energy 220:914–926, DOI https://doi.org/10.1016/j.solener.2021.03.
058, URL https://www.sciencedirect.com/science/article/pii/S0038092X21002462

[74] Pardamean B, Cenggoro TW, Rahutomo R, Budiarto A, Karuppiah EK (2018)
Transfer learning from chest x-ray pre-trained convolutional neural network for
learning mammogram data. Procedia Computer Science 135:400–407, DOI https://
doi.org/10.1016/j.procs.2018.08.190, URL https://www.sciencedirect.com/science/
article/pii/S1877050918314807

[75] Qi H, Brown M, Lowe DG (2018) Low-shot learning with imprinted weights. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 5822–5830

[76] Qian X, Li J, Cao J, Wu Y, Wang W (2020) Micro-cracks detection of solar cells
surface via combing short-term and long-term deep features. Neural Networks

138

https://www.sciencedirect.com/science/article/pii/S0038092X21002462
https://www.sciencedirect.com/science/article/pii/S1877050918314807
https://www.sciencedirect.com/science/article/pii/S1877050918314807

Bibliography

[77] Qian X, Li J, Zhang J, Zhang W, Yue W, Wu QE, Zhang H, Wu Y, Wang W
(2020) Micro-crack detection of solar cell based on adaptive deep features and visual
saliency. Sensor Review

[78] Rahman MRU, Chen H (2020) Defects inspection in polycrystalline solar cells
electroluminescence images using deep learning. IEEE Access 8:40547–40558, DOI
10.1109/ACCESS.2020.2976843

[79] Rakelly K, Shelhamer E, Darrell T, Efros A, Levine S (2018) Conditional networks
for few-shot semantic segmentation.

[80] Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp 779–788

[81] Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for
biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF
(eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015, Springer International Publishing, Cham, pp 234–241

[82] Ruder S (2016) An overview of gradient descent optimization algorithms. CoRR
abs/1609.04747, URL http://arxiv.org/abs/1609.04747, 1609.04747

[83] Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-
propagating errors. nature 323(6088):533–536

[84] Schlegl T, Seeböck P, Waldstein SM, Langs G, Schmidt-Erfurth U (2019) f-anogan:
Fast unsupervised anomaly detection with generative adversarial networks. Medical
image analysis 54:30–44

[85] Shaban A, Bansal S, Liu Z, Essa I, Boots B (2017) One-shot learning for seman-
tic segmentation. URL http://dblp.uni-trier.de/db/conf/bmvc/bmvc2017.html#
ShabanBLEB17

[86] Siam M, Oreshkin B, Jagersand M (2019) Amp: Adaptive masked proxies for
few-shot segmentation. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp 5248–5257, DOI 10.1109/ICCV.2019.00535

[87] Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:14091556

139

http://arxiv.org/abs/1609.04747
1609.04747
http://dblp.uni-trier.de/db/conf/bmvc/bmvc2017.html#ShabanBLEB17
http://dblp.uni-trier.de/db/conf/bmvc/bmvc2017.html#ShabanBLEB17

Bibliography

[88] Spataru S, Hacke P, Sera D (2016) Automatic detection and evaluation of solar
cell micro-cracks in electroluminescence images using matched filters. In: 2016
IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp 1602–1607, DOI
10.1109/PVSC.2016.7749891

[89] Staar B, Lütjen M, Freitag M (2019) Anomaly detection with convolutional neural
networks for industrial surface inspection. Procedia CIRP 79:484–489

[90] Stromer D, Vetter A, Oezkan HC, Probst C, Maier A (2019) Enhanced crack
segmentation (ecs): A reference algorithm for segmenting cracks in multicrystalline
silicon solar cells. IEEE Journal of Photovoltaics 9(3):752–758

[91] Su B, Chen H, Zhu Y, Liu W, Liu K (2019) Classification of manufacturing defects
in multicrystalline solar cells with novel feature descriptor. IEEE Transactions on
Instrumentation and Measurement 68(12):4675–4688

[92] Sun M, Lv S, Zhao X, Li R, Zhang W, Zhang X (2017) Defect detection of
photovoltaic modules based on convolutional neural network. In: International
Conference on Machine Learning and Intelligent Communications, Springer, pp
122–132

