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Abstract. An adaptive line bead model that continually updates according to the changing 
conditions during the forming process has been developed. In these calculations, the adaptive 
line bead's geometry is treated as a 3D object where relevant phenomena like hardening curve, 
yield surface, through thickness stress effects and contact description are incorporated. The 
effectiveness of the adaptive drawbead model will be illustrated by an industrial example. 

1.  Introduction 
Drawbeads are frequently used in stamping tools to control the material flow. The geometrical 

modeling of drawbeads results in very long computation times. To overcome this problem equivalent 
drawbead models are applied. Stoughton proposed a model based on bending around an effective 
radius [1].  This model resulted in an effective description but also showed limitations. This paper 
describes several extensions to improve the accuracy of the equivalent drawbead model. 

2.  Adaptive equivalent drawbead model 

2.1.  Geometry and strain. The distribution of longitudinal strain depends on the sheet’s bending 
shape. In our model, the bending shape in a partially penetrated round bead is described with five 
sections of constant curvature (Figure 1). The Stoughton model [1] employs three sections (1, 3 and 5 
in our notation) with an approximated “effective radius”, and two straight sections in between.  

 
Figure 1: Bending shape with 5 sections of constant curvature 1/ri. Definition of restraining force RF. 

The longitudinal strain change between two sections is given by the expression ∆𝜖𝜖11 = ∆𝜀𝜀0 + ∆𝜅𝜅𝜅𝜅, 
where ∆𝜀𝜀0 is the mid-plane stretch increment, 𝜁𝜁 is a natural coordinate in the sheet thickness direction, 
and 𝛥𝛥𝛥𝛥 is the curvature increment 1/𝑟𝑟𝑖𝑖 − 1/𝑟𝑟𝑖𝑖−1 between current and previous section [2]. This can be 
interpreted as superposition of a membrane strain and a bending strain around the geometric middle. 

2.2.  Material model. An incremental elastoplastic material description defines the longitudinal stress 
𝜎𝜎11 from strain increments 𝛥𝛥𝜀𝜀11. Plasticity is modelled with Hill’48 yield condition and plane strain 
assumption. The equivalent plastic strain increment is given by 𝛥𝛥𝜀𝜀𝑒𝑒𝑒𝑒 = 1+𝑟̅𝑟

√1+2𝑟̅𝑟
 ∆𝜀𝜀11 with the normal 

anisotropy coefficient 𝑟𝑟.� The hardening curve 𝜎𝜎𝑒𝑒𝑒𝑒�𝜀𝜀𝑒𝑒𝑒𝑒�  relates the accumulated equivalent plastic 
strain 𝜀𝜀𝑒𝑒𝑒𝑒 = ∫𝑑𝑑𝜀𝜀𝑒𝑒𝑒𝑒 to the equivalent stress 𝜎𝜎𝑒𝑒𝑒𝑒. Finally, 𝜎𝜎11 is computed from 𝜎𝜎𝑒𝑒𝑒𝑒 and 𝜎𝜎33 via Hill’48. 
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The thickness stress 𝜎𝜎33 is given by a differential equation 𝑑𝑑𝜎𝜎33 = (𝜎𝜎11 − 𝜎𝜎33) 𝑑𝑑𝑑𝑑/𝑟𝑟 which arises 
from a force balance of an infinitesimal thin layer with radius r. This equation is integrated 
numerically, starting at the outer surface with the natural boundary condition 𝜎𝜎33 = 0. Basically, the 
Bauschinger effect should be essential for drawbeads due to the inherent bending/unbending [2]. We 
found taking into account the through thickness stress 𝜎𝜎33 in the Hill48 yield surface to be more 
relevant than using mixed hardening. 

2.3.  Section forces and section moments. For each constant curvature section introduced above, axial 
forces and bending moments are evaluated from current normal stress 𝜎𝜎11 and current sheet 
thickness 𝑡𝑡. The thinning 𝛥𝛥𝛥𝛥 is directly determined from ∆𝜀𝜀0 via plastic incompressibility. The axial 
force is 𝐹𝐹 = ∫ 𝜎𝜎11

+𝑡𝑡/2
−𝑡𝑡/2  𝑑𝑑𝑑𝑑 and the bending moment is 𝑀𝑀 =  ∫ 𝜎𝜎11

+𝑡𝑡/2
−𝑡𝑡/2  𝑡𝑡 𝑑𝑑𝑑𝑑. A numerical integration 

with N=25 integration points of equal distance is employed in our implementation.  

