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Chapter 1 

Theoretical Concepts for Describing  
a Replication-levels-based Uncertainty 
Analysis Approach 

Ander Zarketa-Astigarraga, Alain Martin-Mayor  
and Manex Martinez-Agirre1 

1.1. Introduction 

Delimiting the scope of uncertainty analysis, which places itself between 
the fields of mathematics and physical experimentalism, may turn 
tedious for the newbie who tries to take it to application for the first time. 
However, performing such an analysis is becoming an accepted standard 
on fields including any sort of experiment, and the subsequent results are 
being required to provide information on their degree of exactitude. This 
calls for a systematization when accounting for the uncertainties of 
measured magnitudes, and systematizing such an analysis, albeit 
possible and desirable, asks for a well-founded background on the 
notions that underpin the uncertainty theory. The fact, anyway, is that 
there seems to be no conclusive consensus regarding the basic concepts 
that are meant to constitute the building blocks of the theory; rather, 
those concepts are to be found on a number of canonical references [1, 
3, 5, 7, 8] that, although compose a closed system of notions as a theory 
already liable to be applied, lack of a unified narrative necessary for 
constituting a holistic view of the subject. 

Hence, the principal aim of the work presented herein is to perform an 
attempt to gather those disperse pieces of information and to put them in 
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a format of a structured narrative; the secondary aim is to provide the 
theoretical background so that its application to practical case studies 
may be understood on a well-founded basis. As the purpose is to give a 
bottom-up description of the entities that come to interplay in the 
uncertainty analysis, the paper is structured as follows: Section 1.2 serves 
as a reminder of the foundational concepts of physical experimentalism; 
Section 1.3 introduces the notion of measurement chain, which is the 
starting point for properly describing the term uncertainty, detailed in 
Section 1.4. Section 1.5 verses on replication levels, which are central to 
the process of systematizing the analysis and, finally, Section 1.6 
translates the previous concepts to a mathematical formulation, 
developing the tools that are to be applied on practical grounds.  

1.2. On the Basic Definitions of Physical 
Experimentalism 

The study of any physical phenomenon, from an empirical standpoint, is 
comparative. The baseline case is usually represented by a simplified 
model of a particular phenomenon. The purpose of a modelization is to 
enclose a minimal set of entities needed to reproduce a phenomenon; 
such a minimal set is known as a system. The term model, as it is 
employed herein, refers to the mathematical formulation that describes a 
physical process taking place within a defined system. The concept of 
physical phenomenon is related with the notion of change, and the 
questions to be answered are how, and why, a system changes (the 
constancy of a system can be understood as a lack of change). As such, 
a given model contains a set of descriptors that represent the variations 
of a system. Those descriptors are termed variables in the mathematical 
formulation, and their material counterparts are combinations of physical 
properties, or magnitudes. Intuitively, the lesser the number of 
magnitudes affecting a phenomenon, the less complex the relational 
analysis becomes. That’s why, as happens for the definition of a system, 
the formulation of a model seeks to describe a physical process with a 
set of variables that minimizes the magnitudes coming to interplay. That 
minimum amount need not be obtained by a unique collection of 
magnitudes; rather, it is left to the judgement of the experimentalist to 
choose from the set of potential properties the ones that best describe the 
different configurations to be found on a predefined system. The only 
constraint imposed upon the chosen magnitudes is that their discrete 
values must univocally reproduce a given configuration of a system. 
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Each of those configurations, represented by disjoint combinations of 
magnitudes, is known as a state of a system. 

The definitions yielded above constitute a mere conceptual framework. 
A model is no more than a derivation coming from the abstract 
mathematical strata. Insofar a model addresses entities of different 
categorical sciences, as physics and mathematics, it remains theoretical 
unless corroborated by empirical evidence. From this conception, a proof 
seeks to ascertain the closeness between the physical reality of a 
phenomenon and its modelization. Accounting for that closeness lies at 
the core of the comparative nature of experimentalism. The primary act 
that experiments rely on is observation and a physically observed action 
constitutes a fact. The validity of an abstract, mathematical-empirical 
model depends on the assessment of relations between facts, or 
hypotheses. Hence, a hypothesis is a potentially true statement that links 
facts together. Thus, for a system undergoing a physical phenomenon, a 
hypothesis constitutes a relation between the magnitudes that determine 
the states of that system. It follows that a physical fact is 
acknowledgeable as far as it is measurable, i.e. as far as the observed 
differences between magnitudes are quantified somehow. On 
experimental grounds, the magnitudes that constitute the variables of a 
model become measurands. 

Any experimental effort is carried out within a given physical scenario, 
or experimental set-up. A set-up is projected and built so that a desired 
system may be reproduced at its states of interest. Inherently, any set-up 
comes with two main limitations. On the one hand, the experimentalist 
is supposed to operate on the system somehow, i.e. the system is 
requested to allow setting a number of measurands to known values. On 
the other hand, and in addition to the desired physical phenomenon, 
several other phenomena may be taking place. This implies the potential 
existence of magnitudes that are not measurands themselves. As such, 
even though hypotheses are stated in simple terms, yielding a one-to-
one, causal relationships between measurands, it is practically unfeasible 
to incorporate the entire set of physical magnitudes in a set of 
hypotheses. Based on these considerations, the overall magnitudes of a 
set-up that interact with a given system may be divided into three 
categories: 

• An independent magnitude is a measurand contained in a hypothesis, 
and settable by the experimentalist; 
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• A dependent magnitude is a measurand contained in a hypothesis, and 
determinable by the experimentalist; 

• An extraneous magnitude is not contained in a set of hypotheses, and 
hence does not constitute a measurand itself. However, it may affect 
the values of the measurands of a system. 

