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ABSTRACT Due to their particular structure, switched-flux permanent magnet machines have become a
very interesting alternative for many applications. This is why some recent studies have been focused in the
understanding of the operating mechanism of these machines via the MMF-permeance modelling. However,
the models that can be found in the literature make some simplifications that reduce their accuracy when
predicting the performance of switched-flux machines. For example, the models that can be found in the
literature are commonly not precise enough for machines with a wide slot, because the influence of the
modulator of the primary side of the machine is neglected. In this article, a precise analytical model is
developed for a 6/13 C-Core switched-flux machine via a combination of a magnetic equivalent circuit and a
MMF-permeance model. The model is based on the magnetic field modulation principle. The analytical
model is used to explain the flux focusing effect and the force generation mechanism of switched-flux
machines. A new concept of PM field harmonic efficiency ratio is used to identify the most efficient PM
field harmonics of 2 switched-flux machines. The precision of the model is validated via 2D and 3D Finite
Element Method simulations, and experimental measurements that were obtained with a linear machine
prototype. The results show that the model can predict the performance of switched-flux machines with a
high accuracy level.

INDEX TERMS Flux-switching, linear machine, air-gap field modulation, PM brushless machine.

I. INTRODUCTION
Switched-Flux Permanent Magnet Machines (SFPMs) are
a kind of Permanent Magnet (PM) machine that has both
the armature winding and the PMs mounted in the primary
side, while the secondary is composed of a salient ferro-
magnetic structure. Thanks to their particular structure, these
machines combine the high performance of conventional
PM machines with the ruggedness of switched-reluctance
machines [1]. Moreover, as the PMs and the armature are
placed in the same side, the active elements can be easily
cooled in SFPMs [1]. These characteristics make them an
ideal candidate when high speed or high power density are
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needed, such as aerospace, automotive or electrical appliance
applications [2]–[4].

When talking about linearmachines, Linear Switched-Flux
Permanent Magnet Machines (LSFPMs) inherit the same
advantages of the rotating counterparts. Moreover, conven-
tional PMmachines need to place either the armature winding
or the PMs along the whole stationary rail. Thanks to their
passive ferromagnetic secondary, LSFPMs exhibit a much
lower cost when compared to conventional PM machines in
long stroke applications [5].

Additional benefits can also be brought by the linear
configuration of these machines in many applications.
Zhang et al. [6] showed that solid-cored LSFPMs could pro-
vide an additional safety feature to free-falling vehicles, cre-
ating a non-contact braking force and limiting the falling
speed. The innate structure of LSFPMs also makes them
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very suitable for the reciprocating motion of wave energy
conversion systems [7] where the complex transmission
gearing of rotating machines can be avoided. The high
acceleration/deceleration rates that can be achieved by these
machines have made them a very interesting alternative for
electromagnetic launch systems, where they may replace the
conventional steam launch system in the future [8].

A particularly high interest has been generated by LSFPMs
in railway transportation. Linear machine driven vehicles can
climb higher gradients than conventional systems, thanks
to the non-contact thrust generation, moreover, they require
less maintenance than conventional systems [9]. Cao et al.
published a series of papers analysing the complementary
and modular LSFPM configuration for railway transporta-
tion [10]–[12]. Then, Cao et al. [1], compared the perfor-
mance and the feasibility of a linear induction machine and
a LSFPM for Metro line 4 in Guangzhou. The authors con-
cluded that despite the increased initial cost, the difference
in cost would be recovered in 493 to 657 days in electrical
energy cost savings with the LSFPM.

There is no doubt that switched-flux machines are a very
interesting electrical machine technology. However, SFPMs
suffer from a severe PMflux leakage in the primary side of the
machine. This reduces their PM utilisation, and consequently,
the volume of PMs is usually high in these machines [13].
In this aspect, some advanced machine topologies have
emerged in the literature, which claim to reduce the PM
usage, while the torque capability is enhanced. These are the
multi-tooth, E-Core and C-Core machines [14]–[16].

Recently, many studies have analysed the airgap field mod-
ulation effect of switched-flux machines [17]–[20]. However,
as stated in [19], some papers adopt simplified square-wave
permeance and MMF models, and therefore, have a lim-
ited precision when predicting the performance of these
machines.

A general airgap field modulation theory for electrical
machines was published by Cheng et al. in [21]. In this work,
Cheng et al. explain the procedure to analyse many types of
electrical machines via the airgap field modulation theory.

The theory has been applied to switched-flux PMmachines
in [19] and [20]. Wang et al. used the airgap field modulation
theory to explain the back-EMF generation principle in [19],
and the torque generation in [20]. However, in the analytical
predictions, the influence of the stator modulator over the
amplitude of the airgap field harmonics was considered negli-
gible. This is true in the conventional 12/10 U-Core machine
that was analysed in the article. This influence however,
depends on the width of the primary slots.

In certain switched-flux machines with a wide slot, like
the advanced C-Core topology, the influence of the primary
modulator is so high that it changes the order of the dominant
airgap field harmonic. Moreover, the flux focusing effect of
SFPMs is not contemplated by the model that is introduced
in [19] and [20]. The flux focusing effect also depends on the
width of the slots. Consequently, the peak values of the airgap
flux density that are obtained with the model are far from the

values that were obtained by FEM simulations for machines
with wide slots.

In this article, a highly precise Magnetic Equivalent Cir-
cuit (MEC) and MMF-permeance model is presented for
switched-flux machines.

• The model can contemplate the influence of the primary
modulator and the flux focusing effect over the spectrum
of the airgap flux density.

• The dominant thrust force contributing harmonics of a
U-Core and a C-Core machine are identified thanks to
the Fourier Series expansion of the permeance model.

• A new concept of PM field harmonic efficiency ratio
is introduced. This ratio is used to identify the most
efficient PMfield harmonics of the U-Core and a C-Core
machine, and some suggestions are given for the design
of the primary slots of the machines.

• The finite element and experimental results demonstrate
the high accuracy of the presented model.

The article is organised as follows. The open-circuit flux-
focusing effect is explained via the MEC in section II.
Section III analyses the magnetic circuit that is perceived
by the coils of the machine. The modulation effect of the
magnetic field is described in section IV. The expressions of
the flux linkage, back-EMF and thrust force of the machine
are derived in section V, and section IV identifies the domi-
nant thrust contributing harmonics, and their interaction. The
experimental validation of the results is given in section VII.
Finally, the conclusions are given in section VIII.

II. FLUX FOCUSING EFFECT AND OPEN-CIRCUIT
AIRGAP FLUX DENSITY
To illustrate the need for a MEC, Fig. 1 shows a comparison
between the non-slotted open circuit airgap flux density, the
open circuit airgap flux density with only the primary slots,
and the totally slotted airgap flux density of a 6/13 C-Core
machine. Notice that the variation of the amplitude of the
airgap flux density is quite significant in Fig. 1. This variation
is driven by the flux-focusing effect of SFPMs. When the
machine is slotted, the reluctance of the airgap is increased
in the slotted areas. In the slotted machines, the PMs try to
introduce the same flux as in the non-slotted machine, so they
increase the Magneto-Motive Force (MMF) to compensate
the increased reluctance. This increased MMF is responsible
of the variation of the amplitude of the airgap flux density
in Fig. 1. In the regions that are not slotted, the increased
MMF observes the same reluctance as in the non-slotted
machine. Therefore, the peak value of the airgap flux density
is increased.

It was stated in [19] and [20] that in switched-flux
machines in general, the modulator of the primary side does
not significantly influence the amplitude of the harmonics of
the PM MMF. But in some switched-flux machines with a
wide slot, the influence of the primary modulator is so signif-
icant, that it changes the order of the dominant airgap MMF
harmonic. This section will analyse a 6/13 primary/secondary
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FIGURE 1. Comparison of the non-slotted and the slotted open circuit
airgap flux density waveforms.

