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The potential of Marine Renewable Energy (MRE) systems is usually evaluated based on recent metocean
data and assuming the stationarity of the MRE resource. Yet, different studies in the literature have shown
long-term resource variations and even the connection between ocean warming and wave power variations.
Therefore, it is crucial to accurately characterise the future resource, including these long-term variations. To
that end, this paper presents a novel data-driven forecasting approach through the combination of machine-
learning (ML) and oceanic engineering concepts. First, the historical resource is characterised in the Bay of
Biscay, including the different long-term trends identified based upon the dataset obtained via the SIMAR
model ensemble. Secondly, the most relevant features of the metocean dataset are extracted and selected via
advanced statistical techniques. Finally, three different ML algorithms are designed, validated and tested. All
three ML models demonstrate to adequately represent the overall pattern of the dataset, although showing
difficulties with reproducing particular peak values. Accordingly, an alternative interval prediction approach
is presented for three different wave height discretisation levels, showing a greater potential for long-term
metocean data forecasting.

1. Introduction resource in the US coast would cover 10% of electricity demand in the
USA.

Most of these studies are based on the mean power of the resource.
However, intra- and inter-annual variations are crucial when designing
MRE systems [6]. Different alternatives have included other relevant
aspects to the characterisation of the wave energy resource. In a recent
study, [7] proposes an alternative wave exploitability index defined as

the ratio between the root-mean-square and maximum wave height

In the last decade, climate change caused by anthropological activ-
ity has become a global priority. In fact, society’s energy demand is in
progressive growth, averaging around 1% to 2% per year [1]. Hence,
despite the increase in renewable energy production, fossil fuel sources
remain dominant of the energy sector, with carbon emissions increasing
by 0.5% on an annual basis. In this sense, the energy transition needs
a strong acceleration to reach a carbon-neutral energy system by 2050,
where renewable energies become the main player. To reach carbon
neutrality and contain global warming below the safety threshold of

to assess the suitability of different locations worldwide, moving be-
yond the classical mean wave power metric. Similarly, [8] suggests

1.5 °C determined by [2,3] estimates that the installed capacity of
renewable energy systems would need to be increased up to 18.000 GW
(with additional 14.000 GW of solar and wind capacity). In this context,
marine renewable energies (MRE) can provide a significant boost to the
sector, e.g. worldwide offshore wind capacity is expected to increase
by 30 in the next 30 years, while [4] estimates a potential of tidal
and wave energy devices of about 10% of Europe’s power demand.
Similarly, [5] suggests that harvesting 20% of the technical marine

a resource classification system for US coastal waters that includes
key attributes for energy planning and project development. Another
alternative is presented in [9], where authors define a decision-making
process that considers the energy generation capacity of wave energy
converters via the combination of annual energy production and capac-
ity factor, installation aspects with the bathymetry, and grid connection
accessibility. In any case, all the studies in the literature only use past

* Corresponding author at: Fluid Mechanics Department, Mondragon University, Loramendi 4, 20500 Arrasate, Spain.
E-mail addresses: mpenalba@mondragon.edu (M. Penalba), jiaizpurua@mondragon.edu (J.I. Aizpurua), ander.martinezrd@alumni.mondragon.edu

(A. Martinez-Perurena), gregorio.iglesias@ucc.ie (G. Iglesias).

https://doi.org/10.1016/j.rser.2022.112751

Received 29 December 2021; Received in revised form 9 May 2022; Accepted 29 June 2022

Available online 11 July 2022

1364-0321/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).


http://www.elsevier.com/locate/rser
http://www.elsevier.com/locate/rser
mailto:mpenalba@mondragon.edu
mailto:jiaizpurua@mondragon.edu
mailto:ander.martinezrd@alumni.mondragon.edu
mailto:gregorio.iglesias@ucc.ie
https://doi.org/10.1016/j.rser.2022.112751
https://doi.org/10.1016/j.rser.2022.112751
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2022.112751&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

M. Penalba et al.

Renewable and Sustainable Energy Reviews 167 (2022) 112751

( Metocean data forecast )

Future

Past resource S~

metocean

MRE technology design
w/0 over-engineering

Fig. 1. The graphical framework of the present study.

data to assess the potential of different locations. Yet, [10] demon-
strates global warming is affecting marine energy sources, increasing
the power and frequency of extreme metocean conditions, as shown
by [11]. In addition, a recent study has concluded that, despite the
relatively high uncertainties, sea level rise caused by climate change
will very likely affect the estuarine tidal energy due to variations in
tidal and sediment dynamics [12]. This means that current potential
assessment of MRE resources and MRE technology expansion roadmaps
may become unreliable in a relatively short period of time. As a
consequence, it may be the case that new MRE system designs may
also become outdated, because these designs largely depend on accu-
rate resource assessment, especially accurate extreme event estimation.
Therefore, it is essential to accurately forecast the metocean conditions
that MRE devices will face in the long-term future. Fig. 1 graphically
illustrates the framework. Based on these predictions, MRE technology
developers will be able to guarantee structural integrity of their devices
avoiding over-engineering, classification societies will be able to update
their certification and standards in order to better suit the requirements
of the MRE industry, and decision-makers will plan sensible roadmaps
for the worldwide expansion of MRE.

However, long-term forecasting of metocean conditions is a complex
and disregarded task. The forecasting of renewable energy sources
has been mostly focused on the forecasting of the resource variabil-
ity within a relatively limited time horizon, as reviewed by [13].
Before going into more details, the forecasting horizons should be
defined. Accordingly, Fig. 2 shows the different horizons, where short-
term represents a few seconds, medium-term focuses on the prediction
of metocean conditions between hours, days and weeks ahead, and
long-term represents a temporal horizon of years and decades. Each
forecasting horizon is necessary for different MRE-related applications:

Short-term forecasting is particularly interesting for energy max-
imising control purposes and ship motion prediction in offshore
operations;

Medium-term prediction is relevant for maintenance operation
planning, MRE device operation mode selection, e.g. power pro-
duction mode or survivability mode, and bid placing on wholesale
energy markets; and

Short-term Medium-term

+ Long-term forecasting is important for MRE farm deployment site
selection, feasibility studies and system design.

