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Abstract: This paper describes a method for calibrating multi camera and multi laser 3D triangulation
systems, particularly for those using Scheimpflug adapters. Under this configuration, the focus
plane of the camera is located at the laser plane, making it difficult to use traditional calibration
methods, such as chessboard pattern-based strategies. Our method uses a conical calibration object
whose intersections with the laser planes generate stepped line patterns that can be used to calculate
the camera-laser homographies. The calibration object has been designed to calibrate scanners for
revolving surfaces, but it can be easily extended to linear setups. The experiments carried out show
that the proposed system has a precision of 0.1 mm.

Keywords: optical sensor; laser sensor; calibration; 3D reconstruction

1. Introduction

In the context of laser triangulation systems, the calibration of the different optical
elements is critical for the accuracy of the obtained reconstructions. These systems are
composed by a laser line that forms a plane that intersects with the object being measured,
and a camera that captures the produced laser line interception. The calibration of these
elements involves the characterization of the camera parameters and the relationship
between image and laser planes.

Standard calibration methods, usually referred as “sheet of light calibration”, are
based mainly on two methods. The former uses planar objects with chessboard or circular
patterns that are used to calculate all the calibration parameters simultaneously [1–5].
Detecting these control points in the image allows obtaining the camera parameters and
the pose of the calibration object with respect to the camera. At the same time, the detec-
tion of the projection of the laser plane in the calibration pattern enables us to estimate
its pose with respect to the camera, completely characterizing the triangulation system.
The latter employs a moving part whose geometry (usually a diamond shaped object) is
well known [6]. Nevertheless, the motion of the part has to be well controlled, e.g., by
means of an accurate stepper motor.

Besides that, the depth of field of standard cameras is centered on a world plane that
is parallel to the image sensor. However, laser camera systems should have the depth of
field focused on the laser plane. For these cases, the lens is usually tilted with respect to the
image plane through the use of an adapter (or analogously, the image sensor is tilted with
respect to the lens) to ensure that the desired world plane is correctly focused (Scheimpflug
principle [5]). It is noteworthy that, although some authors (e.g., [2,4]) have applied
standard calibration methods based on planar objects in scenarios with Scheimpflug, it is
not an easy procedure. The main difficulty is to capture images of the planar calibration
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pattern in which a large area of the pattern is focused, which implies that the calibration
plate should be placed almost parallel to the laser plane. Furthermore, there are situations
where several lasers or cameras are needed because of the geometry of the object being
captured. This configuration increases the complexity of the calibration since all laser and
image planes must be related to each other under the same reference system. This fact
implies that the control points of the calibration pattern have to be visible at the same time
by the cameras tied to the same laser. However, this may not be possible due to occlusions
derived from the convergence angles of the cameras with respect to the laser plane.

In this work, we address the calibration of a laser triangulation system composed by
three cameras and two laser lines that are configured as shown in Figure 1. This system is
used to reconstruct revolution parts that are fixed in a rotating stage.

Figure 1. The proposed laser 3D triangulation system with 3 camera-laser pairs plus a motorized
rotation stage. Two cameras and one laser have been placed at the top (to obtain the reconstruction
of the interior of the object), while the remaining camera and laser have been placed at the bottom
(to reconstruct the external surface of the object). The rotation stage ensures visibility throughout
360 degrees of the object.

Taking this into account, we propose a calibration method that uses a 3D calibration
object with a conical shape that can be used to determine the homographies [7] between
laser and image planes. In order to estimate these homographies, the camera undistortion
map under Scheimpflug conditions has to be identified, or sufficient conditions have to be
met in which the undistortion map calculation can be discarded.

In this paper, we present a more detailed investigation of camera-laser calibration
based on homographies under Scheimpflug conditions. Section 2 provides related work
in camera-laser triangulation. Section 3 explains an overview of the employed calibration
methodology. Section 4 summarizes the practical calibration of the real setup. Section 5
describes the usage of the 3D reconstruction system. Section 6 provides experiments and
discussion, and finally, Section 7 enumerates conclusions. Additionally, please refer to [8]
to see a complementary work that provides an industrial application of the presented
optical system.
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2. Related Work

A 3D triangulation system is composed of at least one laser and one camera. However,
it is common to find solutions that combine multiple lasers [9–12], lasers of different
colors [13] or multiple cameras [14,15] to extend the range of visibility and avoid blind areas.