FIGURE 2. General view of the model.

pole C-Core machine in order to illustrate this phenomenon.
Fig. 2 shows the linear machine that is modeled in this article,
and Table 1 gives the value of its main parameters. The
variables from Table 1 are described in Fig. 2 and in Fig. 4.

In this section, a precise MEC model is developed, which
is based on the magnetic field modulation theory. Due to the
availability of a linear SFPMmachine prototype, the model is
developed for a linear motor. The model has been developed
under the following assumptions:

• The material of the ferromagnetic parts of the machine
is an ideal material with an infinite permeability and no
saturation.

• The magnetic flux of the airgap is parallel to the y axis
of Fig. 2.

• Themagnets are assumed to operate inside the linear part
of their curve.

• The green dashed lines from Fig. 2 are considered
equipotential.

• The end effect is ignored, so that the same results can be
obtained with an equivalent rotating machine.

• An axial length of 1 m is assumed when calculating the
parameters of the magnetic circuit. In this way, the axial
length can be simplified from the expressions.

A. MAGNETIC FLUX DENSITY IN THE
AIRGAP—OPEN CIRCUIT
Assuming an ideally periodical machine, the magnetic circuit
of the PMs can be simplified to that shown in Fig. 3.
The circuit in Fig. 3 corresponds to a single primary core of

a LSFPM. Therefore, an individual circuit must be defined for
every single pole of the machine, in order to obtain the flux
density distribution of the whole machine. The total airgap
flux density is obtained via the concatenation of the airgap
flux density of the individual cores.

TABLE 1. Main parameters of the example machine.

FIGURE 3. Magnetic circuit observed by the magnets.

1) PM EXCITATION
In Fig. 3, φpm is the flux that is generated by a single magnet
in the circuit,

φpm = Brhpm, (1)

Rpm is the leakage reluctance of the source,

Rpm =
ωpm/2
hpmµ0µr

, (2)

and Rlkg is the reluctance that is used to account for the flux
leakage that appears at the top of the primary of the machine.
Its value was approximated assuming a circular path of the
leakage flux, with

Rlkg ≈ Klkg
π

8µ0
Klkg ≈ 1. (3)

Klkg is the leakage factor, which is used for the final adjust-
ment of the flux leakage reluctance.

If the airgap is divided into n segments along the x axis,
each of the elements that are created will have its own reluc-
tance value, depending on its alignment with the primary and
the secondary slots. The calculation of these reluctances is
explained below.

2) BASE RELUCTANCE OF THE AIRGAP
This base reluctance refers to the reluctance that would be
present in the airgap of the machine if no slots were present.
It can be obtained from (4).

Rgb (x) =
g(x)
µ0
=

g
µ0

(4)
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3) EFFECT OF THE PRIMARY AND SECONDARY
SIDE MODULATORS
The slotting of the primary and the secondary generates a
distortion in the distribution of the airgap flux density. This
distortion can be explained via the magnetic field modulation
theory [21]. According to the theory, the effect of the N
individual modulators of a machine is combined so that the
total modulator function,Mt , is

Mt (x) =
N∏
i=1

Mi (x) . (5)

This means that the effect of each of the individual mod-
ulation operators can be obtained individually, and then
combined via (5).

The expression for obtaining the waveform of the modula-
tion operators of a switched-flux machine is given in [19].
This modulation operator is calculated via the conformal
transformation that was presented by Zhu and Howe in [22].
The expression was introduced for the calculation of the rel-
ative permeance of a slotted machine. The concept of relative
permeance and the derivation of the expression are explained
in detail in [22]. Hence, the readers are advised to refer to this
paper in order to understand the origin of the expression.

The drawback of this formula is that it was originally devel-
oped by assuming a slot with a finite width and a tooth with
an infinite length [22]. Therefore, the effect of the distortion
is not estimated perfectly in machines with large slots and
narrow teeth. In order to obtain the desired distortion, the
modulation operators must be calculated with an enlarged
airgap length. Another alternative is to use the improved
conformal mapping [23]. In this study, the expressions that
have been used are those from [22]. Consequently, an airgap
enlarging coefficient, Kξ ≈ 1, has been introduced to the
formulas in order to adjust the distortion of the modulators.

In this method, a path is defined along the centre of the
airgap of the example machine in the complex plane z. The
points of the path are definedwith their Cartesian coordinates,
x and y,

z(x, y) = x + j · y. (6)

In (6), j is the complex operator.
After defining all the points of the path, these points are

transformed to the complex plane w by solving (7) for w

z(x, y) =
b0
π

 arcsin
(
w(x, y)
a

)

+
Kξg
b0

ln

√a2 − w(x, y)2 + 2Kξ g
b0

w(x, y)√
a2 − w(x, y)2 − 2Kξ g

b0
w(x, y)

 , (7)

where the value of a is obtained from,

a =

√
1+

(
2Kξg
b0

)2

, (8)

b0 is the width of the slot, and g is the length of the airgap.

FIGURE 4. Widths of the slots in a switched-flux machine.

After calculating the coordinates of the airgap path in thew
plane, the value of the complex modulation operator, EM , can
be obtained from

EM (x, y) =
1√

1+
(

b0
2Kξ g

)2
−

(
b0

2Kξ g
w(x, y)

)2 . (9)

The value of EM is a complex number, where the real
part indicates the modulation in the y direction of the
airgap, and the imaginary value refers to the modula-
tion in the x direction. Hence, the modulation function
of the y axis in the center of the airgap, M , is obtained
with,

M (x) = IR
{
EM (x,Kξg/2)

}
. (10)

As it can be seen in Fig. 4, there are 3 types of slots
in LSFPMs. The primary armature slots, the slots where
the PMs are placed, and the slots of the secondary rail.
Every single one of these slots has its own modulating
effect, which can be obtained by replacing the value of b0
in (7), (8), and (9) with the corresponding width of each of
the slots.

The secondary slots have a particularity. In this case,
the secondary rail has been considered the moving
part of the machine. Thus, the position of the mod-
ulation operator of the secondary rail must be dis-
placed together with the rail in every time step of the
calculations.

The modulating function that is obtained with (9) is
that of a single slot. Therefore, in order to obtain the
total modulation operator of say, the secondary slots, the
effect of each individual secondary slot must be obtained
first. Then, the total function is obtained from the prod-
uct of all the single slot modulators. The same goes for
the PM and the armature winding slots. Fig. 5 shows the
modulation function of the secondary slots of the example
machine.

From (5), the total airgap reluctance can finally be obtained
with (11)

Rg(x, t) =
Rgb (x)

Mpa(x)Mpm(x)Ms(x, t)
. (11)
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FIGURE 5. Modulation function of the secondary slots.

FIGURE 6. Distortion of the magnetic flux lines due to the primary slot
modulator in a switched flux machine.

Some might argue that the modulation operator itself is
able to predict the flux focusing effect, because it is able to
predict the path that the flux lines follow through the airgap.
Due to the effect of the slotting, some of the flux lines that
are introduced to the airgap are not completely directed in the
y axis of Fig. 2. This distortion drives them towards the edges
of the teeth. Therefore, the modulation operator can present
values that are larger than 1 in some regions, to account
for this flux focusing effect. This distortion can be observed
in Fig. 6.

However, the distortion of the flux lines through the air-
gap does not tell the whole story. Notice in Fig. 3 that the
reluctances of the airgap are all in parallel, and therefore, they
all perceive the same MMF. When there are no slots in the
machine, the values of the reluctances of the airgap are uni-
form through the whole airgap. However, when the slots are
placed in the machine, the value of some of those reluctances
is increased. The PMs will consequently perceive a higher
reluctance in the magnetic circuit. Based on the magnetic
flux conservation principle, the MMF that is introduced by
the magnets in the circuit will increase to try to compensate
this increased reluctance. It is this increase in the MMF that
is introduced by the magnets which will create a larger flux
density in the airgap regions that are not distorted by the
modulation effect. Thus, the MMF that is introduced by the
magnets must be recalculated to account for the effect of
the slotting.