The literature shows several examples of short-term wave forecast-
ing. Fusco and Ringwood [14] suggests different forecasting models,
such as a cyclical model with time-invariant frequencies that becomes
linear in the parameters and an extended version with time-variant
frequencies based on the extended Kalman filter; autoregressive (AR)
models; Artificial Neural Networks (ANN); and a Gaussian Process (GP)
model. Recent publications show improvements of the same models
for short-term forecasting, such as the revisited AR model suggested
in [15] and the wave-spectrum-informed GP models proposed in [16].
The latter has been demonstrated to outperform AR and ANN meth-
ods, and includes the advantage of providing the uncertainty of the
prediction [17]. Medium-term prediction approaches suggested in the
literature include data-driven and physics-based methods, which tend
to forecast wave statistical parameters, e.g significant wave height
(H,) and peak period (Tp). The latter have traditionally been used
via the well-known Simulating WAves Nearshore (SWAN) model [18].
James et al. [19] compares Machine Learning (ML) techniques to
SWAM, concluding that similar results can be obtained for a fraction
of the computational time. The authors suggest a convolutional neural
network (CNN) and a Support Vector Regression (SVR) model, and
conclude that CNN models are more appropriate. The use of ANNs
in medium-term wave height forecasting is also analysed in several
studies. Shamshirband et al. [20] concludes that the efficacy of the
model especially relies on the training data size and the forecasting
horizon. In contrast, [21] finds the SVR method to enable removing the
need for model calibration. Other alternatives include Extreme Learn-
ing Machines, Genetic Algorithms, and Random Forest (RF), suggested
by [22-24], respectively. Long-term trends of wave conditions have
long been ignored in the literature due to the lack of interest for the
community. In fact, the belief that past resource data is representative
of the future resource is still present in the community. As a conse-
quence, long-term forecasting approaches suggested in the literature
are scarce. Therefore, the main goal of the present study, as highlighted
in Fig. 1, is the development of a ML-based forecasting model to predict
the statistical parameters of metocean conditions for the following

Long-term

—_—

_ﬁpgg;pgg—

Seconds Hour-Days

Years-Decades

Fig. 2. Short, medium and long term forecasting horizons.
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Fig. 3. Summarised flowchart of the methodology.

years and decades in a specific location. On the one hand, this approach
involves the identification of meaningful predictive trends through an
statistical analysis of local historical metocean data. On the other hand,
an appropriate combination of the different statistical features should
be found in order to synthesise the most valuable insights into the
resource characteristics for the ML-based models. However, the authors
do not aim to precisely predict future sea-states at a specific time, which
would result unfeasible, but the determination of the future probability
density functions and evolution of extreme events.

The present paper is organised as follows. Section 2 describes the
methodology and the ML-based models suggested in this study, Sec-
tion 3 defines the location selected for the analysis including the
metocean data for that location, Section 4 presents the metocean data
characterisation of the past data, Section 5 extracts and selects the
most relevant parameters via statistical feature extraction techniques,
Section 6 presents the results of the forecasting models, Section 7
discusses the potential improvements and Section 8 draws the main
conclusions of the study.

2. Methodology

Fig. 3 illustrates the methodology adopted in the present study,
which is comprised of three main stages: (i) metocean data collection
and validation, (ii) dataset processing for the identification of statistical
features, and (iii) predictive model design and evaluation. These three
stages are further described in the following subsections.

2.1. Dataset validation

The first stage of the methodology is the analysis of the simulation/
re-analysis dataset in order to verify that it is representative of the area
of study. During the validation, the most relevant parameters obtained
from in-situ buoy measurements and re-analysis datasets are compared
by means of statistical metrics. The most common metrics employed
in climatic studies are the Root Mean Square Deviation (RMSD), the
standard deviation (ay) and the correlation coefficient. The RMSD is
defined as follows:

Z,I:Ll (JA’n - yn)2
N

RMSD = , (€8]

where §, is the variable obtained from the SIMAR model (see Section 3),
y, is the measured variable and N the number of samples considered
within the validation period.

The standard deviation is given as,

(2)

Hy == D, Vu- 3)

The Pearson Correlation (PC) coefficient is specially relevant for the
analysis of similarity and is given as follows,

cou(P, y)

030y

PC = (C))

where cou(J, y) is the covariance. However, the PC coefficient shows the
linear correlation. Thus, an alternative non-linear rank class correlation
coefficient is also considered in this study. One of the most common
nonlinear metrics is the non-parametric Spearman’s Rank Correlation
(SRC) coefficient, which defines the relationship between the rankings
of two variables as follows,
cov,e (9, ¥)

SRC = W (5)
where cov,, (9, ) is the covariance of the rank variables, and o;g and
o, are the standard deviations of the two variables’ rankings. Based
on these four metrics, the suitability of the re-analysis dataset and the
need for calibration can be evaluated, as shown in Fig. 3.

2.2. Data-driven metocean data characterisation

Once the re-analysis dataset is validated, the second stage consists
on the extraction of the statistical features that are relevant for the
design of the forecasting model. In order to extract these statistical
features, a preliminary characterisation of the historical metocean data
is crucial. In fact, input data for prediction models must include all the
possible information about the characteristics of the metocean data in
a concise manner. However, traditional resource assessment methods
such as (i) bi-variate Tp — H, distributions through e.g. copulas, (ii)
predominant wind and wave directions via wind and wave roses, (iii)
inter- and intra-annual variations, and (iv) rate of extreme events,
are not sufficient for the construction of long-term forecasting mod-
els. Therefore, other less common statistical techniques are employed
in the present paper for the characterisation of the metocean data
over the last decades. Three different statistical techniques are used
to identify the three particular characteristics of the ocean resource:
stationarity, seasonality and randomness. These statistical techniques
are common is statistics, but less so in ocean resource characterisation.
In addition to these characteristics, forecasting models are also fed
with other physical and non-physical features, which are identified by
feature extraction techniques. Therefore, the statistical characteristics
and techniques used in this paper are described in Section 2.2.1, while
the information about feature extraction is provided in Section 2.2.2.

