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Abstract—Software Systems are becoming increasingly com-
plex leading to new Validation & Verification challenges. Model
checking and testing techniques are used at development time
while runtime verification aims to verify that a system satisfies
a given property at runtime. This second technique comple-
ments the first one. This paper presents a tool that enables
the developers to generate automatically reflective UML State
Machine controllers and the Runtime Safety Properties Checker
(RSPC) which checks a component-based software system’s safety
properties defined at design phase. We address embedded systems
whose software components are designed by Unified Modelling
Language-State Machines (UML-SM) and their internal infor-
mation can be observed in terms of model elements at runtime.
RESCO (REflective State Machines-based observable software
COmponents) framework, generates software components that
provide this runtime observability. The checker uses software
components’ internal status information to check system level
safety properties. The checker detects when a system safety
property is violated and starts a safe adaptation process to
prevent the hazardous scenario. Thus, as demonstrated in the
evaluated experiment but not shown in the paper due to the
space limitation, the safety of the system is enhanced.

Index Terms—Automatic code generation, Runtime monitor-
ing, Robustness, Models@runtime, Software components, UML
State-Machines

I. INTRODUCTION

The scope, complexity, and pervasiveness of software sys-
tems continue to increase dramatically. The consequences of
these systems failing can range from mildly annoying to
catastrophic. Software increasingly assumes the responsibility
for providing functionality in systems. Therefore, enhancing
the safety through software has a significant impact on the
system.

Verification and validation techniques applied during de-
velopment give a certain level of confidence in correctness
and are effective at detecting and avoiding anticipated faulty
scenarios. However, in embedded software systems where a

fault can lead to a critical scenario, we need a way to detect
and mitigate hazardous and uncertain scenarios. Runtime ve-
rification techniques could be used to maintain safe control in
unanticipated circumstances.

Monitoring information related to the internal status of the
embedded software can anticipate the detection of failures.
This makes it possible to take corrective actions earlier and
prevent faulty scenarios. This idea is described as a safety
bag in [1] and [2]. The goal is to prevent software systems’
hazardous states by means of safety verification at runtime.
Thus, we increase their robustness enhancing safety.

Current runtime checking solutions as shown in Figure 1,
are specified at different abstraction levels: system, compo-
nent, class, method or statement. As can be observed, most of
the approaches check if the specification is fulfilled at the same
level that the monitoring is performed. Thus, for the detection
of system level misbehaviour, only system level properties are
checked. Nevertheless, component or class level properties can
give valuable information in detecting system level problems
and undesired emergent behaviour.

Both software and hardware checkers have been studied in
[4]. In this work they argue that while hardware checkers are
able to detect errors before a change of state (transition) is per-
formed, software checkers detect errors once a change of state
has occurred. Hardware checkers, such as the Noninterference
Monitoring Architecture checker [5], need additional hardware
to collect state information and to assist in checking. As a
result, the cost and complexity of the solution is increased.

In addition, most runtime software checkers require modi-
fying the source code of the observed system by instrumented
code. However, it is desirable that runtime checkers for testing
safety properties of the systems should be isolated from the
target system to minimize any interference of the system being



tested [6].
In this paper, the Runtime Safety Properties Checker

(RSPC) is presented. RSPC tries to solve the aforementioned
limitations of the current software runtime checkers. The
checker is based on the concept of runtime Safety Properties
(SP).

Safety Properties assert that the system always stays within
some allowed region. Today’s rapid development of complex
and safety-critical systems requires reliable verification me-
thods. In formal verification, we verify that a system meets a
desired property by checking that a mathematical model of the
system meets a formal specification that describes the property.
The properties asserting that observed behaviour of the system
always stays within some allowed set of finite behaviours,
in which nothing ”bad” happens, have a special interest. For
example, we may want to assert that every message received
was previously sent. Such properties of systems are called
Safety Properties.

Our approach (RSPC) is classified in the target area of
Figure 1. Specification is made using system level safety
properties and the monitored information is the internal status
of the software components of the system. It verifies the
system level safety properties based on the internal status
information received from each of the systems’ software
components’ observable states at runtime. These properties are
checked when the internal status of the system components is
going to perform a state transition. In this sense, our software
checker shares the advantages of hardware checkers because
we can detect the error before a change in the component’s
state happens. RSPC is developed in an isolated way and
therefore without involving any modification in the component
to be observed.