4) RESOLUTION OF THE MAGNETIC CIRCUIT
For an easier understanding of the magnetic circuit in Fig. 3,
a rearranged circuit is given in Fig. 7. Notice that the top and
the bottom surfaces in Fig. 7 are at the same potential.

FIGURE 7. Magnetic circuit observed by the magnets, rearranged.

FIGURE 8. Simplification steps of the magnetic circuit that is observed by
the magnets. (a) Step 1, simplification of the parallel elements. (b) Step 2,
series equivalent circuit.

It is easy to see in Fig. 7 that all the elements in each of the
layers of the model are in parallel. Thus, the magnetic circuit
can be simplified further to that which is shown in Fig. 8 (a).

The value of φ1 can be obtained with,

φ1 = 2φpm, (12)

R1 is the total leakage reluctance,

R1 =
1

1
Rlkg
+

1
Rlkg
+

1
Rpm
+

1
Rpm

, (13)

and the total airgap reluctance is obtained by reciprocating
the integral of the airgap permeance.

Rgt (t) =
1∫ τp

0

1
Rg(x, t)

dx
(14)

When analysing electrical or magnetic circuits, an inter-
esting property is the interchangeability of the voltage/MMF
sources with current/flux sources. As it can be seen in Fig. 9,
the parallel branch of Fig. 8 (a) can be replaced by a series
branch with an equivalent MMF source and an equivalent
reluctance.

Hence, it can be deduced that the values of the elements in
Fig. 8 (b) are

θ2 = φ1R1, and (15)

R2 = R1, (16)

and finally, the total airgap MMF can be obtained with

θg(t) =
θ2

R2 + Rgt (t)
Rgt (t). (17)
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FIGURE 9. Equivalency of the source elements of the magnetic circuit.

The airgap flux density that is generated by the PMs, Bmgs ,
can be obtained by dividing the total airgap MMF with the
spatial distribution of the airgap reluctance

Bmgs (x, t) =
θg(t)
Rg(x, t)

. (18)

However, in the equivalent magnetic circuit, the PMMMF
switches abruptly from its maximal value to the minimal
value and vice-versa in the centre of the magnets. This abrupt
change leads to some spikes in the analytical prediction
of Bmgs . In the reality, the PM MMF follows a ‘‘s-shaped’’
curve, as it can be observed in Fig. 1. The shape of the
equivalent airgap PM MMF can be rectified by means of a
fringing modulator. This modulator is a periodic expression
with a period of τp. The expression of the function is given
in (19), and the waveform of the fringing modulator is given
in Fig. 10.

Mf (x) =

 1− e
−

6x
ωpm 0 ≤ x < τp/2

1− e
−

6(x−τp)
ωpm τp/2 ≤ x < τp

(19)

After defining the fringing function, it is possible to adjust
the reluctance of the airgap with (20).

Rgf (x, t) =
Rg(x, t)
Mf (x)

(20)

The waveform of Bmgf (x, t), which accounts for the fring-
ing, can be obtained by replacing Rg(x, t) in (14), (17) and
(18) with (20).

5) ANALYSIS OF THE FLUX FOCUSING EFFECT
In this section, the results that have been obtained for the
example machine from the magnetic equivalent circuit are
validated via 2D Finite Element Method (FEM) simulations.
Despite the simplifications, the waveforms of the airgap flux
density that were obtained from the 2D FEM simulation and
the MEC are very close to each other. This happens because
the magnetic materials of the machine do not suffer a heavy
saturation in the open circuit condition.

The different stages of the modulation process are now
individually analysed to demonstrate the importance of the
primary modulator in the operation of wide slot opening
SFPMs. Notice that when displaying the spectrum of the
different waveforms, only the amplitude of the positive order
harmonics is given, in order to obtain a more visually pleasant
figure.

First of all, the result of the virtual machine with no slots
can be obtained from the MEC by defining

Rgf (x) =
Rgb (x)

Mf (x)Mpm (x)
. (21)

FIGURE 10. Waveform of the fringing modulator.

FIGURE 11. Simulation models. (a) Virtual machine with ‘‘no slots.’’
(b) Virtual machine with all the primary slots.

Notice in Fig. 11 (a) that the modulation effect of the
magnets is introduced when the PMs are introduced in
the machine. Therefore, the airgap flux density of the
virtual ‘‘non-slotted’’ machine actually contains the PM
slots.

The waveform of the open circuit airgap flux density is
given in Fig. 12 (a). The spectrum in Fig. 12 shows a clear
dominance of the fundamental harmonic of the PM field,
of order ppm = 3.
Then, the airgap flux density for the machine with all the

primary slots (Fig. 11 (b)) is obtained with

Rgf (x) =
Rgb (x)

Mf (x)Mpm (x)Mps (x)
. (22)

The open circuit airgap flux density of this second case is
given in Fig. 13. This time, the distorting effect of the primary
modulator is so significant, that the dominant harmonic is
changed. The largest amplitude harmonic can be found to be
the 3ppm = 9 in Fig. 13 (b). Hence, qualifying this distorting
effect as negligible would be incorrect. This effect is a crucial
part in the operation of large slot-opening SFPMs.

Finally, the waveform of the airgap flux density that is
produced by the magnets in the totally slotted machine from
Fig. 2 is given in Fig. 14, and can be obtained from

Rgf (x, t) =
Rgb (x)

Mf (x)Mpm (x)Mps (x)Ms (x, t)
. (23)

Notice that the primary slots do not crate any additional
harmonic components in Fig. 12 and Fig. 13. They only
modify the amplitude of the existing harmonics, due to the
flux focusing effect. This happens because the period of the
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FIGURE 12. Open circuit airgap flux density of the machine with ‘‘no
slots.’’ (a) Waveform, and (b) spectrum.

PM field wave is a multiple of the period of the primary
modulator functions. On the other hand, when the secondary
modulator is introduced in the machine, a handful of new
harmonics emerge in Fig. 14. Table 2 shows a comparison
of the amplitude of the main airgap flux density harmonics
in all the three cases. An amplitude of ≈ 0 is showed in
the table for the harmonics which have an amplitude of
<10-5. This amplitude can be attributed to the numerical
error.

The periods of the modulator of the secondary and the PM
field are not multiples. Hence, the new harmonics emerge
from the interference of the magnetic field that is produced by
the primary and the secondary modulator function. The mod-
ulation phenomenon that creates these additional harmonics
is analysed in detail in section V.

III. ARMATURE AIRGAP FLUX DENSITY
In order to obtain a proper representation of the armature air-
gap flux density, the winding function and the turns function
must be defined first. In this case, the analysis starts with the
definition of the star of slots.

A. WINDING FUNCTION AND TURNS FUNCTION
1) STAR OF SLOTS
The star of slots is a very useful tool when defining the distri-
bution of the conductors of a phase. It is a vectorial represen-
tation of the fundamental component of the back-EMF that
is going to be induced in each of the slots. The definition of
the star of slots is slightly different in switched-flux machines
when compared to that of conventional PM machines.

FIGURE 13. Open circuit airgap flux density of the machine with all the
primary slots. (a) Waveform, and (b) spectrum.

FIGURE 14. Comparison of the airgap flux density produced by the
magnets, analytical tool with fringing function vs. FEM. (a) Waveform, and
(b) spectrum.

The procedure starts with the definition of the number of
pole-pairs of the armature winding, pw [24]

pw = ns − ppm. (24)
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TABLE 2. Amplitude of the airgap flux density harmonics.

FIGURE 15. Star of slots of the 6/13 C-Core machine.

ns and ppm are the number of secondary teeth and the PM
pole-pair number.

The periodicity of the winding, tp, in switched-flux
machines is [25]

tp = gcd
(
np
nl
2
, pw

)
. (25)

np is the number of primary poles, and nl is the number
of layers of the winding, so that nl = 1 for single layer
machines, and nl = 2 four double layer machines.