2.2.1. Resource characterisation and trend identification
Due to the particularities of ocean waves, the analysis of the data
should consider the following statistical characteristics (C):

(C.i) Stationarity involves that statistical properties, such as the mean
and variance, remain constant over time. Therefore, statistical
properties of non-stationary signals vary with time. The iden-
tification of this parameter is important for pattern analysis,
which will be employed in the subsequent forecasting model
development. The traditional belief is that metocean data is rather
stationary, despite the inter- and intra-annual seasonal variations.

(C.ii) Seasonadlity is a particular characteristic of time-series in which
the fluctuations of the data occur at regular intervals and are
recurrent within a determined period of time (day, seasons, year).
These fluctuations generally form easily predictable patterns. In
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the case of metocean data, according to the meteorological stan-
dards, there exists a strong annual seasonality that can be divided
into four seasons: December-February, March-May, June-August
and September-November.

(C.iii) Randomness means the lack of a pattern or logic and, thus, implies
the lack of predictability, which in the case of metocean data may
arise from different sources. On the sea-surface there exist spatial
and temporal randomness. Short-term variability can be studied
through GP models and the medium-term random variability of
the sea-states occurs as a consequence of weather conditions.

Opposed to the general belief of stationary metocean data, different
studies in the literature present significant long-term variations of
the wave energy resource. In this direction, [10] presents the most
recent and relevant study, where the increase in global wave energy
is connected to oceanic warming. In fact, the authors show that these
trends vary significantly geographically, demonstrating the relevance of
the local studies. Thus, apart from characterising the seasonality and
the randomness of the signal, identifying the overall long-term trend
can be important.

Consequently, the characterisation of the resource is carried out
using the following three techniques (T):

(T.i) Signal decomposition assumes that a signal consists of different
intrinsic modes of oscillation, and allows for the extraction and
isolation of these modes. Signal decomposition can be carried
out, for example, by means of the Empirical Mode Decomposition
(EMD), which is a data-driven method and does not make any
assumption on the periodicity of the signal or the use of specific
base function. In addition, the EMD method provides results in
the time-domain, dividing the signal into three modes, each of
which is related to the aforementioned statistical characteristics:
the trend, the seasonality and the residual. The isolation of these
modes is particularly interesting for the construction of the pre-
dictive models because the cyclical components (seasonality) and
the trend can significantly hamper their performance.

(T.ii) Envelopes study the smooth curves that outline the extremes of
an oscillating signal. In the study of historical metocean data,
envelopes are useful for the analysis of the evolution of maximum
and minimum sea-state values along relatively long periods of
time.

(T.iii) Conditional probability evaluates the occurrence probability of an
event conditioned on another event that has already occurred.
In ocean engineering, conditioned probabilities enable the char-
acterisation of the resource by dividing the resource in different
regions, e.g. low-energetic, medium-energetic and high-energetic
sea-states.

While signal decomposition is useful to extract the seasonality
content and identifying the trend, envelopes and conditioned proba-
bilities are useful for the analysis of extreme events. In fact, qualitative
and quantitative characterisation of extreme events can be effectively
carried out via envelopes and condition probabilities, respectively.

2.2.2. Statistical feature extraction and selection

In addition to the three characteristics defined above, other features
are also necessary for the prediction of future metocean conditions.
These features can be either (i) physical variables available in the
different metocean datasets, e.g. wave height, period, sea-surface tem-
perature (SST), wind speed and current velocity; or (ii) features inferred
from the statistical post-precessing of the previous physical param-
eters, e.g. mean, variance, standard deviation, skewness, momentum
and derivatives, which can provide inherent predictive information
of the process. The post-processing of the statistical features requires
dividing the datasets into smaller sets. In the present study, due to the
multi-decadal analysis carried out, statistical features are inferred every
month, as illustrated in Fig. 4.
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Once different statistical features are extracted, the final number of
features used in the forecasting model must be reduced significantly so
as to reduce the computational cost and improve the performance of the
model. This is achieved via a feature selection process that ranks these
features with respect to their relevance for the prediction. One common
measure to quantify the relevance of the different features is the PC
coefficient, defined in Eq. (4). For the PC-based comparison of different
features, the heatmap graphical representation is often used, providing
a clear view of the different correlations. Alternatively, there exist fea-
ture selection algorithms that automatically eliminate the features that
have low relevance according to a loss function. The Recursive Feature
Elimination algorithm is one of the common ML tools that eliminates a
feature in every iteration of the regression, quantifying the accuracy by
means of different metrics (Normalised Mean Absolute Error (NMAE)
and Normalised Mean Squared Error (NMSE), for example). Finally, the
RF algorithm includes an importance score that quantifies the relevance
of the different features for the prediction model.

2.3. Predictive models

Once the historical data is adequately characterised, and the most
relevant information is extracted and selected, the critical point is the
development of the forecasting model. The design of the predictive
model consists on the selection, development and optimisation of the
model. The optimisation of the model involves tuning the different
model hyperparameters to improve the performance of the predictive
model and generalise results. Similarly, the selection of the features
included in the model is crucial for improving the performance of
the predictive model. Therefore, the second and third stages of the
methodology are inter-connected, as depicted in Fig. 3, where the
feature selection and hyperparameter tuning form the design loop
of the predictive model. In this study, three popular ML models are
evaluated.