The approach has been validated in some academic toy
examples and one industrial use case. The latter is a Train Door
Controller studied in [7]. The main contributions of RSPC are:

• check system level safety properties by monitoring inter-
nal status of the system’s software components,

Fig. 1. Abstraction level of specifications vs. runtime monitoring abstraction
levels based on [3].

• prevent failures before a change in state of the software
components occurs,

• isolate the system’s functionality and its own (RSPC)
while not interfering with the developer’s design and
development work.

It is worth noting that the RSPC has been developed taking
into account a work called RESCO framework [8]. This frame-
work is able to generate reflective software components that
provide information about the internal status of the software
components in terms of UML-SM elements at runtime. The
safety properties that the RSPC checks are defined using
the information provided by these software components at
runtime. Nonetheless, the RSPC solution can be used inde-
pendently of RESCO software components. In any case, the
software components we are addressing have to fulfill the
following conditions:

1) they have to be designed by UML-SMs,
2) they have to provide the internal status of their observed

states at runtime,
3) they have to provide the ability to adapt to a safe-mode

to avoid any hazardous situation at runtime.
RSPC also requires consistent snapshots of the system and,

to this end, for example, the observed system has to be a
synchronous one or the system’s messages must be causally
ordered.

Section II presents the Background to understand the pre-
sented work and Section III introduces the RESCO framework
and the Runtime Safety Properties Checker. Finally, section
IV ends the paper with our Conclusions and Future Lines of
action. II. BACKGROUND

In this section, we will define some concepts that will help
to understand the work presented in this document.

One way to perform runtime verification is to observe the
runtime information (traces) sent by the software controller
to the externalized runtime checker/adapter. Since correct
traces will be finite and predefined in the checker/adapter,
when the received trace is not defined as a correct one, the
checker/adapter comes to a state that a Trace-Violation has
been detected.

One possible solution for this approach is using the informa-
tion of model elements (current state, event, next state,. . . ) of
the UML-SM model of the software component under study.
This enables using a common language to design and verify
software components at runtime.

In order to maintain the model at runtime, the software
component has to be observable by the externalized checking
and adapting system. In order to support this characteristic,
the software components that are monitored need to have
the introspection and reflection ability. Introspection supports
runtime monitoring of the program execution with the goal of
identifying, locating and analyzing errors [9].

Reflection [10] can be defined as the property by which a
component enables observation and control of its own structure
and behavior from outside itself. This means that a reflec-
tive component provides a meta-model of itself, including



structural and behavioral aspects, which can be handled by an
external component. A reflective system is basically structured
around a representation of itself or meta-model that is causally
connected to the real system.

The software components of the presented solution are
generated automatically from the UML-SM model. Even if
we apply model checking methods to the models, due to the
complexity of the systems there may be residual faults. In
this scenario, solutions that support runtime verification are
needed.

The faults that can be detected by the solution are:

• random hardware faults such as bit inversions or changing
errors,

• random software faults such as heisenbugs [11],
• residual faults not detected when testing,
• unanticipated faults that were not considered in the design

and development phase.

Runtime Adaptation is a technique prevalent to long-
running, highly available software systems, whereby system
characteristics (e.g., its structure, locality . . . ) are altered
dynamically in response to runtime events (e.g., detected
hardware faults or software bugs, changes in system loads),
while causing limited disruption to the execution of the system
[12].

In [13] is proposed an ”externalized” runtime adaptation
system that is composed of external components that monitors
the behaviour of the software component of the running
system. These external components are responsible for de-
termining when a software component’s behaviour is within
the envelope of acceptable system parameters. When the
software component’s behaviour fall outside of the expected
limits, the external components start the adaptation process. To
accomplish these tasks, the externalized mechanisms maintain
one or more system models, which provide an abstract, global
view of the running system, and support reasoning about
system problems and repairs.