The spokes-per-phase, qph, are given by

qph =
npnl
2tpm

, (26)

where m is the number of phases of the machine, and the
electrical displacement between adjacent primary slots, αe is
expressed as

αe = pw
2π
np
. (27)

The star of slots of the example machine was obtained
based on the preceding equations. The result is shown in
Fig. 15. The machine has a winding periodicity value of 2,
that is why there are only 3 vectors to represent the 6 slots of
the machine.

2) CONDUCTOR DISTRIBUTION
Once the star of slots is defined, the conductor distribution
function,C(x) can be obtained. This starts with the analysis of
a single coil of the machine. The shape of the conductor dis-
tribution function will change according to the layout of the
conductors of the coil inside the slot. In the example machine,
with tp = 2 and qph = 1, and a uniform distribution of the

FIGURE 16. Waveforms of the conductor distribution function and the
winding function in a single periodicity of the example machine.

turns inside the slot, the shape of the conductor distribution
function is shown in Fig. 16.
Assuming a periodic coil with Z turns, a width of ac and a

coil span of bc, its conductor distribution Cc function can be
defined as

Cc(x) =



0
−npτp
2tp

≤ x <
−bc
2
− ac

Z
ac

−bc
2
− ac ≤ x <

−bc
2

0
−bc
2
≤ x <

bc
2

Z
ac

bc
2
≤ x <

bc
2
+ ac

0
bc
2
+ ac ≤ x <

npτp
2tp

.

(28)

At this point, the winding function of that coil can be
obtained by integration of the conductor distribution function,

Fc(x) =
∫
C(x)dx. (29)

The winding function of a phase, Fph, is the sum of the
individual winding functions of the coils of a phase that are
inside of a winding periodicity,

Fph (x) =
nc∑
i=1

Fci (x) . (30)

nc is the number of coils of a phase inside a winding
periodicity.

In conventional machines, the shape of the winding func-
tion and the per-current-unit airgap MMF Fg(x) is the
same [26].

However, due to the discontinuous path in the magnetic
circuit of the coils in PM switched-flux machines, the shape
of the airgap MMF is different to that of F(x). This happens
because the slots of the PMs act as additional airgaps that
the flux lines of the coil have to cross before returning to the
origin. Therefore, most of the field of an armature coil is con-
centrated in the two core-pieces that it is wound at. In order to
contemplate this phenomenon, the magnetic circuit of a coil
is defined in Fig. 18.
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FIGURE 17. Winding function of the example machine.

Notice that the MMF sources of the circuit in Fig. 18 are
modelled with the turns function. This function is nothing
but the winding function with a bias. The function describes
the spatial distribution of the physical amount of turns of
a winding. Hence, for example, if a tooth is left unwound,
the value of the turns function along that tooth will be 0,
whereas the winding function could still have a non-zero
value. The bias of the turns function for the example machine,
T0, is given by

T0 = tpZ
ac + bc
npτp

. (31)

B. MAGNETIC CIRCUIT OF THE COILS
Notice that there is an increased reluctance in the circuit for
the flux lines that pass through the permanent magnets in
the edges of Fig. 18. This increased reluctance acts as an
enlarged airgap, and therefore, it influences the distribution of
the flux that is generated by the coil. Fig. 19 shows the spatial
distribution of the increased airgap length. The flux lines
that pass through the last half-core must cross the permanent
magnets. Therefore, the width of themagnetic circuit changes
from τp/2 − ωpm/2, to hpm. Consequently, the value of the
airgap-increasing reluctance, Rpmx (x) must be normalised to
account for this change. The readers might also notice that
there is another PM in the centre of Fig. 18. However, the
influence of this magnet is so small, that the reluctance can
be neglected for simplicity of the circuit.

If the airgap reluctance of a coil is defined as

Rgc(x, t) = Rg(x, t)+ Rpmx (x), (32)

the magnetic circuit of a coil can be simplified to that shown
in Fig. 20 (a). By using the equivalency that was shown in
Fig. 9, the magnetic circuit can be transformed into a series
of parallel flux sources and resistors Fig. 20 (b). Then, the
total resistance of the coil’s circuit and the equivalent total
flux (Fig. 20 (c)) can be obtained with

Rgct (t) =
1∫ npτp

2tp

−npτp
2tp

1
1

Rgc(x,t)

dx

, and (33)

φc2(t) =
∫ npτp

2tp

−npτp
2tp

φc1 (x, t) dx. (34)

FIGURE 18. Magnetic circuit of a coil in the example machine.

FIGURE 19. Reluctance increase in the magnetic circuit of a coil.

Finally, the per current-unit MMF can be obtained from
(35), by assuming that i (t) = 1,

Fg (x, t) =
T (x) i (t)− θcgt (t)

Rgc (x, t)
Rg (x, t) , (35)

and therefore, the airgap flux density of coil c, Bagc (x, t) is

Bagc (x, t) =
Fg (x, t) i (t)
Rg (x, t)

. (36)

The total expressions for the turns function and airgap
flux density of a phase, Tph(x) and Bagph (x, t) respectively, are
the sum of those of the individual coils of that phase.

Tph(x) =
nc∑
n=1

Tn (x) (37)

Bagph (x, t) =
nc∑
n=1

Bagcn (x, t) (38)

The total flux density that is generated by the armature,
Bag (x, t), which is shown in Fig. 21 (b), is obtained with the
sum of the individual Bagph (x, t) of each of the phases.

Bag (x, t) =
m∑
k=1

Bagph (x, t) (39)

IV. MODULATION OF THE MAGNETIC FIELD
In this section, the harmonics of the open circuit airgap flux
density and the armature airgap flux density are analysed via
the magnetic field modulation principle.
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FIGURE 20. Simplification of the magnetic circuit of a coil.

A. OPEN CIRCUIT AIRGAP FIELD HARMONICS
The analysis procedure starts with the obtention of the air-
gap flux density that is generated by the PMs in the slotted
machine,Bmgs . According to [19] the total modulating function
is the product of the individual modulator functions. There-
fore, the modulated Bmgs can be obtained with

Bmgs (x, t) = Bmg (x)Mp (x)Ms (x, t) . (40)

Bmg is the flux density that is introduced by the PMs in
the airgap of a virtual machine with no slots, but, accounting
for the flux-focusing effect that was explained in section II.
Fig. 22 shows a graphical comparison between Bmg and the
real airgap flux density in a machine without slots. To obtain
this function, the airgap flux density that was calculated
for the slotted machine must be divided with the modula-
tors of the secondary rail, the PM slots and the armature
slots.

Bmg =
Bmgs (x, t)

Ms (x, t)Mpm (x)Mpa (x)
(41)

Remember that there are two different types of slots in the
primary of switched-flux PMmachines. These are the slots of
the PMs and the slots where the armature coils are introduced.
Mp is the function that describes the combined effect of both
of these slots,

Mp (x) = Mpa (x)Mpm (x) , (42)

whereMpa (x) is the modulating function of the armature coil
slots, andMpm (x) is the modulation function of the PM slots.
As it can be seen in Fig. 23 the modulating functions are

periodic functions with an average value. Therefore, they can
be expressed as a fourier series as in (43) and (44).

Mp (x) = Mp0 +

∞∑
i=−∞

EMpie
jnpi

(
γ−x 2π

npτp

)
(43)

Ms (x, t) = Ms0 +

∞∑
v=−∞

EMsve
jnsv

(
ξ−x 2π

npτp
−V 2π

npτp
t
)
(44)

FIGURE 21. Per-current-unit airgap MMF (a) and airgap flux density
(b) generated by a periodic coil.

FIGURE 22. Airgap flux density of a virtual machine with no slots, Bm
gm ,

and equivalent non-slotted airgap flux density accounting for the
flux-focusing effect, Bm

g .

Mp0 and Ms0 are the average values of the primary and
secondary modulation functions. EMpi and EMpv are the vectors
of the i-th and v-th harmonics. np and ns are the number of
armature slots in the primary and the number of secondary
slots. τp is the primary pole pitch, and γ and ξ are the initial
phases of the functions in radians. Notice in (44) that the
positive sense of the speed, V , translates the secondary rail
to the left side of Fig. 2.