2.3.1. Random forests

Random Forest is an ensemble of recursive trees (see [25]). Each
tree is generated from a bootstrapped sample and a random subset of
descriptors is used at the branching of each node in the tree. Random
Forests create a large number of trees by repeatedly resampling training
data and averaging differences through voting. The RF model has been
implemented through the scikit-learn package in Python. The
hyperparameters include the number of regression trees (n_estimators)
and the size of each tree (max_depth), minimum samples required to
split a node (min_samples_split) and minimum samples required at
each leaf (min_samples_leaf). These parameters have been optimised
searching the best parameters from a predefined grid of parameters.

2.3.2. Support vector regression

The SVR maps input data into an m-dimensional feature space
using a kernel function. The kernel translates a non-linearly separable
problem into a feature space linearly separable by a hyperplane. A loss
function (¢) that ignores the errors situated within a certain distance of
the true value is defined and the model is parameterised through the
choice of the kernel function. For a nonlinear problem, the Radial Basis
Function (RBF) kernel is recommended:

k(x, x) = e@lIx=¥"1%) (6)

where y is the RBF width, x and x’ are training and testing data
samples, and ||d|| is the Euclidean norm. The SVR solves an optimisation
problem maximising the distance from the hyperplane to the nearest
training point and penalises the loss function with a cost variable c¢. The
training of the model consists on calculating the hyperparameters ¢ and
y. Model training is performed using the Python sklearn package and
grid search was used to optimise ¢ and y.
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Fig. 4. Feature extraction and correlation analysis framework.

2.3.3. Artificial neural networks

ANNs are widely used for classification and regression tasks
(see [26]). The multilayer perceptron (MLP) feedforward model was
used in this work. The MLP is a multi-layer network (input, hidden,
output) comprised of fully connected neurons. Each neuron performs
a weighted sum of its inputs and passes the results through an ac-
tivation function. All ANN models use a rectifier linear unit (ReLU)
activation function for the hidden layers, linear activation function for
output nodes and the Adam optimisation algorithm. Model training is
performed using a back-propagation algorithm. The goal is to learn
the neuron weights to generate the network output from the sample
input, which minimises the error with respect to the target output.
To select an optimal number of hidden nodes and hidden layers, a
number of networks are trained varying the number of hidden nodes
from 1 to 20, and hidden layers from 1 to 4. Hence, the network with
the highest accuracy was selected. The ANN is implemented using the
TensorFlow Python package.

The methodology described in this section is executed consecutively
in the following four sections, where the dataset validation is carried
out in Section 3, resource characterisation and feature extraction are
described in Sections 4 and 5, respectively, and the predictive model is
designed in Section 6.

3. Geographical location & metocean data validation

The geographical location selected for the present study is the
Gulf of Biscay in the North Atlantic Ocean, where the potential for
MRE farm deployment, particularly for wave energy, is shown to be
significant [27].

Historical metocean data for specific locations is usually provided
by national or international oceanographic agencies, such as the Na-
tional Oceanic and Atmospheric Agency in the United States [28] or
Puertos del Estado in Spain [29], which own data collection equipment
in the areas of interest. In addition, these oceanographic agencies own
in-house numerical models calibrated against these measurements.

Hence, historical metocean data from different sources is typically
employed, collected via either in-situ measurements as in [30], satel-
lite altimeter measurements, see e.g. [31], or atmospheric re-analyses
of the European Centre for Medium-Range Weather Forecasts (ECMWF)
as suggested in [32-34], among others. In fact, the combination of
measurements and re-analysis methods is also a typical procedure.
For example, [35,11] use in-situ measurements, which serve as valida-
tion/calibration datasets for re-analysis datasets.

Usually, buoy measurements are considered to be the ground truth.
However, the spatial coverage of measurement buoys is limited and
the maintenance operation requirements are expensive [36]. In that

sense, and due to the significant development of the computational
power, re-analysis datasets have gained greater relevance for long-
term historical metocean data analysis, particularly because of the
capacity to cover very wide spatial areas assimilating a large number
of historical observations.

In the present paper, two different data sources are used:

» SIMAR is an ensemble of modelling metocean data created upon
a high-resolution numerical model by the Spanish Oceanographic
Agency Puertos del Estado, which covers the coast along the
Iberian Peninsula between 1958-2020 with a temporal resolution
of 1 h.

Bilbao-Vizcaya (BV) buoy measurements also provided by the
Spanish Oceanographic Agency Puertos del Estado, which also pro-
vides metocean data of the wave and wind resource with a tempo-
ral resolution of 1 h. However, buoy measurements are available
from 1990, meaning that only 30 years of in-situ measurements
are available.

By means of the metrics described in Section 2.1, the validation is
carried out for the two main statistical parameters that characterise sea-
states: H, and T,. Fig. 5(a) and (b) represent the relationship between
the hourly BV buoy measurements and the SIMAR model by means of
a scatter plot, showing a good agreement for H, and a significantly
higher dispersion for T,,.

Although a good overall representation of the real measurements is
provided by the SIMAR model, the discrepancy increases substantially
at some peaks, which produces the dispersion shown in Fig. 5(b). Ta-
ble 1 shows the statistical parameters for H; and T, including the mean
values over the period between 1990-2020. As in Fig. 5, dispersion is
found to be larger for T,,. Similar results are found in the literature when
comparing re-analysis datasets and buoy measurements, with higher
discrepancies for T, values, see [35,11]. Therefore, data from SIMAR
is considered to be adequate for the analysis and is selected over the
BV-buoy measurements due to its larger temporal coverage, reaching
back in time until 1960.