An experimental workflow leading to the determination of a set of 
dependent magnitudes is called an experiment. Due to the heuristic 
nature of physical experimentalism, the experiments are required to be 
normative; a way of restating this is to consider that the same abstract 
system is usually subjected to physical analysis repeatedly, either in a 
single set-up or in a number of different set-ups. Regardless of the 
possible different physical scenarios, for the experiments to be relevantly 
comparable they must comply with a reproducibility condition. This 
does not solely mean that the input measurands need to match among 
different trials, but that the experiments themselves are to be performed 
in a procedurally equivalent manner. That’s why the design of an 
experiment is meant, ultimately, to define formal procedures, or 
protocols. These protocols contain the sets of rules for setting the 
independent magnitudes and determining the dependent ones; 
additionally, they should provide the experimental conditions under 
which the extraneous magnitudes are assumed unchanged, or frozen. In 
such circumstances, a theoretical model may be tested against a number 
of experiments to prove its validity. 

1.3. On the Concept of Measurement Chain 

When the previous methodology is applied to the study of a physical 
phenomenon, discrepancies may be found at two conceptual levels. The 
first one pertains the differences between the theoretical framework and 
the physical reality; a model may not reflect the overall changes that a 
system is undergoing, or it may be valid within a restricted range of 
physical magnitudes, or the effects of such magnitudes may not be 
acceptably imprinted on the model itself. Regardless of the specific 
cause, a decoupling between the two categorical strata, namely physics 
and mathematics, lies at the core of the divergences. Severe as it may 
sound, this kind of flaw has more to do with a lack of understanding of a 
phenomenon, rather than with mistakes committed at the execution level 
of the experiments. 
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The second source of discrepancies is found at the experimental stage. 
When a model is assumed valid enough so that its rejection is not 
considered an acceptable solution for the detected divergencies, 
explanations are to be found at possible experimental errors. Taking a 
model for granted is not an exception that raises few times; either if the 
mathematical expressions reflect basic conservation laws of physics (e.g. 
zero net production of energy on an isolated system) or refer to 
previously validated tests against universally accepted standards (e.g. 
calibration protocols), the underlying mathematical abstractions are not 
questioned. Instead a sensible and broadly accepted consideration in 
experimentalism is the existence of errors in measurements. 

When the scope of error analysis is limited to experimental reasons, the 
basic concept serving as a starting point is that of measurement chain. 
This chain refers to the potential deviations that contribute to the 
mismatch between a measurand’s value and its modeled counterpart. 
Notice that the comparison with an idealized system also lies at the 
conception of the measurement chain. According to [5], the disturbances 
introduced in a system by the mere act of measuring may be described 
sequentially, and yield a total of five potentially different values for a 
measurand, which are schematically summarized in Fig. 1.1. 

 

Fig. 1.1. Schematic depiction of the different potential values found  
on a generic measurement chain (adapted from [12]). 

• The real value is the hypothetical value the measurand would have if 
the system were not affected by the measurement process. 
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• The available value is the value of the measurand in the system, at the 
measurement point, while the measurement is being taken. A device 
employed to measure a magnitude is termed sensor, or probe. Since any 
sensor is intrusive to some extent, it is considered unfeasible to leave a 
system intact when a probe is introduced. Put on formal terminology: as 
the sensor itself constitutes another system, what is being measured are 
the changes in the state of the sensor-system; those changes come at the 
expense of moving the original system to a different operating point, 
resulting in a further change of the measurand. Carefully designed 
sensors or non-intrusive techniques are aimed at minimizing these 
system disturbances as much as possible. 

• The achieved value is the value that the measurand has in the sensor 
while the measurement is being made. If attention is focused on the 
system constituted by the sensor itself, it would be naïve to consider that 
the only magnitude affecting that sensor-system is the measurand. 
Extraneous magnitudes may further alter the value being recorded, 
which ultimately cause the sensor to equilibrate with the entire 
environment rather than with the measurand alone. These deviations are 
called system/sensor interactions. 

• The measured value is the value attributed to the measurand when the 
output of the sensor is interpreted using the best estimate of the 
calibration of the sensor. The only potential source of error that stands 
between achieved and measured values is the measurement system. A 
proper calibration seeks to provide a complete map between the input 
and output of a measurement system in terms of a temporal parameter. 
Even in standardized calibration protocols, there exists a pre-established 
tolerance related to the acceptability of the measured values relative to 
the hypothetical real values. This tolerance can fall as small as the 
resolution of the sensor, which imposes a lower bound on the changes 
that the sensor itself is able to detect on a measurand, and is usually 
dictated by physical constraints. However, that tolerance may grow 
larger due to several reasons, as fabrication defects or above-resolution 
measurand fluctuations; in such cases of imperfect calibration, the 
achieved and measured values do not coincide, and the error coming 
from the calibration stage needs to be accounted for. 