To accomplish the adaptation process, the externalized mod-
ules:

1) maintain the models that provide an abstract, global view
of the monitored running software components and the
whole system, and

2) support reasoning about system problems and how to
repair them.

We define as normal-mode of operation the situations in
which all elements of the system are functioning as intended
and the software component’s behaviour is within the envelope
of acceptable system parameters. When the software compo-
nent’s behaviour is not working in the expected limits, the
adaptation process starts and the software component is sent
to a safe-mode of operation (graceful degradation). The safe-
mode operation is an aspect of a fault tolerant software system,
where in case of some faults, system functionality is reduced to
a smaller set of services/functionalities that can be performed
by the system [14].

Fig. 2. General Architecture of the Safe Properties Checking System

III. REFLECTIVE CODE GENERATOR AND RUNTIME
CHECKER

Our approach has the following characteristics: (1) specifi-
cation of what we want to be observed at runtime is added
to the models at design phase; (2) code generation takes this
information and generates model-centric code; (3) observed
information not only considers the outputs of the software
components but also monitors their states and events status;(4)
systems composed of CRESCO software components have the
ability to detect unsafe scenarios if a component’s behaviour
deviates from the established one at specific points of time.
In the latter case, the runtime checker sends an event to the
observed software component and this component changes its
operation mode automatically to safe-mode.

In Figure 2, the overall architecture of the solution is shown.
The solution uses an externalized checker, the RSCP, which
is composed of different modules. The main modules are the
RSCP Checker and the Runtime Safe Adaptation Manager.
The former, checks the fulfillment of the system level safety
properties based on software component level information in
model elements. This information is sent by the software
components of the system at runtime and when it detects that
one of the safety properties is not fulfilled the Runtime Safe
Adaptation Manager module starts the adaptation process.

This section will present the process of generating the
reflective software components by the RESCO framework
(Section III-A) and the RSPC (Section III-B), how the runtime
state-based safety properties are specified (Section III-C) and
how the safe adaptation process is defined (Section III-D).

A. Generating automatically software components using
RESCO

This section presents the detailed steps to follow in the gen-
eration of the software components using RESCO framework.
The overall process is shown by an SPEM process in figure
3.

1) 1st step: Behaviour design of the software component:
The first step is to model the behaviour of software compo-
nents by UML-SM models using Papyrus [15] modeling tool.
In the presented solution, runtime adaptation is one of the



Fig. 3. SPEM diagram of the RESCO methodology

contributions and for that, in this first step the safety engineer
has to design also the alternative safe-mode behaviour(s) of the
software component. All these models will be transformed by
the RESCO M2M transformation rules. In addition, the safety
engineer has to define for each unsafe detected modes the
initial state in the safe-mode model to be adapted.

2) 2nd step: Automatic generation of the RESCO Model:
Once the designer finishes the first step, RESCO framework
continues with the work. First, it takes the annotated UML-
SMs and performs a M2M transformation. As a result, it gen-
erates an instrumented model for each of the designed UML-
SM. For doing this, we defined some platform-independent
transformation rules.

Our approach is based on a platform-independent model
instrumentation process. As in [16], our approach uses M2M
transformation techniques for creating an instrumented version
of the user-defined model supporting introspection, checking
and adapting activities at runtime. Thus, without having to
instrument the code, we are able to generate applications pro-
viding advanced capabilities such as component introspection
by themselves.

To formalize our approach, we considered only the com-
putations that occur in actions and conditions attached to
transitions.

Figure 4 shows how a transition chain between two states
is instrumented in order to provide debugging and observa-
tion ability at runtime. The left side of the figure shows
what happens when, being the software component in S1,
EvA arrives. The right side shows the equivalent version of
the transition after model instrumentation. The new model
introduces a choice point and a composite state that will get
the observed information and share/log it. Certain solutions to
instrument the models follow the approach described in Figure
4. In our case, we follow this approach but the composite state
is shared by all the transitions. We do not have to implement
different Observer States for each of the transitions, we need
not to add explicitly the instrumented model in each use
case’s transitions. Once a state is annotated as observed state,
this behaviour is added by construction and shared in all the
observed transitions.