4. Historical analysis of past metocean conditions

In order to accurately predict future metocean conditions, historical
trends of the resource must be well-understood. The main objective of
the historical analysis is the extraction of the statistical characteristics
of the dataset focusing on the stationarity, seasonality and randomness
characteristics (C.i—C.iii in Section 2.2). To that end, wave resource
data for the last six decades is studied through signal decomposition,
envelopes and conditional probability methods described in Section 2.2
(T.i-T.iii).
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Fig. 5. Metocean re-analysis data validation against the BV-buoy.
Table 1
Statistical parameters for the validation of the SIMAR model with respect to BV-buoy.
Dataset L A,
Mean RMSD PC SRC o, Mean RMSD PC SRC o,
[s] [s] [-1] -1 [s] [m] [m] -1 [-] [m]
BV-buoy 9.65 - - - 2.71 1.93 - - - 1.12
SIMAR-3155039 10.23 1.98 0.75 0.785 2.82 1.73 0.4 0.94 0.92 1.11

For a better understanding of the wave trends, the Wave Energy
Flux (WEF) enables the study of the combined impact of 7, and H,.
Under the deep water approximation, the WEF is built up upon the
combination between H; and T, as follows:

WEF =049T,H? = 049aT,H. %)

Since the original WEF equation includes the energy period (7,),
a correction has to be applied following the relationship defined in

frequency spectra,
T, =aT,, (8

where a depends on the frequency of the spectrum, which, considering
a JONSWAP spectrum, has been considered to be a = 0.9, as suggested
in [37]. For the sake of simplicity, the directionality of the wave

Mean annual wave energy resource trend

resource has been neglected, which is expected to be incorporated in
future versions of the study.

Fig. 6(a) illustrates the evolution of the WEF along the last six
decades based on the SIMAR dataset and the last three decades using
the BV-buoy measurements. Although differences between the two
datasets are noticeable, both show a similar increasing trend. These
trends are detected despite the considerable fluctuations of the an-
nual mean WEF values, which illustrate the inter-annual variations
mentioned previously in Section 2.2. Fig. 6(b) shows the increasing
trend represented by a linear and a second-order regression. The linear
regression shows a decadal growth of about 1.3 kW/m (7%), while the
second-order regression assumes an expanding growth rate with a rate
of 2.5 kW/m in the last decade.

However, the regression models may be biased by the particular
characteristics of the resource, such as the impact of seasonal variations
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and exceptional random events, as described in Section 2.2. Fig. 7
illustrates monthly-averaged H, values computed based on the data
extracted from the SIMAR model for the period 1960-2020, showing
a highly fluctuating signal. In fact, due to these fluctuations, the trend
identified in Fig. 6(b) for the WEF is hardly detectable for H..
Therefore, an adequate identification of the trend should isolate
the seasonality and randomness of the historical dataset. To that end,
the EMD method is applied, extracting the main modes as illustrated
in Fig. 8(b) for H,: trend (top), seasonality (middle) and residual
(bottom). In this case, the trend shows minor oscillations which can
be smoothed by filtering the trend itself via a second decomposition.
Fig. 8(c) illustrates the smooth trends for H,, T, and WEF with a
second filtering. On the other hand, the seasonality shows clearly
the annual pattern of the wave resource, where the wave energy is
mildest in summer and highest in winter. Finally, the residual shows the
remaining part of the signal including the wave resource randomness.
As a consequence, as shown in previous studies, an increasing trend
of the wave resource at Bay of Biscay is confirmed by an alternative
statistical approach. In addition, this alternative approach particularly
fits the requirements of the predictive models, i.e. feature extraction.
Accordingly, the evolution of extreme events is analysed, which is a
crucial aspect of the wave resource for the design of MRE systems. To
that end, the lower and upper envelops are computed using minimum

and maximum values, as presented in Fig. 7 for H,. Although the lower
envelop considerably increases in the final decade between 2010-2020,
it is hard to identify a clear trend. Conversely, the upper envelop shows
a clearer increasing trend. Fig. 9 top graph shows the annual maximum
H, values, and first- and second-order regression functions where that
increasing trend is easily identified.

Yet, the frequency of the extreme events, defined as the occurrence
of events exceeding a threshold value, is as important as the absolute
value of maximum values of the extreme events. Accordingly, the sea-
states are divided into four modes, with mild (0 < H, < 3), intermediate
(3 < H, < 5), harsh (5 < H, < 8) and extreme (H, > 8) sea-states,
and the conditioned probability of different states is studied during the
last six decades, as presented in the middle graph in Fig. 9. The mild
sea-state is clearly predominant, which is consistent with Fig. 5(a), and
no clear trend can be identified. The lower graph in Fig. 9 zooms in
the final mode, which is imperceptible in the middle graph. However,
a clear trend cannot be identified either for this final mode. Lastly,
based on the correlation between SST and WEF suggested by [10],
a brief analysis is included in order to evaluate whether SST can be
used as an input for the predictive models. The top graph in Fig. 10(a)
compares the SST anomaly in the North Atlantic (based on the data
provided by the European Environment Agency) and the Bay of Biscay,
where a clear warming can be observed in the recent decades. On the
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Fig. 9. Wave height analysis along the decades: (top) maximum wave heights, (middle) conditioned probability distribution of different modes with (bottom) a zoom at the most

extreme events.
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Fig. 10. Study of the correlation between SST and WEF along the decades.

other hand, the bottom graph shows the SST trend computed via the
EMD, removing the influence of seasonality and residuals. As in [10],
Fig. 10(b) shows the correlation between SST and WEF in the Bay of
Biscay, suggesting that the evolution of the SST can be an appropriate
input parameter for the predictive models.

5. Feature processing

The characterisation of the resource aims to understand the different
trends along the previous decades, and identify the factors and features
that can potentially aid on the prediction of future values. The correla-
tion heatmap in Fig. 11 synthesises the linear relation between features.
Some of the features are shown to have a very low correlation with
H, and, accordingly, they are discarded as inputs for the predictive
models. For example, kurtosis and skewness values, the mode, the
mean-to-peak parameter and all the derivatives show correlations of
below 70%, which is considered to be in low relationship with H,.
In contrast, features like root-mean-square, standard deviation and
percentiles, show a high correlation, being potentially valid parameters
for the predictive modelling stage.