• Finally, the corrected value refers to the experimentalist’s best estimate 
of the real value, once the system disturbances, system/sensor 
interactions and calibration errors are taken into account. 
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As far as measurands are descriptors of a system, if errors on 
measurement are assumed as an inherent part of the experiments, then a 
description of a system lacking information about those errors is 
incomplete by all means. An acceptable description requires defining 
certain bounds for the differences between real and corrected values and 
information must be provided on how close those values are estimated 
to lie. However, completing a system’s description by error information 
is not to be understood, solely, as a formal good-practice exercise; in fact,   
another of its main purposes resides in constituting a checking baseline 
for other experiments. It tells experimentalists whether values measured 
in a hypothetically equivalent system’s state, but under potentially 
different experimental conditions, is significant. In cases that those 
values differ more than the expected error range, it may be concluded 
that either the experimental conditions are not the same for the tests, or 
that unwanted effects are entering one of the measurement chains. The 
former cause is not treated herein as a formal experimental error, as it is 
fixable by modifying the operative point of the mistaken set-up. 
Accounting for measurement chain perturbations, besides, is related to 
the nature of two main factors: that of conducting the experiments and 
that of the error sources. 

1.4. On the Concept of Uncertainty: Nature  
of Experiments and Error Sources 

Previous considerations make clear that an error refers to a difference 
between real and corrected values, and that it constitutes a reliability 
descriptor of a measurand on an experiment. For a single observation on 
a test, the error is certainly a fixed number, computable by the 
experimentalist; when a finite number of measurements are performed, 
an error analysis may be carried out on the recorded data, or the stored 
values of the measurand. As those values are known, error calculations 
are based on statistical analysis. 

However, the term uncertainty addresses a different concept, as the point 
is not to compute the error value from known data, but to ascertain a 
possible value that the error might have on future tests. From this 
standpoint, uncertainty analysis relies on statistical inference, and not 
statistical analysis. Uncertainty values are not descriptors in the way 
errors are, but estimators. The distinction is relevant in a twofold sense: 
on formal grounds, mathematical tools employed in statistical analysis 
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are different from those used in statistical inference. From a practical 
point of view, a test owns an unknown error value a priori. At best, the 
error is expected to fall within the range predicted by the uncertainty 
value. The calculations to obtain this uncertainty may depend on the pool 
of error data coming from previous tests and, if so, its value changes due 
to the error resulting from the experiment itself. As such, error and 
uncertainty analyses may come to influence each other, but that they are 
defined in such a way so that uncertainties are meant to predict the 
possible errors committed in further tests. 

Thus, uncertainty analysis is predictive by definition, but its relation to 
error analysis is not. The link between uncertainties and errors depends 
on the type of experiment conducted. Statistically, experimental tests 
may be classified in two main groups [3, 7], whose differences are subtle 
enough to require further explanation. The basic criterion is the 
availability to obtain independent data points on a given experimental 
configuration. From a statistical standpoint, achieving independent data 
points is equivalent to repeating the experiment a number of times. The 
convenience of repeatability has a well-founded rationale behind: 
ideally, if the same measurement were taken with acceptably large sets 
of different observers and instruments as to constitute a statistical 
population, then the reliability of the measurements could be assured by 
statistics. Multiple-sample experiments are those in which uncertainties 
are evaluated by such a repetition. On the other hand, single-sample 
experiments are constrained, for any reason whatsoever, to a limited 
number of observations, and their uncertainty evaluation is done by 
estimation, not statistical calculus. 

Although the concept of statistical independence is easily understood, its 
experimental reality is not as evident. The difficulty seems to come from 
a number of factors that tend to lessen the repeatability condition [3], 
such as differences in the reading of the same measurand by several 
observers, or discrepancies on the same measurement by nominally 
equivalent, but individually different, sensors. Alternatively, inadequate 
measurement parameters may lead to single-sample observations [7]. 
Regardless of the number of samples taken, measurements are done with 
a given sampling frequency, and the physical phenomenon being studied 
shows characteristic changing rates, or frequency spectra. If the lapse 
between consecutive readings happens to be much larger than the lowest 
characteristic frequency of the system, then the samples may be 
considered independent. Otherwise, a single-sample experiment results. 
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The corollary is that the mentioned experimental categories are 
overlapping. A measurement may satisfy single-sample conditions for 
certain configurations, whereas it becomes multiple-sampled for others. 

The distinction between the mentioned experimental categories arises 
when treating the recorded data. Statistical inference and statistical 
analysis are mathematical processing tools used when dealing with 
single- and multiple-sample experiments, respectively. Nevertheless, 
experiments are subjected to the same potential sources of error 
regardless of their statistical nature. Those sources are identified in 
Section 1.3 as being responsible for the different links that constitute the 
measurement chain, namely: system disturbances, system/sensor 
interactions and calibration errors (see Fig. 1.1). Although valid enough, 
that classification lacks the universality employed when defining the 
types of error that are found on experiments. Instead, error sources are 
better classified on a temporal basis alone. If time-dependency is taken 
as the primary criterion, it follows that errors fall into two main 
categories: those that change with time, and those that do not. 
Additionally, the ones that change with time may be predictable on a 
deterministic way, or be of a wholly random nature. A way of matching 
this temporal classification and the one introduced in Section 1.3 is to 
think of a time-marching structure, or a past-present-future sequence 
(which is an ad hoc classification made by the authors). Past errors are 
the ones not affected by time anymore, such as fabrication defects or 
calibration errors that may influence the measurements. Future errors 
refer to those that change with time, but whose effect is known in 
advance: system disturbances and system/sensor interactions can be 
regarded as deterministic as long as they follow well-established trends. 
Present errors are to be understood as purely random, either because 
system disturbances and system/sensor interactions are poorly 
understood or wrongly considered, or because there are a number of 
sources entirely contingent on experimental or operative conditions, such 
as scale- or display-reading actions performed by observers or natural 
equilibrium fluctuations, respectively. 