[93] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke
V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 1–9

[94] Tsai D, Luo J (2011) Mean shift-based defect detection in multicrystalline solar
wafer surfaces. IEEE Transactions on Industrial Informatics 7(1):125–135, DOI
10.1109/TII.2010.2092783

[95] Tsai D, Wu S, Chiu W (2013) Defect detection in solar modules using ica basis
images. IEEE Transactions on Industrial Informatics 9(1):122–131, DOI 10.1109/
TII.2012.2209663

[96] Tsai D, Fan MSK, Huang Y, Chiu W (2019) Saw-mark defect detection in hetero-
geneous solar wafer images using gan-based training samples generation and cnn
classification. In: Proceedings of the 14th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications - Volume
5: VISAPP„ INSTICC, SciTePress, pp 234–240, DOI 10.5220/0007306602340240

140

Bibliography

[97] Tsai DM, Chang CC, Chao SM (2010) Micro-crack inspection in heterogeneously
textured solar wafers using anisotropic diffusion. Image and Vision Computing
28(3):491–501

[98] Tsai DM, Wu SC, Li WC (2012) Defect detection of solar cells in electroluminescence
images using fourier image reconstruction. Solar Energy Materials and Solar Cells
99:250–262

[99] Tsai DM, Li GN, Li WC, Chiu WY (2015) Defect detection in multi-crystal solar
cells using clustering with uniformity measures. Advanced Engineering Informatics
29(3):419–430

[100] Tsai YH, Hung WC, Schulter S, Sohn K, Yang MH, Chandraker M (2018) Learning
to adapt structured output space for semantic segmentation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp 7472–7481

[101] Tseng DC, Liu YS, Chou CM (2015) Automatic finger interruption detection in
electroluminescence images of multicrystalline solar cells. Mathematical Problems
in Engineering 2015

[102] University S (2016) Cs231n convolutional neural networks for visual recognition.
URL https://cs231n.github.io/convolutional-networks/

[103] Vaněk J, Repko I, Klima J (2016) Automation capabilities of solar modules defect
detection by thermography. ECS Transactions 74(1):293–303

[104] Wang M, Deng W (2018) Deep visual domain adaptation: A survey. Neurocomputing
312:135–153, DOI https://doi.org/10.1016/j.neucom.2018.05.083, URL https://
www.sciencedirect.com/science/article/pii/S0925231218306684

[105] Wang T, Chen Y, Qiao M, Snoussi H (2018) A fast and robust convolutional neural
network-based defect detection model in product quality control. The International
Journal of Advanced Manufacturing Technology 94(9-12):3465–3471

[106] Wang X, Barnett A (2019) The evolving value of photovoltaic module efficiency.
Applied Sciences 9(6):1227

[107] Wang X, Li J, Yao M, He W, Qian Y (2014) Solar cells surface defects detection
based on deep learning. Pattern Recognition & Artificial Intelligence 27(6):517–523

141

https://cs231n.github.io/convolutional-networks/
https://www.sciencedirect.com/science/article/pii/S0925231218306684
https://www.sciencedirect.com/science/article/pii/S0925231218306684

Bibliography

[108] Wang Y, Liu M, Zheng P, Yang H, Zou J (2020) A smart surface inspection system
using faster r-cnn in cloud-edge computing environment. Advanced Engineering
Informatics 43:101037, DOI https://doi.org/10.1016/j.aei.2020.101037, URL https:
//www.sciencedirect.com/science/article/pii/S1474034620300069

[109] Wu W, Li H, Li X, Guo H, Zhang L (2019) Polsar image semantic segmentation
based on deep transfer learning–realizing smooth classification with small training
sets. IEEE Geoscience and Remote Sensing Letters

[110] Xu P, Zhou W, Fei M (2014) Detection methods for micro-cracked defects of
photovoltaic modules based on machine vision. In: 2014 IEEE 3rd International
Conference on Cloud Computing and Intelligence Systems, IEEE, pp 609–613

[111] Yang Y, Meng F, Li H, Ngan KN, Wu Q (2019) A new few-shot segmentation
network based on class representation.