On the other hand the equivalent non-slotted airgap flux
density, Bmg is also a periodic function. In this case, as shown
in Fig. 22, there is no average value, and the function can be
expressed as

Bmg (x) =
∞∑

h=−∞

EBmghe
jhppm

(
ϕ−x 2π

npτp

)
. (45)

EBmgh is the vector of the h-th harmonic, ppm is the number of
PM pole pairs, and ϕ is the initial phase of the PM field.
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FIGURE 23. Modulation function of the primary slots of the example
machine.

Notice that the period ofMp is half of that ofBmg . Therefore,
the combination of these functions, Bmgp , does not create any
additional harmonics, and can also be expressed as a Fourier
series,

Bmgp (x) =
∞∑

n=−∞

EBmgpne
jnppm

(
ϕ−x 2π

npτp

)
, (46)

where EBmgpn is the vector of the n-th harmonic.
Now, the modulated airgap flux density that is produced by

the magnets can be deduced to be

Bmgs (x, t) = Bmgp (x)Ms (x, t) , (47)

which yields

Bmgs (x, t)=Ms0

∞∑
n=−∞

EBmgpne
j
(
nppmϕ−nppmx 2π

npτp

)

+

∞∑
n=−∞

∞∑
v=−∞

EMsv
EBmgpn

× e
j
(
nppmϕ+vnsξ−x 2π

npτp (nppm+vns)−vnsV
2π
npτp

t
)
. (48)

Notice that the first term of (48) is not time-dependant.
Therefore, its harmonic content stays at the same position no
matter the position of the secondary rail. On the other hand,
the second term is indeed time-dependant, and the harmonics
that are described there will vary their position when the
secondary rail is displaced.

Also notice that the number of pole pairs of the static term
is the same as that of the non-modulated Bmg , whereas the
pole pair number of the dynamic harmonics is the result of
the interference between the original Bmg harmonics and the
harmonics of the secondary modulator.

B. THE MODULATED ARMATURE MMF
In order to explain the interaction of the harmonics of the
armature MMF with those of the PM field, the Fourier anal-
ysis is applied to the armature MMF in this section. To start
with, notice that the armature MMF from Fig. 21 (a) does
not have the same period as the winding function in Fig. 17.
There are some subharmonics that emerge because of the
discontinuous path of the magnetic circuit in the primary of

FIGURE 24. Simplification of the per-current-unit airgap MMF.
(a) Waveform and (b) spectrum.

the machine. These subharmonics do not contribute to the PM
force, and hence, they are neglected in this section. Fig. 24
shows the initial and the simplified per-current-unit MMF
waveforms and their spectra, where the neglected subharmon-
ics are highlighted in green.

Much like in the case of the PM field, the period of
the airgap MMF that is produced by the armature and
that of the primary modulator are multiples of each other.
Hence, no additional harmonic is produced due to their
interaction. Therefore, it is possible to define the com-
bination of the per-current-unit airgap MMF of a phase
and the primary modulator, Fgpph (x, t) as a Fourier series
as

Fgpph (x, t) =
∞∑

k=−∞

EFgpk e
jktp

(
δ−x 2π

npτp

)
. (49)

EFgpk is the vector of the kth harmonic and δ is the initial
phase of the waveform in radians. The MMF of that phase
will therefore be obtained by multiplying Fgpph (x, t)with the
supply current,

iph (t) = Î cos (ωt + φ) , (50)

which is assumed to be a perfect cosine with no harmonic
content, and can be represented exponentially as

iph (t) =
Î
2
ej(ωt+φ) +

Î
2
e−j(ωt+φ). (51)

Î is the peak value of the current, ω is the angular velocity
of the current vector, and φ is its initial angle. Therefore, the
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airgap MMF of a phase,MMFgpph (x, t) yields

MMFgpph (x, t)

=
Î
2

∞∑
k=−∞

EFgpk e
j
(
ktpδ−ktpx 2π

npτp
+ωt+φ

)

+
Î
2

∞∑
k=−∞

EFgpk e
j
(
ktpδ−ktpx 2π

npτp
−ωt−φ

)
. (52)

Assuming a perfectly balanced and symmetrical three
phase 6/13 pole switched-flux machine,

ktpδa = ktpδ, ktpδb = ktp
(
δ + 2π

3tp

)
, ktpδc = ktp

(
δ − 2π

3tp

)
(53)

and,

φa = φ φb = φ −
2π
3

φc = φ +
2π
3
, (54)

the total 3 phase armature MMF can be deduced to be

MMFgp (x, t)

= MMFgpa (x, t)+MMFgpb (x, t)+MMFgpc (x, t)

=
Î
2

∞∑
k=−∞

EFgpk e
j
(
ktpδ−ktpx 2π

npτp
+ωt+φ

)

×

(
1+ 2 cos

(
2π
3
(k − 1)

))
+
Î
2

∞∑
k=−∞

EFgpk e
j
(
ktpδ−ktpx 2π

npτp
−ωt−φ

)

×

(
1+ 2 cos

(
2π
3
(k + 1)

))
. (55)

The modulated airgap MMF, MMFM (x, t) can now be
obtained with

MMFM (x, t) = MMFgp (x, t)Ms (x, t) . (56)

From (44), (55), and (56), it can be deduced that

MMFM (x, t)

= Ms0
Î
2

∞∑
k=−∞

EFgpk e
j
(
ktpδ−ktpx 2π

npτp
+nsV 2π

npτp
t+φ

)

×

(
1+ 2 cos

(
2π
3
(k − 1)

))
+Ms0

Î
2

∞∑
k=−∞

EFgpk e
j
(
ktpδ−ktpx 2π

npτp
−nsV 2π

npτp
t−φ

)

×

(
1+ 2 cos

(
2π
3
(k + 1)

))
+
Î
2

∞∑
k=−∞

∞∑
v=−∞

EFgpk EMsv

× e
j
(
ktpδ+nsvξ−x(ktp+nsv) 2π

npτp
+nsV 2π

npτp
t(1−v)+φ

)
×

(
1+ 2 cos

(
2π
3
(k − 1)

))

TABLE 3. Characteristics of the harmonics of Bm
gs and MMFM .

+
Î
2

∞∑
k=−∞

∞∑
v=−∞

EFgpk EMsv

× e
j
(
ktpδ+nsvξ−x(ktp+nsv) 2π

npτp
−nsV 2π

npτp
t(1+v)−φ

)
(
1+ 2 cos

(
2π
3
(k + 1)

))
. (57)

The airgap flux density that is introduced by the armature
into the airgap can now be obtained from

Bag (x, t) =
µ0

g
MMFM (x, t) . (58)

Notice that the armature MMF is also going to create a
rich combination of airgap field harmonics. In this case, the 2
latter terms of (57), which appear thanks to the modulation of
the secondary rail, are capable of producing static harmonics
when v = 1. On the other hand the first 2 terms, will only
produce dynamic harmonics.

As a summary of the modulation, Table 3 compares the
characteristics of the harmonics of Bmgs and MMFM . Notice
that both static and dynamic harmonics exist in both cases.
Section V will analyse the linkage of these harmonics,
and the thrust force generation mechanism of switched-flux
machines.

V. FLUX LINKAGE, BACK-EMF AND
THRUST FORCE GENERATION
A. THE FORCE GENERATION PRINCIPLE
In linear electrical machines, the electromagnetic force, Fem,
can be obtained as the variation of the magnetic energy Wg
with respect to the position of the mover x,

Fem =
dWg

dx
=

1
2
dL
dx
I2 + Nph

dφmg
dx

I +
1
2
dRg
dx
φmg , (59)

where L, φmg , Rg, Nph and I are respectively the armature
inductance, the flux that is introduced by the magnets in the
airgap, the airgap reluctance, the number of turns per phase,
and the phase current. The first term of (59) corresponds to
the reluctance force component. The second term describes
the thrust that is generated due to the interaction between the
armature and the PMmagnetic fields. The last term is the one
that creates the detent-force.