This classification, based on deterministic grounds, allows performing a 
preciser denomination of errors. As the so-called past and future errors 
can be estimated, their effects are considered by the addition of a fixed 
correction factor to the measurements that compensates the bias 
introduced in the recorded value; hence, they constitute fixed or bias 
errors. On the other hand, present errors are not liable to corrections due 
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to their random nature or precision scattering, and are assumed as 
random or precision errors. The double denomination has to do with 
historical differences on the terminological conventions regarding 
single- and multiple-sample uncertainty theories; whereas fixed and 
random errors are used on single-sample theory, bias and precision errors 
are typical of multiple-sample experiments. 

Regardless of the type of experiment conducted, it is the 
experimentalist’s duty to account for all the correctable errors, so that the 
tests are carried out with the only unavoidable sources at play, which are 
the random ones. Additionally, both fixed and random error values are 
meant to be reported with a justified uncertainty analysis performed on 
them. A systematic approach to account for those uncertainties lies on 
the concept of replication levels. 

1.5. On the Concept of Replication Levels 

Replication and repetition are close concepts, but refer to different 
experimental levels. When a test is said to be repeatable, it is meant that 
the recorded values of a measurand, on repeated trials, lie on an 
acceptably narrow range; in other words, that the committed errors are 
below a certain threshold. Section 1.4 links the concept of repeatability 
to the stage of data processing, whereby the statistical categories of 
experiments arise; similarly, it distinguishes between error values and 
error sources, showing them to be independent from each other. Keeping 
that distinction, replicability has to do with the conditions under which 
the repeated trials are assumed to take place; specifically, it points to the 
potential error sources that are supposed unchanged for all trials. As 
such, repeatibility is related to the error values resulting from a set of 
experiments, whereas replicability addresses the error sources of those 
tests. 

Originally, the notion of replicability lies within the scope of single-
sample experiments [5-8] and it owns an additional distinctive feature 
when compared to repeatability; as replicability addresses unchanged 
error sources, the experimentalist can make different assumptions 
regarding the sources that remain constant. This leads to defining 
different orders of replicability in accordance to the constraining level of 
those assumptions. The interest in considering constant error sources 
resides in the auxiliary information obtained from such analyses, which 
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ultimately serves to diagnose the system from an uncertainty standpoint. 
Following the classification of error sources in Section 1.4, three main 
replication levels are defined [5, 8] (see Fig 1.2). 

 

Fig. 1.2. Schematic depiction of the replication level philosophy. 

• 0th order replication level: at this level, time itself is considered frozen. 
A way of thinking of a time-independent replication pattern is to assume 
that no error sources are allowed to change, just the reading that different 
observers make of a certain measurand on the same display. If a picture 
of that display is taken and shown to a number of observers, the only 
error source available is the scale-reading interpolation resulting from 
the resolution of the sensor. The utility of this particular replication 
pattern is found on the planning stage of an experiment, when a survey 
is taken over a number of sensors to check their suitability for a given 
measurement. If the precision of that measurement is required to lie 
below a predefined value, sensors that own larger interpolation scattering 
can be discarded in advance. A generalized case should consider the 
contributions of electrical white noise [2] and thermodynamic 
equilibrium fluctuations [4]. However, the resolution interval of the 
device usually subsumes white noise, as it happens to be several orders 
of magnitude smaller than the detectable electrical output. A way of 
characterizing the relevance of thermodynamic equilibrium fluctuations 
is to estimate whether the medium within which measurements are taken 
behaves as a continuum; as those fluctuations happen at a molecular 
scale, the comparison between that scale and the probe’s representative 
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dimension is used as an indicator. That is precisely the meaning of the 
Knudsen number, Kn = / d , where   stands for the molecular mean 
free path and d  is the characteristic dimension of the probe. If the 
resulting Kn is small, the sensor is large compared to the scale at which 
thermodynamic fluctuations take place, and their effect is, usually, 
averaged out over the measurement volume. As such, for typical cases 
in which white noise and thermodynamic fluctuations are neglected, the 

th0  order replication level provides the random uncertainty value of the 
measurement system. 

• 1st order replication level: when the temporal parameter is allowed to 
change, the inherent unsteadiness of the process enters the uncertainty 
calculation. This timewise jitter, as it is termed, is captured if a number 
of subsequent measurements are taken while the test is running; from 
previous considerations, it is important to ensure the independence of 
those measurements, so that a proper statistical calculation can follow. 
Additionally, for this replication level to be representative, the 
measurements must cover a characteristic time-lapse of the measurand’s 
change rate during the experiment. The lower bound of that time-lapse 
is dictated by the response time of the probe, but the upper bound is 
specifically test-dependent, and corresponds to the experimentalist to 
choose a sensible value. As the set of subsequent measurements is 
obtained while the experiment is running, both timewise jitter and 
interpolation errors are present on the recorded data. The timewise jitter, 
measured this way, only accounts for random errors of system 
disturbance and system/sensor interaction types. Usually, the st1  order 
replication test is run separately at the debugging stage of the 
experimental set-up, and its value stored to diagnose further 
measurements. 