Moreover, the 3D triangulation systems are generally combined with external actuators
such as linear stepper motors [10,12,13,15], turntables [9,10,15–17] or robotic arms [11,18]
to extend the scanning line to a wider regions.

There are several solutions in the literature to calibrate a 3D triangulation system iden-
tifying the relative pose between each of the devices forming the system. Although some
of them perform a self-calibration (no calibration object is required), these alternatives do
not recover the scale of the scene and are not of interest to this work (see [5] for an in-depth
explanation). The most common way to calibrate a 3D triangulation system is to use a
calibration target. Because of its simplicity and good performance, planar targets are very
popular, especially chessboards [10,12,14,16] and those with dot patterns [11,13]. In some
cases planar targets are not a feasible solution (for example, in an arrangement where the
planar pattern cannot be seen by all cameras simultaneously), so a 3D calibration target is
used instead. These 3D calibration objects are specific to each application and can be of
different shapes and sizes, such as a stepped [15] or creased [18] gauge, a 3D cube with a
white mark in the middle [15], a 3D sphere [17], or a 3D cone [9], among others. Regardless
of the calibration object, the overall calibration procedure is similar, cameras capture the
projection of the laser lines on the calibration target at different points of views (controlled
by the external actuators) to identify some control points with known 3D coordinates that
allow to extract the positioning of each device in a common global coordinate system.
Traditionally, this procedure implies solving equations using standard mathematical tools,
but with the evolution of the Machine Learning in recent years there is also a new trend
that combines traditional mathematical methods with compensation networks (to correct
errors and improve accuracy [15]).

Some of the laser 3D triangulation solutions assume that the cameras have already
been calibrated, i.e., that the camera intrinsic parameters are known before doing the
calibration of the whole triangulation system. The camera calibration is a standard and
well known procedure, except for those cameras with Scheimpflug. Thus, with these
adapters we are able to focus the laser projection in a wider range, which is a desirable
property for a 3D triangulation system. This improvement is specially noticeable when
dealing with objects of a considerable size, in which the laser beam hits the surface of the
object at different distances (depths) from the camera. Despite its benefits, it also increases
complexity, specially when doing the calibration of the camera (additional tilt parameters
need to be estimated [2,4,5,19]).

Compared to the existing solutions, this work describes a 3D triangulation system that
uses cameras with Scheimpflug adapters and proposes a calibration procedure that requires
a 3D calibration pattern that has been carefully designed for this application. Thanks to
the use of this specific 3D calibration pattern, the calibration process is quick and simple,
without requiring much intervention.

3. Methodology of the Calibration Method

Classical methods consider a laser triangulation system composed by the set of cam-
eras C = {c1, c2, . . . , cn} and the set of lasers L = {l1, l2, . . . , lm}, each of them defining a
local coordinate system. Given a point Pj ∈ R3 that belongs to the plane defined by the laser
lj, its position Pi ∈ R3 in the coordinate system defined by camera ci can be obtained as:

Pi = Tij(Pj) (1)

where Tij ∈ SE(3) is the rigid transform relating the laser lj with the camera ci.
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This point can be expressed in a common reference frame by means of another rigid
transform Twi ∈ SE(3) that relates the camera ci to the world coordinate system:

Pw = Twi(Pi) = TwiTij(Pj). (2)

The main objective of the calibration is to find all the transforms T̂ ⊂ {Tij, Twi} where
Tij ∈ T̂ if the laser lj is visible by the camera ci. In order to calibrate the laser frames respect
to the observing cameras, most methods use planar checkboards [12] or even 3D calibration
boards [20], placed such that so that the laser lines cut across squares of the checkboard.
The drawacks to this type of calibrations is that the intrinsic parameters of the cameras
have to be estimated with high accuracy, especially in the case of Scheimpflug cameras.