It was identified in [20] that the PM torque is the major
contributor in the torque generation of rotating switched-flux
machines. In their results, the reluctance torque accounted
for about 5 % of the total torque. This is why switched-flux
machines are commonly supplied with id = 0 current. Thus,
for the analysis of this article, the machine in Fig. 2 is sim-
ulated at pure q axis current. In order to obtain comparable
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FIGURE 25. PM force vs total force of the example machine.

results to those from a rotating machine, an infinite periodic-
ity was assigned to the simulation model, so that the results
were not influenced by the end effect.

The PM force Fpm can be calculated from the back-EMF,
obtained in an open-circuit simulation, with (60).

Fpm =

m∑
n=1

EnIn

V
(60)

The overall force of the example machine, obtained in a
pure q axis current FEM simulation, is compared to that
whichwas obtained from the back-EMFs in Fig. 25. The aver-
age value of both waveforms is exactly the same. Therefore,
the thrust force creation mechanism is explained via the PM
force in this section.

B. OPEN CIRCUIT FLUX LINKAGE
In order to obtain the flux linkage of a phase, and therefore,
the back-EMF that is generated in a phase winding, the
winding function of the phase must be expanded to a Fourier
series as

Fph(x) =
∞∑

k=−∞

EFphk e
jktp

(
δ−x 2π

npτp

)
, (61)

where EFphk is the vector of the k-th harmonic and δ is the
initial phase of the winding function in radians.

At this point, the open circuit flux linkage 9m
ph can be

obtained with

9m
ph (t) =

∫ npτp

0
leBmgp (x)Ms (x, t)Fph(x)dx. (62)

In order to obtain an average value in the product of two
sinusoidal signals, those signals must be of the same fre-
quency. Therefore, only certain combinations of harmonics
have the ability to create an average spatial value of flux
in the coils of the primary side. The first term in (63) is
created by the harmonic combinations that fulfil nppm+ktp =
0, and the second term appears for the combinations

where nppm + ktp + vns = 0.

9m
ph (t) = lenpτp

×

 ∑
nppm+ktp=0

Ms0
EBmgpn
EFphk e

j(nppmϕ+ktpδ)

+

∑
nppm+ktp+vns=0

EMsv
EBmgpn
EFphk

× e
j
(
nppmϕ+ktpδ+vnsξ−vnsV 2π

npτp
t
)]

(63)

Notice that the first term is just a bias, and is not time
dependant. Thus, the harmonic combinations that contribute
to the back-EMF are those which fulfil nppm+ ktp+ vns = 0.

Another piece of information that can be interpreted from
(63) is that the fundamental component of the flux linkage
is obtained from the harmonic pairs that are linked through
the fundamental component of the secondary modulation
function.

It can also be appreciated that the rest of the harmonics of
the open circuit flux are obtained with the harmonic pairs that
are linked via the higher order harmonics of the modulator.
These are commonly very high order harmonics, for example,
the 5th harmonic of the flux is linked via the 65th airgap
harmonic of the modulator. Hence, this harmonic interacts
with high order PM field and winding function harmonics.
In general, the higher the order of the harmonic, the lower its
amplitude will be. This is why well designed switched-flux
machines exhibit a very sinusoidal flux-linkage and back-
EMF waveform.

C. BACK-EMF
The back-EMF of a phase is the time derivative of the open
circuit flux linkage.

Emph (t) =
d9m

ph (t)

dt
(64)

Substituting (63) in (64) and operating, the expression of
the back-EMF yields:

Emph (t) = 2πvnsVle
∑

nppm+ktp+vns=0

EMsv
EBmgpn
EFphk

× e
j
(
nppmϕ+ktpδ+vnsξ−vnsV 2π

npτp
t− π2

)
(65)

D. THRUST FORCE
For an easier understanding of the result, a formula is cal-
culated for the thrust force that is exerted by each individual
phase first. Knowing that,

Fpmph (t) =
Eph (t) iph (t)

V
, (66)
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that the mechanical linear velocity and the electrical angular
speed are related as in

ω = nsV
2π
npτp

, (67)

from (65), (51), (53) and (54), and always for nppm + ktp +
vns = 0, the forces that are generated by the phases can be
deduced to be (69), (70) and (71), as shown at the bottom of
the page.

The total thrust force of themachine is the sum of the forces
that are generated by the individual phases, so by adding (68),
(69), and (70), and operating,

Fpm (t) = πvnsVleI
(
1+ 2 cos

(
2π
3
(k − 1)

))
×

∑
nppm+ktp+vns=0

EMsv
EBmgpn
EFphk

× ej(ωt(1−v)+nppmϕ+ktpδ+vnsξ−
π
2 +φ)

+πvnsVleI
(
1+ 2 cos

(
2π
3
(k + 1)

))
×

∑
nppm+ktp+vns=0

EMsv
EBmgpn
EFphk

× ej(−ωt(1+v)+nppmϕ+ktpδ+vnsξ−
π
2 −φ). (71)

From (71), it can be deduced that the harmonics that create
an average value of thrust are the same as those that contribute
to the fundamental back-EMF. These will be the harmonic
pairs that are linked through v = 1 for the first term, and
those that are linked through v = −1 for the second term.
The harmonic pairs that are linked via higher v orders will
only produce thrust ripple.

FIGURE 26. Flux linkage of phase a, analytical model vs FEM.

FIGURE 27. Back-EMF of phase a, analytical model vs FEM.

E. COMPARISON OF RESULTS
In this section, the results that were obtained with the analyt-
ical expressions are compared to the results of two 2D FEM
simulations. The first simulation emulates the model with an
ideally permeable material with no saturation, and the second
simulation is performed with M800-65A steel. The value of
the current has been kept low to avoid excessive saturation.

Fpma (t) = πvnsVleI

 ∑
nppm+ktp+vns=0

EMsv
EBmgpn
EFphk e

j(ωt(1−v)+nppmϕ+ktpδ+vnsξ− π2 +φ)

+

∑
nppm+ktp+vns=0

EMsv
EBmgpn
EFphk e

j(−ωt(1+v)+nppmϕ+ktpδ+vnsξ− π2 −φ)

 , (68)

Fpmb (t) = πvnsVleI

 ∑
nppm+ktp+vns=0

EMsv
EBmgpn
EFphk e

j
(
ωt(1−v)+nppmϕ+ktpδ+vnsξ− π2 +φ−

2π
3 +k

2π
3

)

+

∑
nppm+ktp+vns=0

EMsv
EBmgpn
EFphk e

j
(
−ωt(1+v)+nppmϕ+ktpδ+vnsξ− π2 −φ+

2π
3 +k

2π
3

) , (69)

Fpmc (t) = πvnsVleI ×

 ∑
nppm+ktp+vns=0

EMsv
EBmgpn
EFphk e

j
(
ωt(1−v)+nppmϕ+ktpδ+vnsξ− π2 +φ+

2π
3 −k

2π
3

)

+

∑
nppm+ktp+vns=0

EMsv
EBmgpn
EFphk e

j
(
−ωt(1+v)+nppmϕ+ktpδ+vnsξ− π2 −φ−

2π
3 −k

2π
3

) . (70)
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FIGURE 28. PM force, analytical model vs FEM.

FIGURE 29. Comparison of the different analytical prediction results.

The flux linkage in Fig. 26, the back-EMF (Fig. 27), and
the average thrust force in Fig. 28 are very close in all the
cases. The fundamental component of the flux linkage, and
the back-EMF, and the average thrust force decrease in only
2 % when the non-linear material is used in the simulation.
This difference can be appreciated more easily in Fig. 28 due
to the scale of the figure.

The prediction of the average thrust force of the analytical
model is the same as that of the ideal simulation. When a
real material is introduced to the simulation, the output thrust
force decreases because the airgap side of the primary teeth
gets saturated. Consequently, the airgap flux density lowers,
which decreases the average thrust force. This saturation also
increases the ripple of the PM thrust force.