[112] Yen H, Sie Y (2012) Machine vision system for surface defect inspection of printed
silicon solar cells. In: The 1st IEEE Global Conference on Consumer Electronics
2012, pp 422–424, DOI 10.1109/GCCE.2012.6379645

[113] Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in
deep neural networks? CoRR abs/1411.1792, URL http://arxiv.org/abs/1411.1792,
1411.1792

[114] Zeng A, Song S, Welker S, Lee J, Rodriguez A, Funkhouser T (2018) Learning
synergies between pushing and grasping with self-supervised deep reinforcement
learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp 4238–4245, DOI 10.1109/IROS.2018.8593986

[115] Zhang C, Lin G, Liu F, Yao R, Shen C (2019) Canet: Class-agnostic segmentation
networks with iterative refinement and attentive few-shot learning. arXiv preprint
arXiv:190302351

[116] Zhang X, Sun H, Zhou Y, Xi J, Li M (2013) A novel method for surface de-
fect detection of photovoltaic module based on independent component analysis.
Mathematical Problems in Engineering 2013

[117] Zhang X, Wei Y, Yang Y, Huang T (2018) Sg-one: Similarity guidance network for
one-shot semantic segmentation. 1810.09091v3

142

https://www.sciencedirect.com/science/article/pii/S1474034620300069
https://www.sciencedirect.com/science/article/pii/S1474034620300069
http://arxiv.org/abs/1411.1792
1411.1792
1810.09091v3

Bibliography

[118] Zhang X, Hao Y, Shangguan H, Zhang P, Wang A (2020) Detection of surface
defects on solar cells by fusing multi-channel convolution neural networks. Infrared
Physics & Technology p 103334

[119] Zhi W, Yueng HWF, Chen Z, Zandavi SM, Lu Z, Chung YY (2017) Using trans-
fer learning with convolutional neural networks to diagnose breast cancer from
histopathological images. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ESM (eds) Neural
Information Processing, Springer International Publishing, Cham, pp 669–676

[120] Zhuang F, Yanzheng Z, Yang L, Qixin C, Mingbo C, Jun Z, Lee J (2004) Solar
cell crack inspection by image processing. In: Proceedings of 2004 International
Conference on the Business of Electronic Product Reliability and Liability (IEEE
Cat. No. 04EX809), IEEE, pp 77–80

143

	Declaration
	Table of contents
	List of figures
	List of tables
	1 Foundation and Context
	1.1 Motivation and scope of research
	1.2 Objectives and Contributions
	1.3 Publications
	1.4 Outline

	2 Background
	2.1 Deep Learning
	2.1.1 Types of learning
	2.1.2 Architectures
	2.1.3 Optimization

	2.2 Metrics
	2.3 Solar panel production
	2.4 Datasets
	2.4.1 Electroluminescence
	2.4.2 Polycrystalline cells
	2.4.3 Monocrystalline cells
	2.4.4 Sequence of 700 panels

	2.5 Hardware and Software specifications

	3 Literature review
	3.1 Traditional Image processing
	3.2 Traditional Image processing and Machine Learning algorithms
	3.3 Deep learning based proposals
	3.4 Summary

	4 Supervised training
	4.1 CNN and Sliding Window
	4.1.1 Experiments and Results

	4.2 FCN based Segmentation
	4.2.1 Experiments and Results

	4.3 Concluding remarks

	5 Anomaly detection
	5.1 Anomaly Detection
	5.1.1 Anomaly detection model (f-AnoGAN)
	5.1.2 Experiments and results

	5.2 Automatic labeling
	5.2.1 Experiments and results

	5.3 Concluding remarks

	6 Model Adaptation
	6.1 Transfer Learning
	6.1.1 Experiments and results

	6.2 Few-shot learning
	6.2.1 Experiments and results

	6.3 Concluding remarks

	7 Methodology deployment
	7.1 Introduction
	7.2 Methodology outline
	7.3 Experiments and Results
	7.4 Concluding remarks

	8 Conclusion and future works
	8.1 Conclusions
	8.2 Suggestions for further research

	Bibliography