Our method assumes that the images are undistorted (either computing Scheimpflug
distortion maps as calculated in the next subsections or that the distortion can be considered
negligible). Instead of computing the previous matrices, we use a calibration object that
can be easily detected in the images of the cameras, the method being similar to [21]. Given
that all the points Pj reflected by a laser are contained in the same plane, whose frame is
defined having the Z coordinate equal to zero, the calibration can be computed in P2 as the
homography relating points in the laser plane to their projections in the image plane, that
works both for regular and Scheimpflug cameras.

pi = Hij pj (3)

where pj ∈ P2 is the point Pj expressed in the local reference system of the laser plane
lj, and pi ∈ P2 is the corresponding point in the camera plane ci in pixels. Note that the
intrinsic parameters of the camera are implicitly included in Hij if pi is expressed in pixel
coordinates, which makes the calibration simpler and less error-prone.

In the same way, if a laser is visible in two or more cameras they can also be related by
another homography, having as a result the relationship between all the reference systems.
In case that there are several lasers, the transformation between the local laser frames can
be derived by using calibration patterns that have a shape that favours the estimation of
this transformation (see Section 4).

These homographies are recovered using the Direct Linear Transform (DLT) algo-
rithm [22] and the corresponding transforms in T̂ are finally extracted using the decompo-
sition described in [23].

3.1. Scheimpflug Model

In this section, different methods to identify and correct the camera Scheimpflug
distortions are shown, as well as identification of the cases in which image distortion
correction is irrelevant.

3.1.1. Projection Model

As shown in Equation (3), the relationship between the laser and the image planes,
even in the case of different measurement units (e.g., millimeters in the laser plane and
pixel in the image plane) is a homography in the absence of the image distortion correction,
which also works for the case of Scheimpflug cameras. The camera projection in the case of
tilted cameras is given by the equation:

s(xt, yt, 1)T = KHp(xcam, ycam, 1)T (4)

where (xt, yt, 1)T corresponds to the homogeneous coordinates of a point in the tilted
camera frame in pixels, (xcam, ycam, 1)T corresponds to the homogeneous coordinates of
the observed laser point in the camera frame in normalized image coordinates (projection
of the observed point into a camera with focal distance equal to 1), K corresponds to the
intrinsic pinhole camera projection with principal distance c equal to the distance between
the optical center and the camera sensor. Hp corresponds to the transformation of points
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between the untilted and the tilted image planes, whose origin is at a distance d = mp ∗ c
from the projection center and mp corresponds to the pupil magnification factor.

Note that in the case that the plane is no tilted, Hp is a unit matrix, so that the above
equation corresponds to the standard pinhole camera projection. The transformation
Hp of points in the camera frame to the Scheimpflug plane is given by the following
homography [5]:

Hp =

r11r33 − r13r31 r21r33 − r23r31 0
r12r33 − r13r32 r22r33 − r23r33 0

r13/d r23/d r33

 (5)

where rij is the i, j element of the matrix Rt that defines the rotation part of the transforma-
tion between the tilted and untilted frames.

The model described by Equation (3) remains valid since it can be expressed as a
composition of homographies:

pi = KHpCNij pj = Hij pj (6)

where CNij is the normalized camera matrix with focal unit length [22], i.e., CNij =(
I | 0

)(Rij | Tij
0 | 1

)
=
(

Rij Tij
)
, and Rij, Tij are the rotation an translation part of

the pose of the laser frame j relative to the camera frame i.

3.1.2. Distortion Model

The radial distorsion model of Brown [24] computes radial and decentering distortions
in the normalized plane (plane at a unit focal length). In case of untilted cameras, radial
distortions are accurate enough to model it. For the Scheimpflug model presented here,
the transformation of pixels from the tilted plane at distance d to the normalized untilted
unit plane is made with the transformation:

s(xu, yu, 1)T = H−1
p K−1(xt, yt, 1)T (7)

with the matrix Hp being the unit matrix, as the plane at distance d is untilted, and (xu, yu, 1)
corresponds to the camera projection in the untilted plane in normalized coordinates. Thus,
the radial distortion calculation is made the same way as in a regular pin-hole camera.
In order to calculate the distortion map in the tilted plane (in pixels), first the coordinates
of the distorted point (xd, yd)

T are calculated:

s
[

xd
yd

]
=

[
xu(1 + K1r2 + K2r4 + . . .)
yu(1 + K1r2 + K2r4 + . . .)