• Nth order replication level: it is the broadest replication level 
conceivable, and may be considered by thinking that, for each 
measurement, the probe is changed by a similar one coming from the 
same manufacturer. The potential errors committed at the calibration 
level are added to the uncertainty value, together with the experimental 
unsteadiness and interpolation scattering. Typically, tests performed on 
a single experimental set-up do not face the scattering problems 
associated with sensor identity, as the measurements are carried out with 
the same equipment. However, information about calibration uncertainty 
is necessary when comparing experimental data from different facilities 
that undertake the same tests. When random calibration errors are 
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considered together with the value coming from the st1  order replication 
test, the resulting uncertainty is meant to be part of the final report. 
Unlike the available tests for the lower replication levels, there is not an 
auxiliary test or a generalized rule of thumb for obtaining the calibration 
error of a probe. The manufacturer may provide this information in the 
form of a calibration sheet, but the usual case is not to do so, either 
because the information itself has not been obtained or because it is 
concealed on behalf of confidentiality. Instead, the experimentalist has 
to interpret the specification sheet and retrieve the necessary 
information, making the correspondent assumptions to justify the data. 

The concept of replication levels comprises a property that determines 
the relation between single- and multiple-sample experiments. By 
definition, all orders of replication show a common feature, not 
mentioned so far: they require the repeatability of tests for their 
determination. Further, they need those repetitions to be both large and 
independent so that statistical analysis applies on the recorded data. It is 
precisely the purpose of multiple-sample theory the evaluation of 
uncertainties by repetitive, independent tests. Hence, it follows that 
replication orders aim at calculating random uncertainty terms of single-
sample experiments by undertaking individual, multiple-sample tests on 
each of those random terms. If it is not possible to perform multiple-
sample tests on a term, which is the case, for example, of calibration-
related errors, then statistical inference is used to estimate its 
contribution. With all, the notion of replication level provides a hinge 
between the statistical categories of experimental tests. 

However, replication levels only account for random errors. For a 
complete description of the uncertainties, it is necessary to add the 
correspondent fixed errors at each level. The resultant values are named 
0th, 1st and Nth order uncertainties, respectively. Fixed errors coming from 
the measurement system are usually due to ground loops or flawed 
connections, and should not show up if the electrical circuitry is properly 
designed; hence, th0  order uncertainty is usually equal to the random 
uncertainty of the measurement system. st1  order fixed errors come from 
deterministic system disturbances and system/sensor interactions; the 
typical way of treating them is by analytical-empirical correlations that 
model the expected effects. If those models quantify the error in terms of 
the measurand alone, the resultant value is directly added as a fixed error. 
Instead, if the correction models depend on additional parameters, the 
uncertainty associated with each of them affects the fixed error value, 
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and needs to be estimated. thN  order fixed errors coming from the 
calibration stage are as elusive to detect as their random counterparts. 
Their ultimate sources are fabrication defects or unaccounted calibration 
biases that unavoidably leak into the tests. On measurement argot, it is 
said that these errors are fossilized, in the sense that they can neither be 
detected nor removed, but simply assumed. If the calibration process is 
taken for granted, the fossilized error may be neglected without further 
concerns. With all, the corollary to be drawn from previous lines is that 
fixed and bias errors are equivalent terms, in the sense that they both 
need to be estimated regardless of the type of experiment conducted. 
Random and precision errors differ on the statistical treatment, which 
ultimately depends on how large the population of measurements grows. 

The outputs generated by single- and multiple-sample analyses are not 
strictly equivalent. As mentioned, the concept of replication level is 
linked to the theory of single-sample experiments; as such, the notions 
of replication order or uncertainty order are defined within that scope. 
For any reason whatsoever, multiple-sample theory has been, originally, 
more concerned with analyzing standard procedures [8]. The outcomes 
of multiple-sample experiments are defined to be the bias limit and the 
precision index [1]; the former is equivalent to the thN  fixed error of 
single-sample theory, whereas the second is related (but not equal) to the 

st1  order random error. When combined, they yield the overall 
uncertainty, which matches the thN  order uncertainty of single-sample 
experiments. 

With the core concepts laid, what is left is to translate the key definitions 
to mathematical notation for laying the proper formulation  
of the theory. 

1.6. On the Mathematical Basis of Uncertainty Analysis 

The primary question posed by the uncertainty analysis is how to process 
the measured data so that potential errors committed during a test get 
reflected on the final results. So far, the term result has not been formally 
introduced on its uncertainty-related meaning. Instead, the term 
measurand has been used to address the primary quantity, or magnitude, 
coming from a measurement and the term data has served to refer to the 
stored values of a given measurand. A result, however, is obtained after 
processing the data. This processing stage may not only include 



Chapter 1. Theoretical Concepts for Describing a Replication-levels-based Uncertainty 
Analysis Approach 

29 

converting the electrical output into a physical magnitude or applying 
signal treatment techniques, but making operations with different blocks 
of data. As such, the distinctive feature of a result, from the uncertainty 
standpoint, is that it comes from calculations performed by a number of 
different measurands. Of course, there may be measurands that constitute 
results themselves, i.e. they need not be combined with other measurands 
in order to yield a proper descriptor of a system. 