For the selection of the most relevant features, the Recursive Feature
Elimination (RFE) technique is employed, which requires the pre-
selection of a potentially relevant set of features. This pre-selection of
features includes variables extracted from the metocean dataset, such as
minimum, maximum, seasonality and long-term trend; the SST and its
trend; and the different statistical features extracted from H|, excluding
those that have a very low correlation.

For the feature selection process via the RFE technique, the 100%
of the dataset is employed, including the whole period between 1960-
2020. That way, the idea is reconstructing the dataset with the mini-
mum possible information, identifying the variables and features that
provide that information. This analysis is carried out with a linear
regression (LR), a RF and a SVR model. Unfortunately, the ANN models
also described in Section 2.3 do not allow for a similar analysis.
Fig. 12(a) shows the cross-validation of the dataset reconstruction as a
function of the number of features considered in the reconstruction and
using the NMAE as the scoring metric. The SVR algorithm seems to be
the most efficient one, accurately reconstructing the signal with only 3
variables and features. The RF algorithm shows a similar performance,
providing good results with 4 features. Finally, the LR model needs, at
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least, 8 features to provide an accuracy similar to that of the SVR and
RF models.

To achieve the maximum accuracy, the LR model requires all the
features, while 7 and 5 are needed for the RF and SVR models, re-
spectively. The three percentiles are needed in all cases, since the
combination of the 25%, 50% and 75% percentiles provides a very
complete set of information. However, the use of percentiles in the
prediction can be problematic due to the difficulty to estimate future
percentiles. Therefore, the same exercise is carried out discarding the

percentiles, which significantly increases the minimum number of fea-
tures required to achieve a decent reproduction of the dataset: 9 in the
case of LR and RF models, and 5 for the SVR. Once again, the SVR
model seems to be the most efficient.

Therefore, the importance scores of the SVR model are computed,
showing the most relevant features. Fig. 13 shows the importance
of each variable, highlighting the 5 most important features: STD,
minimum, mode, maximum and seasonality. The LR and RF models also
show these same features among the most important ones. In addition,
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although the importance of the trend seems to be considerably low for
the re-construction of the dataset, the long-term variations identified
for H, and S.ST suggest that the projection of the trends into the future
may be key in the correct prediction of future H, values. Therefore,
as highlighted in Fig. 13, different projections of these trends are also
considered together with the most relevant features.

6. Predictive modelling results

After inferring the most relevant features from the Bay of Biscay
dataset, the dataset is divided into training and testing sets in order to
design ML models through a parameter-tuning process (cf. Section 2.3),
and evaluate their predictive power. Two different prediction strategies
are suggested. On the one hand, a traditional prediction method that
attempts to forecast exact metocean data based upon the raw data,
described in Section 6.1. On the other hand, an alternative discretised
approach that intends to forecast the category of the metocean data
previously classifying raw data into different ranks, as presented in
Section 6.2.

In both cases, the training set consists of the first 80% of the dataset,
which covers the time period between 1960 and 2008. The training
set is used to fine-tune the algorithms identifying the hyperparameters
for each algorithm that best represent the training data. The testing
set consists of the rest 20% of the dataset, covering the most recent
time period from 2008 to 2020. The testing set evaluates the predictive
power of each algorithm using unseen data, which can be considered
as a validation of the model. In this case, the accuracy of the predictive
models is evaluated by means of the mean average error (MAE). More
solid cross-validation strategies, such as k-fold cross validation [38],
are left for future work.

The forecasting activity in the present paper focuses on wave
heights, H,, with the following input features: H, seasonality, mini-
mum H,, maximum H,, and H, trend. The seasonality is expected to
provide information about the annual seasonal pattern. Similarly, the
minimum and maximum values are considered critical to inform the
predictive model about peaks and valleys of the wave height signal.
When evaluating the capacity of the predictive models to predict the
H,, the following assumptions are adopted:

1. The standard deviation will be repeated in the testing set.

2. Minimum H| is considered that remains constant, i.e. the same
as in the past.

. The mode will be repeated in the testing set.

. Maximum H| is considered that increases as shown in Fig. 9(a)

10

5. The observed seasonality will be repeated in the testing set.

Finally, the trend is assumed to provide relevant predictive infor-
mation so that the ML model can project the resource to the future
informed by the long-term trends of the past. The following different
H, trend configurations are tested:

+ Mean: H, remained constant over the following decades.

» Lin: H, increased following the linear regression.

» Trend: H; increased following the decomposition-based trend.
« SST: H, increased related to the increase in SST.

6.1. Predictive regression model

Raw data from the SIMAR model is used directly in the case of the
traditional forecasting model, where the three methods presented in
Section 2.3 are compared. An hyperparameter tuning exercise is carried
out in each model in order to define the optimal number of layers
and neurons. In the case of the ANN, the optimal configurations are
obtained with 13 neurons (1 intermediate layer), 18 neurons (2 inter-
mediate layers), 19 neurons (3 intermediate layers) and 19 neurons (4
intermediate layers). Overall, the lowest MAE is obtained for the model
with a single intermediate layer which is selected for subsequent testing
purposes.

The hyperparameter tuning process for RF models focuses on search-
ing the best parameters from a predefined grid (see also Section 2.3):

» n_estimators = [200:10:2000],
» max_depth = [10:10:110],

» min_samples_split = [1, 5, 10],
» min_samples_leaf = [1, 2, 4]

Similarly, the hyperparameters for the RBF kernel of the SVR
method are fitted through grid search so as to optimise ¢ and y within
¢ =[1le-1:10:1e3] and y = [2e—5:2:2e2]. Table 2 summarises the MAE
results for the different ML models, highlighting the most accurate ones
for the training and testing periods.