]
; r2 = xu

2 + yu
2 (8)

Then, the distorted point in the tilted image plane in pixels results in:

s(xdt, ydt, 1)T = KHp(xd, yd, 1)T (9)

As an example, one of our cameras with 50 mm focal length is tilted 25◦ with magnifi-
cation ratio of 1. The untilted and tilted distortion map are shown in Figure 2. The Matlab
code for the calculation for these maps has been included in Appendix A.
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Figure 2. Distortion map errors amplified 10 times for an untilted and tilted camera by 25◦ and magnification ratio mp = 1.

3.1.3. Distortion Model Calculation

There are different methods to calculate the Scheimpflug distortion:

• Calculation of the distortion radial coefficients in case that a similar untilted camera is
available. In this case the lens can be fitted into this camera and a standard camera
calibration can identify the radial parameters. With this data, and the knowledge of
the tilted Scheimpflug angle as well as the magnification factor mp, the Scheimpflug
distortion map can be calculated as in the previous section.

• Other alternatives consist of performing a Scheimpflug calibration as in [5], which has
already been implemented in the Halcon-Mvtec software [25]. The identified (radial
distortions and Hp transformation matrix) allows one calculation of the Sheimplug
distortion map.

• In cases where the tilted angle is small (Scheimpflug angles smaller than 6o), [4]
showed that the decentering distortion parameters (also called tangential parameters)
compensate the Scheimpflug angle effects. Thus, a pin-hole standard calibration with
radial and decentering parameters can be used in order to calculate the Scheimpflug
distortion map.

3.1.4. Usage of the Scheimpflug Distortion

Many lenses with large focal lengths present almost no image distortion. In addition
to this favorable scenario, in order to calculate the laser-camera homography without
Scheimpflug distortion compensation, but with a given accuracy, one of the following
procedures should be follow to ensure that the right conditions exist in order to discard
distortion compensations:

• An initial approximated Scheimpflug distortion map can be estimated employing one
of the previous methods. With the initial estimation of the laser-camera homography,
the laser projections should be calculated for the pixels on the border of the image
(the ones having largest distortions) with and without distortion. If the error obtained
in the laser plane is smaller than the precision needed in the reconstruction, then the
calculation of the accurate Scheimpflug map compensations can be avoided.

• Laser lines produced by the laser or other lines in the scene should be observed in the
camera image. If the line fitting errors of the projected lines in pixels is similar to the
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errors in the estimation of the laser pick detector, Scheimpflug distortion maps can
be avoided.

In the proposed proposed solution we have discarded the Scheimpflug distortion
compensation because we have tested that we get the desired accuracy without applying it
(see Section 6.1).

4. Implementation and Calibration for the Presented Setup

Figure 1 represents our laser 3D triangulation system composed by two lasers and
three cameras, plus a motorized rotation stage (model 8MRB240-152-59—Large Motorized
Rotation Stage of Standa with an accuracy of 15’) that includes claws to fix the object. This
setup has been specifically designed to capture revolution parts such as the one shown in
Figure 3.

Figure 3. Example of revolution part that is handled with the proposed laser 3D triangulation system.
The part (colored in light gray) is tied by the claws of the rotation stage (colored in dark gray).

Two cameras and one laser have been placed at the top to obtain the reconstruction
of the interior of the object (the second camera is intended to avoid occlusions). Similarly,
the remaining camera and laser have been placed at the bottom to reconstruct the external
surface of the object. Given that, the proposed system has 3 camera-laser pairs.

Both lasers have been oriented in such a way that their projected lines are aligned
with the rotation axis of the rotation stage, i.e., both laser projections and the rotation
axis are coplanar. Furthermore, to ensure a focused image in the maximum area of the
laser plane, each camera includes a Scheimpflug adapter to make its image plane and the
corresponding laser plane as perpendicular as possible (Figure 4).