Summarizing, this is the overall behaviour of RESCO-SMs:
when an event is sent to the state machine based software

TABLE I
RESCO OBSERVED DATA

Data Description
Component Name Identification of the current component

Current State Identification of the current state
Next State Identification of the next/target state

Father State Identification of the father state
Event Id Identification of the current event

component, the dispatcher analyzes the current status and
calculates if a transition has to be performed. If the transition
is going to be performed, and the current, next or parent
state is annotated as Observable, the current state information
is observed and sent to the externalized checker. Having
this observed information at runtime, we can localize bugs
analyzing execution traces in model terms.

3) 3rd step: C++ reflective UML-SM based software com-
ponents generation (CRESCO): In this section we will present
the RESCO approach for C++: CRESCO framework. As we
have mentioned, the RESCO metamodel is platform indepen-
dent.

In order to generate an application with Observable software
components in terms of model elements at runtime, CRESCO
framework includes: (1) M2T transformations of the elements
of the design package part of the RESCO metamodel into C++
code by the Acceleo [17] tool, and (2) an implementation in
C++ of the runtime infrastructure.

Following this solution, table I provides the information
available from the RESCO software components at runtime.
The runtime checker will receive this information at runtime
from the states annotated as observable in order to check the
correctness of the system.

B. Process for defining Safe Properties and generating the
RSPC

Before showing the process and in order to be more clear
in the next explanations, we are going to define some terms:

• Safety Requirement (SR) will be allocated to the system
and it may be satisfied by a safe property or a set of safe
properties.

• A State-Based Safe Property (SP) is a specification of
correct compound state of the system. System level safe
properties are defined based on the possible states in

Fig. 4. Model Instrumentation: Transformation Rule of the runtime package
of RESCO metamodel.



Fig. 5. Process for generating state-based safe properties checker

which each of the software components of the system
can coexist at runtime.

The process to generate the RSPC is embedded in a typi-
cal design process for developing dependable systems. After
designing the system and obtaining the system architecture
with the decomposition of software components, together with
a first design of the software components including their
behaviour (UML-SM diagrams), the process for defining state-
based safety properties starts. This process has four steps (see
Figure 5):

1) Step1: Select Safety Requirement to be used at runtime
verification. Not all safe requirements are verifiable in
terms of internal states of system’s components; those
that can be verified in this way have to be selected. The
result is a list of safe requirements (SRi).

2) Step2: Define state-based Safe Property based on se-
lected SR. The information of the States involved in the
SPs could be used to automatically annotated the states
that must be observed.

3) Step3: Define safeAdapt processes to be launched in
case safe properties are not fulfilled at runtime (a process
for each safe property).

4) Step4: Generate the checker: Runtime Safe Properties
Checker Generator (RSPCGen) tool transforms the safe
properties to RSPC Code (checker, in C++) automati-
cally. RSPCGen uses a generic checker as a basis and
adds the specific state-based safe properties to the RSPC
Checker module and safe adaptation processes to the
Runtime Safe Adaptation Manager module.

It can be argued that the RSPC is a generic solution. It is true
that it has a use case specific part in which the safety properties
and the adaptation process have to be defined. Nevertheless,
using the templates and formalism to define those specific
parts, we may say that the process itself is generic and the
definition of the specific parts have been also become as
generic as possible.

a) RSPC behaviour at runtime: The RSPC starts after
getting an initial consistent snapshot of the component-based
software system. Next, the checker waits until it receives an
update from any of the system’s software components. The
observer of these software components sends their internal
status information before performing a state transition. The
RSPC checker compares this information with the system

level safe properties. If system safe properties are fulfilled,
the system status information is updated and the RSPC waits
for new updates.

In the event of the safe properties not being fulfilled,
the RSPC Checker module notifies that circumstance to the
Runtime Safe Adaptation Manager module. Next, this manager
starts the predefined safe adaptation process. This process
sends predefined events to the software components that are
involved in the safe adaptation process. Finally, these software
components are adapted to the safe-mode UML-SMs and the
system continues in this mode until its reparation.