In spite of these discrepancies, the model still holds a high
enough precision for the analytical sizing of the machine.
This is especially true when compared to the models that
were previously published in the literature. Fig. 29 compares
the thrust force prediction of the proposed model, with the
result which would be obtained in the case of a neglected
primarymodulator or a neglected flux-focusing effect. For the
analysed machine, the influence of the primary modulator is
so high, that neglecting its influence would lead to imprecise
results, as shown in Fig. 29.

VI. DOMINANT THRUST FORCE-GENERATING AIRGAP
FIELD HARMONICS AND THEIR INTERACTION
The expressions that were derived in section V-D give a
deep insight in the operating mechanism of switched-flux
machines. It was concluded that the harmonic combinations
that fulfil nppm+ktp+vns = 0 and are linked through v = 1 or

FIGURE 30. (a) U-Core machine and (b) C-Core machine.

TABLE 4. Force contribution of the airgap field harmonics in the U-Core
machine.

v = −1 contribute to the average thrust force. This condition
is nonetheless met by an infinite amount of combinations.
Wu et al. [17] showed that in the reality, only a handful of
harmonics are in charge of > 90% of the force contribution
in switched-flux machines. These harmonics are reffered to
as the dominant force contributing harmonics in this section.

A. IDENTIFICATION OF THE DOMINANT
AIRGAP FIELD HARMONICS
In this section, the dominant force contributing airgap field
harmonics are identified for a linear 6/13 C-Coremachine and
a 12/10 U-Core machine. The machines are shown in Fig. 30.
The analysis is done via the Maxwell stress tensor.

The intention of the section is to deliver additional infor-
mation on the working principle of these machines. The
procedure that is explained in this section was taken from [17]
and adapted to linear machines.

The analysis starts with an on load time stepping simula-
tion of the machines in 2D FEM. Longitudinal and normal
airgap flux density distributions must be obtained in each step
of the simulation. Then the waveforms must be expanded to
Fourier series, so that the amplitude and the phase of each
harmonic are identified.

After this, the force contribution of the k th harmonic, Fk ,
at the time instant t is obtained with

Fk (t) =
lenpτp
2µ0

Bxk (t)Byk (t) cos
(
θyk (t)− θxk (t)

)
. (72)

Bxk , and Byk , are respectively the amplitude of the longitu-
dinal component of the k th airgap flux density harmonic and
its normal component. θxk and θyk are their respective phase
angles.

After computing the force contribution of the harmonics at
each of the time steps, the average force that is exerted by
each harmonic can be obtained. Table 4 shows the average
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TABLE 5. Force contribution of the airgap field harmonics in the C-Core
machine.

thrust force contribution of 9 airgap harmonics of the U-Core
machine, and the same data is given for the C-Core machine
in Table 5. Thanks to (71), it is possible to identify the origin
of the harmonic from nppm+ktp+vns = 0. n is the harmonic
order of the equivalent airgap flux density accounting for the
primary modulator, (46).

From tables 4 and 5 it can be observed that both the static
and the dynamic airgap field harmonics generate thrust force.
This might seem counter-intuitive in the first place, especially
when taking into account that only the dynamic airgap field
harmonics contribute to the back-EMF of themachine. On the
other hand, it was analysed from (63) that only those harmon-
ics that are linked through the fundamental component of the
secondary modulator contribute to the thrust force.

B. THE INTERACTION BETWEEN THE STATIC AND
DYNAMIC HARMONICS
To analyse the issue, take the airgap harmonic of order 4 of
the C-Core machine (in Table 5) as an example. This is a
dynamic harmonic that originates from

∣∣3ppm − ns∣∣. Hence,
its displacement is the result of the modulation of the sec-
ondary rail to the field of the PMs. This harmonic order can
originate from the combination of either n = 3 and v = −1
or the combination of n = −3 and v = 1. If we consider that
in order for that harmonic to be linked by the armature, the
condition

nppm + ktp + vns = 0 (73)

must be met, we can obtain the order of the armature MMF
harmonic that interacts with the aforementioned combination
from

3ppm − ns = −ktp→ k = 2 for n = 3 and v = −1, and

(74)

−3ppm + ns = −ktp→ k = −2 for n = −3 and v = 1.

(75)

Bringing back the expression of the modulated arma-
ture MMF,

MMFM (x, t)

= Ms0
Î
2

∞∑
k=−∞

EFgpk e
j
(
ktpδ−ktpx 2π

npτp
+nsV 2π

npτp
t+φ

)

×

(
1+ 2 cos

(
2π
3
(k − 1)

))

+Ms0
Î
2

∞∑
k=−∞

EFgpk e
j
(
ktpδ−ktpx 2π

npτp
−nsV 2π

npτp
t−φ

)

×

(
1+ 2 cos

(
2π
3
(k + 1)

))
+
Î
2

∞∑
k=−∞

∞∑
v=−∞

EFgpk EMsv

× e
j
(
ktpδ+nsvξ−x(ktp+nsv) 2π

npτp
+nsV 2π

npτp
t(1−v)+φ

)
×

(
1+ 2 cos

(
2π
3
(k − 1)

))
+
Î
2

∞∑
k=−∞

∞∑
v=−∞

EFgpk EMsv

× e
j
(
ktpδ+nsvξ−x(ktp+nsv) 2π

npτp
−nsV 2π

npτp
t(1+v)−φ

)
×

(
1+ 2 cos

(
2π
3
(k + 1)

))
, (76)

and taking into account that
(
1+ 2 cos

(
2π
3 (k − 1)

))
= 0

for k = 2, and
(
1+ 2 cos

(
2π
3 (k + 1)

))
= 0 for k = −2,

MMFM2 (x, t)

= Ms0
3Î
2
EFgp2e

j
(
2tpδ−2tpx 2π

npτp
−nsV 2π

npτp
t−φ

)

+
3Î
2

∞∑
v=−∞

EFgp2 EMsv

× e
j
(
2tpδ+nsvξ−x(2tp+nsv) 2π

npτp
−nsV 2π

npτp
t(1+v)−φ

)
, (77)

and

MMFM−2 (x, t)

= Ms0
3Î
2
EFgp−2e

j
(
−2tpδ+2tpx 2π

npτp
+nsV 2π

npτp
t+φ

)

+
3Î
2

∞∑
v=−∞

EFgp−2 EMsv

× e
j
(
−2tpδ+nsvξ−x(−2tp+nsv) 2π

npτp
+nsV 2π

npτp
t(1−v)+φ

)
. (78)

Replacing v with its corresponding value for each MMF
harmonic,

MMFM2 (x, t)

= Ms0
3Î
2
EFgp2e

j
(
2tpδ−2tpx 2π

npτp
−nsV 2π

npτp
t−φ

)

+
3Î
2
EFgp2 EMs−1e

j
(
2tpδ−nsξ−x(2tp−ns) 2π

npτp
−φ

)
, (79)

and

MMFM−2 (x, t)

= Ms0
3Î
2
EFgp−2e

j
(
−2tpδ+2tpx 2π

npτp
+nsV 2π

npτp
t+φ

)

+
3Î
2
EFgp−2 EMs1e

j
(
−2tpδ+nsξ−x(−2tp+ns) 2π

npτp
+φ

)
. (80)
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Now, remembering that only the MMF harmonics that are
modulated by the fundamental component of Ms contribute
to the thrust force, observe that the airgap harmonics that are
obtained from k = 2 and v = −1 in (79) and from k = −2
and v = 1 in (80), are actually static. Moreover, the equiv-
alent airgap field harmonic orders that are obtained after the
modulation are -9 and 9. Remember that the procedure started
with the analysis of the airgap field harmonics of orders 4 and
-4, which are dynamic, and now we ended up with orders 9
and -9, with these last two being static. The phenomenon is
not specific to this combination of harmonics, and can be
replicated with any harmonic order from Table 5. The same
thing still happens in the case of the U-Core machine, but the
arrangement of the winding is different, and the expressions
of the force and the MMF must be obtained again, with

ktpδa=ktpδ ktpδb=ktp

(
δ−

2π
3tp

)
ktpδc=ktp

(
δ+

2π
3tp

)
.