Among all the testing results, the lowest MAE is obtained with
the SVR model with the mean H, configuration. As for the training
set, the best configuration is obtained with the RF model with the
SST configuration. Accordingly, Fig. 14(a) and (b) show the prediction
results on the training set for the RF model and the testing set for the
SVR model, respectively.

All the analysed predictive models provide very similar predictive
capacity for the training and testing sets. In fact, all the models seem
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Table 2
MAE for different models and configurations.

Table 3
Definition of the different discrete H, ranks.

H 05m 1m 15m 2m 25m 3m 35m 4m 45m
Config RF - train RF - test SVR - train SVR - test ANN - train ANN - test Rank # (4=05m) 1 2 3 4 5 6 7 8 9
Trend 0.137 0225  0.174 0.225 0.235 0.239 Rark # (A=1m) 1 2 3 4 5
Mean 0.144 0229  0.175 0.216 0.19 0.235 Rank # (4=2m) 1 2 3
Lin 0139 0233 0173 0.219 0.186 0.254
SST | 0135 0234  0.169 0.237 0.185 0.231

to have the same strengths and weak points. Although the three pre-
dictive models seem to accurately reproduce the overall behaviour
of the dataset, all the models have difficulties in reproducing the
peaks of the signal. Note that these peaks do not correspond to single
extreme events or a single sea-state, but the mean of all sea-states
every month. The peaks appear due to the seasonality of the dataset,
showing lower energetic sea-states in Summer and higher energetic
sea-states in Winter. Therefore, the capability to reach these peaks is
crucial to accurately forecast future metocean conditions. In fact, the
models seem to have problems to reach these peaks even in the training
period, as illustrated in Fig. 14(a), showing a potential limitation of
the mathematical structure of the selected predictive models. However,
the reason why these predictive models fail to accurately reproduce
the peaks is not determined yet and will need further investigation.
However, an alternative method to overcome this difficulty is also
presented in the following section.

6.2. Predictive classification model

Due to the difficulties found with the traditional exact wave height
prediction approach, an alternative wave height interval prediction
problem is suggested here. It is expected that turning an exact value
prediction problem into a classification problem will address the diffi-
culties in the prediction of exact peak values. Changing the regression
problem into a classification problem requires the modification of
the training procedure and the error quantification metrics. The most
widely used metrics for classification are accuracy (A) and precision.
The latter provides the capacity of the classification model to estimate
the correct rank, while the accuracy measures how close or far off the
estimation is to the true value, which is defined as follows:

sampies=1 1 ~
Zif_b " 1 = »)
Ay, )= —/——"—,

nsampl es

©)]

where y; is the estimates value and y; the ground truth. The ac-
curacy can be computed for different error ranges, and accordingly,

11

the present study redefines the accuracy metrics for different scenarios:
Accl allows an error of +1 rank and Acc2 allows an error of +2
ranks. In addition to the metrics, the monthly averaged H, values must
be discretised. In this study three different discretisation intervals are
suggested (0.5 m, 1 m and 2 m), as described in Table 3 and depicted
in Fig. 15.

Hence, this alternative predictive model only needs to determine
the rank of future wave heights, which is in line with the objective of
determining future occurrence matrices (also organised in ranks). For
the preliminary classification analysis of this alternative approach, the
predictive method that showed the best performance in Section 6.1 is
selected and adapted: the Support Vector Classifier (SVC), equivalent
to the SVR for the classification problem, based on a RBF kernel
architecture. Similarly to the regression model, the hyperparameter
optimisation is carried out via an extensive grid search, preparing the
model to provide discretised predictions from a continuous dataset.

Based on the three discretisation ranges defined in Table 3, Fig. 16
shows the performance of the SVC model in its different stages and
configurations. Fig. 16(a) shows the performance of the predictive
model with the training set, where the capacity of the SCV model to
reach the peaks of the discrete signal is demonstrated. In this sense,
turning the prediction problem into a classification problem seems to
partially solve the problem encountered in Section 6.1.

However, the prediction performance in the testing set is similar
to the regression models, where the problem to reach the peaks still
remains. Fig. 16(b) illustrates the comparison between the predicted
and true values for 4 = 0.5 m in the testing set. Despite the adequate
representation of the overall pattern, the discretised predictive model
fails to accurately predict the rank of future wave height. Yet, the
confusion matrix presented in Fig. 16(c) for the 4 = 0.5 m illustrates
that when the predictive model fails to predict the correct rank, only
fails by one rank in most of the cases. In fact, although the accuracy
for the prediction of the exact rank (Acc0) is below 0.6, the results
for Accl and Acc2 improve significantly, reaching accuracy values of
0.92 and 0.99, respectively. Fig. 16(b) illustrates the samples for which
the SVC prediction fails, where all mispredictions arise at maximum
peaks, both for Accl and Acc2. Finally, although a wider discretisation
can improve the accuracy of the predictor, it should be noted that the
uncertainty within the predicted range also increases. Therefore, wider
discretisation ranges have not been ignored in the present study.



M. Penalba et al.

Hs discretizied vs monthly average Hs

Hs discretizied vs monthly average Hs

Renewable and Sustainable Energy Reviews 167 (2022) 112751

Hs discretizied vs monthly average Hs

—— Discretizied Hs Monthly average Hs — Discretizied Hs

®

v o
—
=

Hsldiscretizied]
Hs[m]

Hs[discretizied]

REEN/ ‘Wﬁ
MH’ I |l[

10 ' |

| || 20

»

w
T

—

Monthly average Hs —— Discretizied Hs Monthly average Hs

N
w o
&

Hs[m]
Hs{discretizied]
yo
8

—m'—w"‘

J 10

2010

(a) Discretised Hs: A=0.5 m.

2012 2014 2016 2018 2020 2010 2012

2014

(b) Discretised Hg: A=1 m.

2016 2018 2020 2010 2012 2014 2016 2018 2020

(c) Discretised Hg: A=2 m.

Fig. 15. Exact vs. discretised H, dataset for the testing part (2008-2020).