C. Specification using Safe Properties
We need to prove that the composite implementation of the

system guarantees system level properties at runtime.
In our case, a safe property specifies properties related to

the internal behaviour of the software components that are part
of the system in terms of their UML-SM model (active states).
That is what we call a state-based safe property.

In our approach a system (Sys) may be composed of
subsystems (that could be further decomposed) and primitive
components (C) that cannot be further decomposed. Further-
more, the primitive components have a behaviour specified
using a state machine. A system (Sys) is composed of at least
one primitive Component (C), i.e., Sys = {C1, C2, ...Cnc}
where nc is the total number of primitive components (Cs)
in the system (Sys). Accordingly, a C in our context is state-
based. Each of these Components has a set of states (S), i.e.,
Ci = {S1, S2, ...SnsCi} where nsCi is the number of states
that comprise the i-th C.

Let us denote the active state of a component (C) at a
discrete time point as Ci.Sj , the state Sj being any of the
states the C component (Sj ∈ Ci) may have.

Safety requirement will be allocated to the system. And a
safety requirement may be satisfied by a safe property or a set
of safe properties. A safe property will be related to the states
of the components involved in the property. Next grammar
is used to specify what to check. The relevant syntax of this
grammar has been summarized:

safe property := constraint | timedConstraint;
constraint := condition implies condition;
condition := activeState | not condition | (condition) |

condition or condition |
condition and condition;

timedConstraint := constraint in timeUnits;

activeState := ComponentName.StateName;

D. Safe Adaptation Process definition
When the RSPC Checker module detects that one of the

safe properties is not being fulfilled, it sends this information
to the safeAdaptationProcess Manager module. This manager
has a table that was created in Step 3 of the RSCP generation
process. The information of the table is organized as presented
in Table II.



Based on the information that is available in this table, the
specific safe adaptation process for the not fulfilled SP will
start.

IV. CONCLUSION AND FUTURE WORK

This paper presents a reflective UML State Machines con-
trollers’ automatically C++ code generator and a runtime
checker for these controllers. This checker considers system
level specific safety properties to be verified at runtime.

The tooling generated and presented in this document have
been empirically evaluated and the performance of the checker
(in terms of execution time and percentage of CPU usage)
using a different number of system level safe properties have
been also checked. We also evaluated if the checker is an
effective tool for failsafe operation at runtime. Some experi-
ments were carried out by injecting random and unconditional
faults into the software components. This information was not
included in this work because of the page number limitation.

The main conclusions are that the checker is able to detect
all errors that impact on the safe properties at runtime, thereby
ensuring the safe behaviour of the system. As it uses compo-
nents’ internal information, it has the ability to prevent faulty
scenarios before having changed the system output signals.
This is a benefit compared with software monitors that can
only check the output signals.

Our last conclusion is that the process to implement and
generate reflective UML State Machine’s based software con-
trollers and the RSPC is cost-effective as the system level
RSPC and the controllers themselves are generated automat-
ically. The safety engineer simply has to define the safe
properties (following the defined grammar to this end) and
the safe adaptation processes. The rest of the process is
automatic. The software developer of the software components
only considers the functional aspects of the system.

Having evaluated the experiments and results, the benefits
and novelty of the RSPC could be summarized as follows:

• RSPC is a generic solution able to be used in different
use cases. The specific part of each use case is added by
using templates and formalism defined to this end.

• RSPC uses software component level internal information
in model element terms to check the correctness at system
level. The solution follows the models@runtime approach
and fits in the target area shown in Figure 1.

• The solution is based on a runtime adaptation approach.
Not only does it detect the errors or unexpected circum-
stances faster than other existent approaches, but it also
follows a runtime enforcement strategy, thereby avoiding

TABLE II
SAFE ADAPTATION PROCESS INFORMATION

Safe Property Id of the not fulfilled SP
Involved SW component Id of the SW component(s) to be

updated
Safe Mode State Machines Id of the SM(s) to be updated (safe

mode UML-SM Id)
Initial State Id of the initial state of the safe

UML-SM

transitions on system’s software components to hazardous
states.

As future research lines, we might consider expanding the
empirical evaluation by using other realistic use cases in
different industrial domains and projects.
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