(81)

Also notice that the modulation of the PM field produces
a harmonic order that can be perceived by the armature,
and that the modulation of the armature field produces a
harmonic order that can be linked by the static PM MMF.
This is actually the function of the modulator in switched-
flux machines. It acts as an interface between airgap field
harmonics of different orders, allowing the linkage of the PM
and the armature fields.

In some aspects, switched-flux PM machines are similar
to conventional PM machines. In a conventional surface PM
machine, from the point of view of the rotor PMs, the mag-
netic field that is introduced by the armature is perceived
as static, because it is synchronous to the rotation speed of
the rotor. On the other hand, the static armature perceives
a rotating magnetic field from the magnets, which creates
back-EMF in the windings. The same principle applies to
switched-flux machines. The PMs must perceive a magnetic
field that is synchronous to them, or in a single word, static.
On the other hand, the armature winding has to perceive
an alternating magnetic field in order to create back-EMF,
and hence, only after the interaction of the PM field har-
monics with the secondary rail is it possible to obtain a
back-EMF.

Consequently, it does make sense for both the static and
the dynamic harmonics to produce force in switched-flux
machines. They are linked with each other via the mod-
ulator, and it is their interaction which produces thrust
force. As for the back-EMF, we mentioned that only the
dynamic harmonics can produce a flux derivative in the
phase coils. This is true, because the static harmonics can-
not produce any back-EMF by themselves. However, the
dynamic open-circuit filed harmonics are the manifestation
of the static harmonics that are introduced by the PMs, after
being modulated by the secondary poles. Hence, although
indirectly, it is the static PMMMF harmonics which produce
back-EMF.

TABLE 6. PM field harmonic efficiency ratio of the U-Core and C-Core
machines.

FIGURE 31. Test bench.

C. THE EFFICIENCY OF PM FIELD HARMONICS
If the analysis is taken one step further, an interesting differ-
ence can be identified between Table 4 and Table 5. Notice
that the harmonics that originate in the ppm pole pair harmonic
of the PM field (orders 4, 6, and 16) produce 84.77 % of
the final thrust force of the U-Core machine. In this aspect,
the U-Core switched-flux machine is very similar to the
conventional surface PM machines. In both of these machine
types, it is mainly the fundamental PM harmonic which is in
charge of creating the average thrust force.

However, in the case of the C-Core machine, it is the 3rd

and the 5th PM field harmonics, with 57.02 % and 29.51%
contribution respectively, which combine for the 86.53 % of
the total force contribution.

Notice that for the C-Core machine, the amplitude of the
fundamental PM field harmonic in Table 6 is very similar
to that of the 3rd harmonic. Despite this, the airgap field
harmonics that originate in the fundamental component only
add up to 12.59 % in the contribution of the average thrust
force. Therefore, if the PM field harmonic efficiency ratio,
ηFn , is defined as

ηFn =
Fn,%
B̂mgpn

, (82)

where Fn,% is the percentage contribution of the nth PM
field harmonic to the average thrust force, and B̂mgpn is the
amplitude of the nth PM field harmonic, the most efficient
PM field harmonics can be identified. Table 6 shows the PM
field harmonic efficiency ratios of the most dominant PM
field harmonics of the analysed machines.
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FIGURE 32. Closeup of the LSFPM prototype.

TABLE 7. Main parameters of the prototype.

It can be concluded from Table 6 that not only are the
fundamental PM field harmonic for the U-Core machine, and
the 3rd and 5th harmonics in the C-Core machine the most
dominant harmonics, but they are also the most efficient.

Now observe the influence of the primary slots in the
spectra of Fig. 12 and Fig. 13. The fundamental harmonic’s
amplitude is lowered when the machine is slotted, whereas
that of the 3rd and 5th harmonics is increased. This means
that the distortion that is introduced by the primary slots
is a parasitic effect for the conventional U-Core machines,
but, it is actually beneficial for C-Core machines. Therefore,
it can be stated that on the one hand, U-Core machines could
benefit from the usage of semi-closed slots, which minimise
the distortion of the primary slots. On the other hand, the
C-Core machines are best fitted for open-slot configurations.

VII. EXPERIMENTAL VALIDATION
The experimental validation of the model was carried out
via a linear C-Core switched-flux machine prototype. The
static force of the machine was measured in the test bench
from Fig. 31. The prototype is shown in Fig. 32, and its main
parameters are given in Table 7.

In general, the phase back-EMF amplitude is unbalanced
in linear machines. This is caused by the end effect. Addition-
ally, the end-effect generates a thrust ripple component. Thus,
the prototype has additional poles attached in its ends to help
to reduce the thrust ripple and the back-EMF unbalance [27].
In this way, it can be assumed that the average thrust force
of the machine will be fairly close to the one that would be
obtained with an ideally periodical machine.

FIGURE 33. Comparison of results.

A comparison between the experimental results, 2D and
3D FEM predictions, and the analytical model is given in
Fig. 33. Notice in Table 7 that the stacking length of the
prototype is small. Hence, the influence of the transverse flux
leakage is quite severe for the prototype. This is why the
experimental results and the results from the 3D FEM sim-
ulations differ from the predictions from the 2D simulations
and the analytical model in Fig. 33.

As the simulations were solved with non-linear materials,
the error of the analytical model increases when high current
values are used. Even so, the maximal error of the analytical
model when compared to the 2D simulation was of 6.8 %
at maximum current. Hence, it can be concluded that the
model is capable to give a highly accurate prediction of the
performance of switched-flux machines, especially at low
saturation values.

VIII. CONCLUSION
In this article, an analytical tool was presented for the pre-
diction and analysis of the electromagnetic performance of
switched-flux PM machines. The model was validated with
2D and 3D FEM simulations and experimental measure-
ments to a linear SFPM prototype. It was demonstrated
that the model can predict the performance of switched-flux
machines with high accuracy, even when the machine that
is being analysed has a wide slot opening, which was not
possible from the previous publications from the literature as
it was demonstrated in Fig. 29.
The hybrid MMF-permeance and MEC model was used

first to describe the operating mechanism of switched-flux
machines. It was observed how the flux focusing effect
is a crucial part of the operation of certain switched-flux
machines with large slot openings. The analytical expressions
also explained the sinusoidal nature of the back-EMF wave-
forms and the linkage between the armature and PM field
harmonics.

Thanks to the MMF-permeance model, the origin of the
dominant airgap field harmonics was explained, and the most
efficient PM field harmonics were identified. This efficiency
was used to highlight that semi-closed slots can improve
the performance of the U-Core machine, whilst they can be
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detrimental for the C-Core configuration, more suited for
open slots.

The model was developed assuming a ferromagnetic
material with an infinite permeability, and an infinitely long
periodic machine. Therefore, the saturation effect, and the
influence of the end effect are ignored by the analytical pre-
dictions. Despite this, the prediction of the PM force showed
a good agreement when compared to the simulations and the
experimental results.

Further developments of the model could include the
implementation of the saturation effect in the model. In this
aspect, a nonlinear equivalent magnetic circuit was used
in [28] to analyse a linear switched-flux machine. A simi-
lar approach would yield highly precise results when com-
bined with the proposed model. The implementation of the
improved conformal transformation [23], could also be used
to enhance the precision of the analytical tool. Moreover,
an additional relative permeance component could also be
implemented to account for the end effect, and predict the
waveform of the detent force. Another alternative would
be to obtain the on-load magnetic field distribution from
a subdomain model. This kind of model has already been
used successfully for the prediction of the performance of
switched-flux machines in [29].

The upcoming works of the authors will be focused on
further developments of the analytical model, and the optimi-
sation of the performance of linear switched-flux machines.
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