2.4.  Thinning iteration. The curvature change 𝛥𝛥𝛥𝛥 is given directly by the assumed bending shape of 
the sheet strip, but the mid-plane stretch increment ∆𝜀𝜀0 and the thinning 𝛥𝛥𝛥𝛥 are not known a priori. In 
our model, it follows from a procedure we call “thinning iteration”. As in [2], we assume that the total 
curvature change 𝛥𝛥𝛥𝛥 occurs over an infinitesimal small length along which the bending work            

𝑉𝑉𝑖𝑖 = ∫ �∫ 𝜎𝜎𝜎𝜎𝜎𝜎𝛥𝛥𝛥𝛥
0 �  𝑑𝑑𝑑𝑑

+𝑡𝑡2
−𝑡𝑡2

 is dissipated. The virtual work equation 𝐹𝐹(𝑖𝑖)𝑑𝑑𝑥𝑥(𝑖𝑖) = 𝐹𝐹(𝑖𝑖−1)𝑑𝑑𝑥𝑥(𝑖𝑖−1)  + 𝑉𝑉(𝑖𝑖) is 

used as a conditional equation for the unknown sheet thickness 𝑡𝑡 and is solved iteratively. The virtual 
displacements 𝑑𝑑𝑥𝑥(𝑖𝑖), 𝑑𝑑𝑥𝑥(𝑖𝑖−1), the membrane strain ∆𝜀𝜀0 and the sheet thickness 𝑡𝑡  are related via 
continuity and incompressibility.  

2.5.  Iteration of bending shape. In many early drawbead models, the geometry of the sheet is 
predetermined [1],[2],[3]. Our approach uses geometric constraints and moment equilibrium to adapt 
the bending form to geometry, material state and process conditions. Such an iteration of the bending 
shape was suggested by Sanchez and Weinmann [4]. They applied it in the framework of a finite 
difference scheme. We apply bending iteration to the free sections between die and bead in order to 
determine the unknowns r1, r2, r4 and r5 (Figure 1). The “entry iteration” of radius 𝑟𝑟1 and 𝑟𝑟2 is 
discussed now. Left to section 1, the sheet is straight, and right to section 2, it matches the bead. At 
section boundaries, normals are identical. All combinations of 𝑟𝑟1 and 𝑟𝑟2 that fulfil this continuity 
condition and do not lead to tool penetrations are called “geometric admissible states”. The vertical 
tool gap 𝑡𝑡0 + 𝑔𝑔 is crucial for the description of the bending form, as already pointed out by Yellup and 
Painter [3]. Among all geometric admissible solutions, the final solution is defined from balance of 
moments: For both sections of the unsupported region between die and bead, the moments with 
respect to point (A) or point (B), respectively, are evaluated. Using this reference, in the moment 
balance only known internal section forces and moments enter. This gives two conditions for the two 
unknowns 𝑟𝑟1 and 𝑟𝑟2 which are fulfilled by the bending iteration. In the same way, the bending form 
between bead radius and die exit radius is described. 

2.6.  Forces. The equivalent restraining force (RF) and equivalent uplift force (UF) are computed from 
the section forces and section moments defined in chapter 2.3.  First, the “lever forces” 𝐹𝐹𝐿𝐿𝐿𝐿,𝐼𝐼𝐼𝐼 and 
𝐹𝐹𝐿𝐿𝐿𝐿,𝑂𝑂𝑂𝑂𝑂𝑂 between upper tool and sheet are derived (Figure 2). Lever forces are tool reactions that 
balance internal bending moments. They are an important element since they dominate the uplift force 
and contribute via frictional forces to the restraining forces. The lever force at die exit radius follows 
from the known section moment 𝑀𝑀 of the last section and the lever arm 𝐿𝐿𝑒𝑒 with help of a moment 
balance 𝑀𝑀 = 𝐹𝐹𝐿𝐿𝐿𝐿,𝑂𝑂𝑂𝑂𝑂𝑂𝐿𝐿𝑒𝑒 around point (D). For the lever arm 𝐿𝐿𝑒𝑒 a geometric assumption from a circular 
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segment formula is used. At the entry radius a similar relation holds. 