Such a definition of result involves considering how the errors that affect 
each measurand on the calculation are propagated to the derived values. 
Although the former definition of propagation, due to Kline & 
McClintock [3], calls uncertainties to the errors carried by each of the 
measurands to the result, updated versions of the theory state that 
uncertainties are meant to be specifically result-related [8]; measurands 
used to derive results are said to own fixed and random errors, if single-
sampled, or bias limits and precision indices, if multiple-sampled. The 
distinction is important insofar the information provided by uncertainties 
and errors is different; in fact, as uncertainties are obtained by combining 
errors statistically, the contributions of individual error terms are no 
longer discernible in an overall uncertainty value. 

The analysis begins by stating the functional relation between a generic 
result R  and a number of magnitudes 1, , nx x : 

  1= , , nR f x x  (1.1) 

The term magnitude is used to address each of the ix -s present on Eq. 
(1.1). From those, the set containing either dependent or independent 
magnitudes constitutes, by definition, the observed measurands. The rest 
are extraneous magnitudes that do not get measured, but that may affect 
the outcome if they are not properly considered; in case the experiment 
is designed and conducted correctly, those extraneous magnitudes 
remain unchanged or frozen. Letting N  be the number of measurands, 
and m  the number of extraneous magnitudes that, for the sake of 
simplicity, are assumed frozen, Eq. (1.1) may be reformulated thusly: 

    
1,...

1 1 1
frozen

= , , ; , , = , , ,
mx x

N m NR f X X x x R f X X    (1.2) 

where the right hand-side expression is to be understood as the frozen 
magnitudes not affecting the result. 
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If the measurands are considered independent and their respective errors 
small enough, the overall error may be assumed to follow a linearized 
expression: 

 
=

=1

=
i N

i
i i

R
R X

X
 

  (1.3) 

In Eq. (1.3), the terms / iR X   constitute the error sensitivities, i.e. each 
of the partial contributions to the overall error due to a unit error in a 
measurand [6]. The terms iX  represent measurand uncertainties, in 
case measurands were considered results themselves. However, being 
terms that enter a result calculation, these factors are named variation 
intervals further on, thus complying with formal terminological 
conventions. 

Further derivations of Eq. (1.3) require assumptions regarding those 
variation intervals. As mentioned in Section 1.4, uncertainties refer to 
the probabilities of errors falling between certain values. The procedures 
for modeling errors and calculating uncertainties, hence, require the 
usage of probability spaces. Mathematically, when an experiment is 
conducted, all possible events comprising error observations constitute a 
set  ; such a set is interpreted as the potentially observable errors that 
can be obtained when randomly sampling  , which is why   is termed 
a sample space. An event is the actual observation of a particular error 
on a given trial; intuitively, it is assumed that certain events are more 
probable to happen than others, which is expressed by a functional 
relation P  that assigns probabilities to events. The triplet  , , P   is 

called a probability space; the variable  refers to a mathematical entity, 
namely a -algebra structure, that is formally necessary to define a 
probability space with the required mathematical rigor, but which is not 
of a major concern for the derivation that follows. 

A probability space links events and probabilities together, but it is 
defined in terms of error observations instead of error values. Providing 
values to events is accomplished by introducing the concept of random 
variable that, within the scope of uncertainty analysis, is a functional 
relation assigning real numbers to error observations. When a random 
variable   is defined so that it maps each error observation to the actual 
error value coming from a test, it becomes possible to relate   and the 
probability assigning function P  to yield relevant information about the 
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experiments. If an infinite number of trials were conducted,  
different relations between   and P  would constitute continuous 
functions upon which the tools of differential calculus would apply. Two 
of such functions that provide experimental information are the 
cumulative distribution function and the probability density function, 
respectively [9]: 

 
 

 
: 0,1

( ) := ,

F

F P 


  




 (1.4) 

  
:

d
( ) :=

d

f

F
f


 












 
 (1.5) 

The cumulative distribution function, Eq. (1.4), provides the probability 
of an error acquiring a value of   or less, which is why it is mapped to 

the interval  0,1  (the probability of committing any error is unity, 

whereas that of no error is zero). Its derivative with respect to the random 
variable is the probability density function (PDF onwards), Eq. (1.5), 
also named the frequency distribution function. Intuitively, such a 
concept of derivative may be understood as ( )df    being the 

probability of   falling in the interval  , d   . Although any of the 

distribution functions contains the necessary information for 
mathematically acknowledging a random variable, the PDF provides a 
straightforward relation to certain experimental data, as this function can 
be constructed from that data. 

So far, no distinction has been made on the particular nature of the errors 
being treated. Building the PDF of a given experimental error is done by 
following the definition of Eq. (1.5); for a set of subsequent trials, the 
number of times a particular error value is measured is plotted against 
that same value. When normalizing the number of events by the total 
number of trials, and on the limit of taking the number of trials to infinity, 
this procedure results on a continuous function that represents the 
probabilities of measuring those error values, which is precisely the 
definition of  f  . However, requiring subsequent trials for the 

construction of  f   discards any possibility of treating fixed errors in 

such a way, as fixed errors do not manifest themselves on the scattering 
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of a set of consecutive measurements. Instead,  f   addresses random 

errors only, whose specific nature will depend on the order of replication 
considered in the experiments. 

The fact that random errors may be represented by PDFs is 
acknowledged on early reports treating the subject [10, 3]. The choice of 
a particular distribution for describing a random error is done according 
to additional assumptions regarding that randomness. Usually, those 
assumptions lead to three typical random error distributions [9]: 

• A Gaussian or normal distribution (see Fig. 1.3) is used when the 
scattering of the measurements is considered to be of a random  
nature itself: 

    2

2
22

1
| , =

22
f exp

 
  




 
 
 
 

 (1.6) 

White noise or equilibrium thermodynamic fluctuation measurements, if 
feasible, would enter this group. So would fluctuations of a measurand 
above the resolution of the measuring device. The standard uncertainty 
interval,  , corresponding to a Gaussian distribution is given by [9]: 

 = ,
N

  (1.7) 

being N  the number of measurements, or sampling population. 