4.1. Modeling

Following the methodology depicted in Section 3, this setup is composed by three
cameras c1, c2, c3 and two lasers. However, as both lasers are coplanar, the setup can be
simplified as a single laser configuration with l1 in a first step, although an alignment
refinement is presented in Section 4.4.5.
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Figure 4. Arrangement of cameras and lasers in the proposed laser 3D triangulation system.
The Scheimpflug principle is detailed for one of the camera-laser pairs.

With this assumption, the system is completely described by Equation (6) as:

pc1 = H1 pl1

pc2 = H2 pl1

pc3 = H3 pl1

(10)

where H1, H2, H3 are the homographies relating the laser plane with the three cameras.
To get a 3D reconstruction of an object, it is placed on the rotation stage and a complete

rotation (360 degrees) is performed automatically (controlled by the motorized rotation
stage). It is noteworthy that the piece is fixed with claws to center it in the stage, as well as
to avoid unexpected displacements during the rotational motion.

For each rotation step (1 degree in our case), each camera-laser pair takes a capture,
so that each camera-laser pair provides 360 profiles in total. Note that this movement is
analytically equivalent to a setup with 360 laser planes, where each plane lj | 1 ≤ j ≤ 360 is
related to a world plane with a rotation Rj around the axis of the stage.

Without loss of generality, if we assume that the axis of the stage is at the origin of the
reference system, the reconstruction of a point pw captured by the camera i at the step j can
be expressed as follows:

pw = Rj H−1
i pi (11)

4.2. Calibration Pattern

The calibration pattern that has been used is the one shown in Figure 5. It has a conical
shape and it is formed by five coaxial cylinders of different diameters to which a cut has
been applied to get two planar faces (inner and outer) with the same orientation. Its design
has been inspired by the one used in [8], but a planar face has been added to be able to
solve the degree of freedom associated with the turn about the axis of rotation (see below).
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Figure 5. Calibration pattern. Front (left), back (middle) and top (right) views of the 3D model.

This design has been chosen for the following reasons:

• When a laser beam hits the pattern in the part of the cylinders, the beam describes a
staircase shape and its intersection points can be detected and act as control points to
get the calibration homographies (see Sections 4.4.1 and 4.4.2). This staircase shape
appears on both sides of the pattern, on the outer face as well as on the inner face.
The outer face is visible by the camera at the bottom while the inner face is visible by
the two cameras at the top.

• After having an initial solution of the calibration, a 3D reconstruction of the calibration
pattern can be performed. In this 3D reconstruction, the two planar faces can be
detected automatically and used to refine the alignment between the top and bottom
camera-laser pairs along the axis of revolution (see Section 4.4.5).

4.3. Laser Capture

The accuracy of a 3D reconstruction using laser linear illumination is significantly
determined by the accuracy of the line segmentation in the image. Since the pattern of
image intensity in the normal direction to the line has a Gaussian profile, finding the center
of the line in the image corresponds to detect the point of maximum intensity in the normal
direction, i.e., the laser peak. This peak can be detected by different algorithms using the
intensity distribution along a column of the sensor image, e.g., finding the position of
maximum intensity, finding thresholding points or finding the center of gravity [26–28].
In the proposed sensor, a Savitzky-Golay [29] finite impulse response (FIR) differential
filter is applied to the image intensity profile of the laser line computing the zero-crossings
with sub-pixel accuracy [30–32].

4.4. Method

In order to calibrate the system, the calibration pattern is placed on the rotation
stage and rotated 360 degrees while each camera-laser pair takes a capture per degree.
After capturing this set of profiles, the steps shown in Figure 6 are executed for camera-laser
pair to automatically extract the corresponding homographies.