 
Figure 2: Definition of bead force, lever forces and total uplift force UF. 

For a given bending shape, in each section the axial forces are known from the numerical solution of 
the virtual work equation, see chapter 2.4.  The axial forces are solved section by section, and 
frictional forces are added where applicable. The Coulomb friction law 𝐹𝐹𝜇𝜇 = 𝜇𝜇𝜇𝜇 is applied for point 
contact, so the lever force contributes 𝐹𝐹𝜇𝜇 = 𝜇𝜇𝐹𝐹𝐿𝐿𝐿𝐿. Euler’s law is applied for the line contact along the 
bead radius, increasing 𝐹𝐹− to 𝐹𝐹+ = 𝐹𝐹−𝑒𝑒2𝜇𝜇𝜇𝜇 [1]. The equivalent restraining force is defined as the axial 
force increase between entry and exit, 𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂 − 𝐹𝐹𝐼𝐼𝐼𝐼. The vertical uplift force between sheet and 
the upper tool is the sum of the lever forces  𝐹𝐹𝐿𝐿𝐿𝐿,𝐼𝐼𝐼𝐼 and 𝐹𝐹𝐿𝐿𝐿𝐿,𝑂𝑂𝑂𝑂𝑂𝑂 and the vertical part of the internal 
forces 𝐹𝐹(2) and 𝐹𝐹(3). For shallow beads, the initial elastic force 𝐹𝐹𝑒𝑒 from elastic beam bending is added 
to UF, as in [1]. Finally, the uplift force 𝑖𝑖𝑖𝑖  𝑈𝑈𝑈𝑈 = 𝐹𝐹𝑒𝑒 + 𝐹𝐹𝐿𝐿𝐿𝐿,𝐼𝐼𝐼𝐼 + 𝐹𝐹𝐿𝐿𝐿𝐿,𝑂𝑂𝑂𝑂𝑂𝑂 +  𝐹𝐹(2)𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐹𝐹(3)𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛. 

2.7.  Generalization and application to double beads. The simplest case is a single bead with no entry 
force applied. In general, the actual state at drawbead entry (entry force, sheet thickness, plastic strain 
and strain hardening) enters the model as a starting condition for the first section. This allows a 
straightforward application of the model to general situations, including also double beads, without 
additional assumptions. Note that the model nowhere does make use of fitting parameters. 

2.8.  Verification of uplift forces for single beads 
At Mondragon University, three sheet materials and thicknesses were examined for a typical 

industrial round bead geometry. In Figure 3 the bead geometry is shown; measured and modelled 
uplift forces are plotted over bead height. The results clearly demonstrate the important role the lever 
forces play in our model. Without lever force, the uplift force is roughly a factor two smaller than 
measured. The full model reproduces the measured data well. 

 
Figure 3: Example bead geometry (DP780 1.33 mm, height 5 mm). Measured uplift forces (points) by 
Mondragon University, modelled uplift forces (lines) with and without contribution of lever forces. 

Model 
No Lever Force 
Exp. Univ Mondragon 
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3.  Application to an industrial example 
Performance of the proposed equivalent drawbead model is validated using real example – underbody 
cross member, see Figure 4. This part was used as Numisheet 2005 benchmark, see [5]. 

 

   
Figure 4: Underbody cross member. Sections to measure: a) draw-in; b) strains and part shape, [5]. 

Blank material is aluminum alloy AL5182-O. Results of two simulations are compared with real 
measurements. One simulation is run using the proposed adaptive line bead model and the other using 
geometric beads. All other process conditions as described in the conference proceedings. 
Total upper die force predicted by two simulations is similar, i.e. about 1700kN. Figures 5-6 show 
comparison of material draw-in, true thickness strain after forming and part’s shape after springback. 
Although results calculated with geometric beads are slightly closer to experimental measurements, 
adaptive line bead model gives a good prediction of typical variables used to validate a process. CPU 
time is about 2.5 times less compared to the geometric beads and therefore the proposed line bead 
model can be considered as an efficient way to incorporate drawbead effects in the simulation.  

  
Figure 5: Simulation results: a) material draw-in after drawing; b) true thickness strain in section I 

  
Figure 6: Springback profiles at sections I and IV. 
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