 

Fig. 1.3. Schematic of a Gaussian distribution (may not be properly scaled). 
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• A uniform distribution (see Fig. 1.4) is used when the interval of 
possible values is known, but the measurement provides little additional 
information. Being [ , ]a b  the interval of possible values for  : 

  

0 < ,

1
| = ,

2 3
0 <

a

f a b

b



  







  



 (1.8) 

 

Fig. 1.4. Schematic of a uniform distribution (may not be properly scaled). 

Again, from [9], the standard uncertainty of a uniform distribution is 
given by: 

 =
2 3

b a 
 (1.9) 

Digital-display equipment is considered to follow this distribution at the 
resolution level of the device. The resolution represents the range 

 b a  of possible values, within which the measured value is known to 

lie. As it is unknown how the device performs the round-off operation, 
the actual value is equiprobable within the range  b a , from which the 

uniform distribution results. 
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• A triangular distribution (see Fig. 1.5) is used when, in addition to the 
range  b a  of possible values of  , the measurand is considered to lie 

closer to the central value of that range: 

  

  

  

2

2

0 <

< ,
2/ 2

2
| , = = ,

2

< ,
2/ 2

0 <

a

a a b
a

b a

a b
f a b

b a
b a b

b
b a

b


 

 

 






   
 






  







 (1.10) 

 

Fig. 1.5. Schematic of a triangular distribution (may not be properly scaled). 

As for the previous cases, [9] provides the standard uncertainty for a 
triangular distribution: 

 = ,
2 6

b a 
 (1.11) 

where  b a  stands for the range of possible values, as before. 

Triangular distributions are typical for analog-display devices such as 
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calipers or manometers. The actual reading allows discerning the 
indicator’s closeness to the center value, which affects the subsequent 
round-off operation, unlike for digital displays. 

The definition of typical PDFs entails additional statistical concepts not 
introduced so far, such as the parameters   or   in Eqs. (1.6), (1.8). 
Mathematically, those parameters are grouped under the notion of 
moment, which serves to quantitatively describe the shape of a function. 

Formally, the k -th moment of a continuous PDF about a point ̂  is 

defined as [9]: 

    ˆ= d
k

k f    



  (1.12) 

The parameter   corresponds to the centered ( ˆ = 0 ) first moment  

( = 1k ) of a PDF: 

  = df   


 , (1.13) 

and it represents the average value of a given distribution, or the mean. 

The parameter 2  equates to the mean-centered ( ˆ =  ) second moment 

( = 2k ) of a PDF: 

    22 = d ,f    



  (1.14) 

and is known as the variance of the distribution ( 2 = Var ). The 
parameter   itself, which is unit-consistent with  , is termed standard 
deviation, and quantifies the scattering of a distribution around its mean. 
Although higher-order moments provide additional morphological 
information on the distribution, the mean and the standard deviation 
suffice for the purpose of uncertainty analysis. 

Running an infinite number of experiments constitutes an idealization, 
and on practical ground the PDFs are not continuous, but discrete. They 
are obtained not from the entire population that would result from the 
idealized set of infinite experiments, but from the finite sampling space 
that represents the actually undertaken ones. As such, the moments 
obtained from that finite sampling space do not describe the shape of the 
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theoretical PDF faithfully but, rather, constitute estimators of its 
moments. If a sufficiently large number of samples is taken, as may be 
the case for random errors, the estimators will lie close enough to the 
theoretical moments so that the differences can be regarded as negligible. 
Otherwise, as happens for fixed errors, the experimentalist is forced to 
guess the PDF that would result from a hypothetical repetitive pattern of 
those biases. The main difference between single- and multiple-sample 
experiments, at a mathematical level, is to be found here: multiple-
sample experiments are liable to follow a practically discrete, but 
conceptually continuous, PDF, whereas single-sample tests are not. 
However, the point on describing the different replication levels in 
Section 1.5 is to justify that the distinction between fixed and random 
errors is formally relative; in fact, fixed errors may be thought of as 
random errors not been sampled the necessary amount of times to obtain 
a statistically relevant PDF. Written in simpler terms [3]: fixed errors are 
also accepted to own a theoretical PDF similar to random errors. 

With all, the discrete estimators of the mean and the (squared) standard 
deviation are written as follows [9]: 

 
=1

1
= ,

N

i
iN

   (1.15) 

  2
2

=1

1
=

1

N

i
i

S
N

 
   (1.16) 