£ 751 — predicted | | | t‘m ‘ | ]
B 5.0 - trammgset “Hl" I T Hlliw 11| \x!wll 1 \‘
3] || {|I".1H'| L]]] miltl / m I | mk» J il J‘ 'h | "“ w‘
[¥] ISR LU 'Y ‘.\ H
n 2.5 1 I IH' ‘ '\, : .‘. \ H” J
T
1960 1970 1980 1990 2000 2010
Time[month]
(a) Prediction for A = 0.5 m in the training set.
RBF confusion matrix
Test set:RBF
91 — predicted *
—— test set i ‘ 0
8- ® Hsgisc differ >2 , X X X
X Hsgisc differ >1 [ |
71 | I | 30
£64 | § ‘ %
%5 | | ' 1 2 20
0 2 | “‘ |
| !ﬁ & M | ’ ‘
1 1 | J RN [ | 10
(1 | [ ]
| JUUy L | | | |
T AT '»
5] | | 0

T T T T T T
2010 2012 2014 2016 2018 2020

(b) Prediction for A = 0.5 m in the testing set.

Predicted label

(¢) Confusion matrix.

Fig. 16. Performance of the SVC discrete forecasting model.

7. Discussion

The final objective of the proposed data-driven forecasting ap-
proach is to estimate probabilistically the long-term future metocean
conditions of a local area. In this manner, developers will be able
to accurately design the different MRE systems, reducing the current
uncertainties in the load estimations and the excessive conservatism
of the design process [39]. However, these future predictions should
include the impact of climate change, particularly on the increase of the
number and frequency of storms and extreme events. Fig. 17 depicts
the strategy to design a ML-based forecasting model that provides
information about the metocean conditions for the next 20-30 years
(lifetime of a MRE system).

Yet, the results of the present study show that the objective of de-
veloping accurate site-specific wave height prediction models based on
past metocean data is remarkably challenging. Apart from a traditional
exact wave height prediction approach, an alternative wave height
interval prediction method has also been suggested in the present pa-
per. Particularly, the exact wave height prediction approaches showed
difficulties to reproduce peak values of the signals. These problems
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appear both in the training and testing sets of the dataset, illustrating
a significant limitation of the models analysed in this study. Changing
the problem into a wave height classification problem, it was expected
that prediction accuracy results would improve. The results in the
training set showed that the SVC model is able to reproduce the peaks,
indicating that the structural limitation of the exact value prediction
models disappeared. However, the prediction results of the SVC model
in the testing set do not show significant improvements compared to
the predictive models based on the exact value prediction. It should
be noted, though, that depending on the wave height groups, i.e. dis-
cretisation range, the prediction error is shown to be different. A more
comprehensive sensitivity analysis in this direction is recommendable,
in order to show the strengths and weaknesses of different models
under different wave height prediction problems. In any case, a more
thorough study of the alternative classification approach is expected to
improve significantly the results shown in this paper and is the first
future line the authors will follow.

Two main additional areas for improvement are also identified: (i)
discretisation of the input variables used for the classification approach
(H, seasonality, minimum H,, maximum H, and H, trend); and (ii)
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Fig. 18. Suggestion of a hybrid prediction approach.

integration of different classifiers through ensemble modelling strate-
gies that allow handling different groups of H; by means of different
models [40]. In fact, the final objective of the long-term metocean data
prediction is not the exact prediction of the metocean data at specific
points in time, but the determination of the future probability density
functions, i.e. H,~T), joint occurrence matrix for the wave resource and
the evolution of extreme events. Therefore, this alternative approach
based on discrete intervals seems to be more appropriate.

Another alternative for future studies could be a hybrid prediction
model that integrates a statistical prediction model with a long-term
data-driven correction model [41]. Fig. 18 shows the potential hy-
brid configuration approach. The proposed hybrid prediction approach
should focus on the integration of white-box statistical prediction mod-
els with machine-learning models so that prediction errors are cor-
rected through an outer feedback loop. The feasibility of the approach
should be tested for different prediction horizons.

8. Conclusions

The present paper presents a preliminary analysis of long-term
metocean data forecasting at a local scale for marine renewable energy
applications. To that end, historical metocean characteristics are iden-
tified, extracting all the relevant information of the last decades since
1960 based on atmospheric re-analysis datasets. Once these historical
re-analysis datasets are validated against in-situ buoy measurements,
the long-term variations are studied, where a clear annual seasonal
pattern and an increasing trend have been identified by means of
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the empirical decomposition method. Although both seasonality and
trends have been identified for wave heights, periods and energy flux,
the analysis is focused on the long-term wave height characterisation,
for the sake of simplicity. Hence, a clear long-term trend has been
identified for the average wave heights and maximum wave heights.
The latter is believed to denote an increase in extreme events. However,
the frequency of this extreme events, characterised by means of a
conditioned probability analysis, seems to have no clear trend. Finally,
an increasing long-term trend of the sea surface temperature, which has
been related to the variations of wave energy in the literature, has been
identified.

This characterisation of the historical metocean conditions is used
for the development of machine-learning-based predictive models. Ran-
dom Forest, Support Vector Regression and Artificial Neural Network
models have been tested using different combinations of the input
data. All models and input combinations have provided similar results,
highlighting the special importance of considering the information
about seasonality, maximum and minimum wave heights. In contrast,
the long-term trend, represented in different manners, seems to be
irrelevant for the forecasting of long-term metocean data. Besides the
traditional predictive model, an alternative classification problem is
suggested.

Based on the results of the present study, it is believed that the
traditional approach of predicting precise wave height values within
a considerably long horizon is not adequate. The main reason is the
incapacity to reach the maximum peaks, at least, with the methods
and input features evaluated in this study. In contrast, the alternative
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classification approach is expected to have the potential to significantly
improve the prediction of long-term future metocean data, particularly
when H, - T, joint predictions come into play.
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