The aim of the estimators is to provide the best estimate of a measurand, 
and the magnitude of the error on that estimation. Employing Eq. (1.15) 
as the best estimate is straightforward; agreeing on an estimator for the 
errors, which ultimately stand for each of the X  mentioned in Eq. 
(1.3), is not. The problem with considering the standard deviation as the 
basic uncertainty estimator is that it is inconsistent for errors coming 
from different distributions [3]. That inconsistency is found at the 
definition level. As a data scattering quantifier, the standard deviation is 
to be understood as follows: a value of a unit standard deviation around 
the mean encloses a certain area of the underlying PDF; that area is the 
probability of an error value lying on the range [ , ]     . For the 
typical PDFs in Eqs. (1.6), (1.8) and (1.10), those probabilities are of  
68 %, 58 % and 65 %, respectively (see Figs. 1.3 to 1.5). 
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Usually, the experimentalist asks for higher probability rates. A 
confidence level of 95 % is commonplace when reporting experiments, 
which is to say that, regardless of the PDF, the scattering is quantified 
with a 95 % of probability of finding future error values lying on the 
resulting confidence interval around the mean. The advantages of 
considering uncertainties with such a method are that it homogenizes the 
differences coming from different distributions, allows propagating the 
uncertainties with constant probability to the results, and provides the 
experimentalist with a flexible parameter to play with, namely the 
settable value of the confidence level. Bearing such considerations in 
mind, measurands are meant to be reported on the following manner [3]: 

  = to 1 ,S b    (1.17) 

where   and S  are the arithmetic mean and standard deviation 

estimators, respectively, and the expression  to 1b  stands for the odds 

that the experimentalist would be willing to bet that the error is less than 
S . The parameter b  and the confidence level are related as 

 100= 1 / 1b  , with   being the chosen level. For the case = 95% , 

the previous expression yields = 20b , which provides the odds  20 to1  

for the measurand-reporting expression. In addition to the interpretations 
given so far, such an expression tells that, for consecutive trials of an 
experiment, the error committed in the measurand value, 19 times out  
of 20, is supposed to lie below S . For the typical Gaussian, uniform and 
triangular distributions, the 95%  confidence level uncertainties are 
related to the standard uncertainties expressed in Eqs. (1.7), (1.9) and 
(1.11) by constants, such that 

=0.95
= 2


  , 1.65  and 1.81 , 

respectively. 

Reports [3, 8] show that, if a result can be linearized as in Eq. (1.3), with 
each of the measurands on the expression being independent and 
expressed as in Eq. (1.17), then a quadratic combination of uncertainty 
intervals (with =i iX S ) allows propagating the uncertainties to the 
result with constant probability: 

 
2=

2
|

=1

=
i N

R i R
i i

R
S S

X

 
 
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  (1.18) 
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With such an approach, fixed and random errors of measurands are kept 
separated until the last step of computing the uncertainty of a result is 
undertaken. Thus, Eq. (1.18) is applied separately for fixed and random 
terms, namely |R fixedS  and |R randomS . The overall uncertainty in a result is 

given as [1]: 

  22
| |= ,R R fixed R randomX S tS   (1.19) 

where |R fixedS  and |R randomS  are calculated from Eq. (1.18). In the original 

formulation, the parameter t  is the Student-t value, which depends on 
the degrees of freedom used in estimating each of the S  factors. For 
relatively large samples ( > 30N ), t  may be assumed to be 2 ; 
otherwise, the Welch-Satterthwaite formula is to be applied [11, 1]. The 
purpose of the Student-t parameter is to account for the difference 
between the statistical parameter (coming from a continuous PDF) and 
its estimator (discrete), as mentioned before. As the 95 % confidence 
intervals already account for that difference, the approach undertaken 
herein does not employ the Student-t parameter, and the formulation 
changes slightly by already introducing the |R randomS  terms with their 

respective 95 % intervals |R randomu : 

  
= 2

| | |
=1

=
i N

R random R random R random i
i

S u S  (1.20) 

As the errors are propagated with constant probability, the Student-t 
parameter is absent in the final expression: 

 2 2
| |=R R fixed R randomX S S   (1.21) 

The treatment of errors developed so far serves to systematically account 
for different sources and their propagation to results. When doing so, it 
is common practice to provide the broadest uncertainty intervals in order 
to keep the measurements as conservative as possible. However, such a 
practice hinders the original purpose of uncertainty analysis: if results 
from different set-ups or facilities are to be compared, shorter uncertainty 
intervals allow for preciser comparisons, easily detecting differences 
among tests and capturing mislead measurements. Thus, the claim made 
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herein is to employ the shortest uncertainty intervals available when 
reporting the measured data. 

1.7. Concluding Remarks 

It has been shown that the growing importance that experimental 
uncertainty analysis has had historically can be tackled by a systematic 
procedure lying on the concept of replication levels. Those levels are 
delimited by the nature of the error sources that enter the experimental 
test. The 0th  replication level considers, merely, the reading-
interpolation error committed at the measuring device’s scope. The 1st  
one adds potential system/sensor interactions, which are accounted for 
by analytical-empirical correlations, and timewise jitters. The broadest 
level, namely the thN  one, encompasses the uncertainties coming from 
possible manufacturing defects or calibration errors. The former two 
levels are calculated by tools coming from the field of statistical 
inference, whereas the latter can only be estimated based on 
manufacturers’ specification sheets. Anyhow, the mathematical strategy 
that backs up the mentioned procedure assumes that the combination of 
different uncertainty intervals is to be performed on a probability-
preserving manner. This means that, when certain measurands are 
combined to yield a derived magnitude, the uncertainty interval of such 
a magnitude is meant to own a confidence level that matches the one that 
the original measurands have. This approach provides a way for building 
a hierarchical classification of magnitudes depending on their functional 
relation to the basic measurands, with the overall set of magnitudes 
owning the same confidence level regarding their particular uncertainty 
intervals. These intervals can be pieced down into a number of 
contributors that, if traced back, correspond to the basic measurands. 
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