The shape of the calibration pattern (Section 4.2) generates images that have a staircase
shape as shown in Figure 7. For each image generated by each camera-laser pair a line
detection algorithm is applied to extract predominant lines (Section 4.4.1). The intersection
points of these lines are matched to their reference (nominal) counterparts that are specified
in a global coordinate system (Section 4.4.2). Using these correspondences, for each camera-
laser pair the homography that transforms points from the image plane to the laser plane
can be estimated (Section 4.4.3). Additionally, the 3D reconstruction for each camera-laser
pair is obtained by applying the corresponding rotation angle (given by the encoder of the
rotation stage) using Equation (11) (Section 4.4.4). Therefore, each partial 3D reconstruction
is accumulated to build the final 3D reconstruction. In the last refinement step these partial
3D reconstructions are aligned with each other using the planar reference faces of the
calibration pattern. This faces are automatically detected so that the final homographies
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make them share the same normal (Section 4.4.5). An overview of the whole pipeline is
shown in Figure 6.

Figure 6. Calibration pipeline.

4.4.1. Line Detection

Figure 7 shows an example of a captured laser profile of the calibration pattern at
each rotation step. The raw captured profile contains some noise (highlighted in red in the
top of Figure 7), especially at the extremes, since the laser beam can hit other objects apart
from the calibration pattern. As this noise usually appears at the extremes and is separated
from the main part, to remove it a point clustering is done based on the euclidean distance,
and the biggest cluster is only retained.

Figure 7. Example of captured laser profile for the calibration pattern. Raw data with noise high-
lighted in red (top), and the result after removing noise and detect lines (bottom).

With the cleaned profile, N predominant lines are searched using RANSAC [33],
which is a hypothesis-verification technique. We execute RANSAC N times or until no
points are available, and for each execution the predominant line is obtained and its inlier
points (those points whose distance to the line is less than a predefined threshold) are
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removed from the profile for the next execution. N represents the maximum number of
lines to be detected for each profile and is a predefined parameter that depends on the
shape of calibration pattern and its visibility from the camera. Taking into account visibility
limitations, in our configuration, we have set N as 11 for the bottom camera-laser pair
and 9 for the top camera-laser pairs (see Figure 8 to substantiate how these numbers are
defined). It should be emphasized that less than N lines will be detected in the planar side
of the calibration pattern because the stop criterion will be given by the absence of more
available points to form line hypothesis.

Figure 8. Maximum number of lines of the calibration pattern that are visible by each camera-laser
pair in each profile (highlighted in red). The body of the claws of the rotation stage increases the
number of lines for the bottom camera-laser pair. The bottom part of the inner side of the calibration
pattern is not visible by the top cameras.

To avoid undesired line detections, such as the line that crosses the entire profile and
which would have a large number of positive votes in RANSAC, we have included the
following heuristics to the original RANSAC algorithm.

• Length restrictions: Instead of considering 2 random points to form a line hypothesis,
we only consider those pairs of points whose distance is between a predefined range.
Thus, we discard hypotheses that are formed by too close points (which offers unstable
estimation of the line direction) as well as those formed by too distant points (to reduce
the appearance of hypotheses with considerable length). When assigning positive
votes to a line hypothesis, we also discard those points that are too distant from the
2 original points that form the line hypothesis.

• Direction restrictions: Given the staircase shape of our profile, the new line to be
detected in the current RANSAC execution has to be almost 90 degrees from the line
detected in the previous execution, i.e, we use the normal of the previous detected line
as an initial estimation of the direction for the current line. We estimate the normal for
each point using the k closest points at the beginning, so that line hypothesis are only
formed by point pairs that have similar normal. Similarly, when assigning positive
votes to a line hypothesis, we discard those points whose normal is not similar to the
normal of the line hypothesis.

Additionally, the line estimated after each RANSAC execution need to pass a fitting
quality control to be considered as valid. Within the inlier point set of the line, the two most
extreme points are taken to form the longest segment, and its oriented bounding box is
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calculated and used to retain those points from the whole profile that are inside it, i.e., to get
a potential inlier point set. Thus, the ratio number_of_inlier_points/number_of_potential_inlier_
points represents the fitting quality and must be higher than a predefined value to register
the current line as a good one. This test is mainly focused on discarding lines with a
spatially non-uniform and dispersed set of inliers (generally produced by several groups
of independent points), and which is usually associated with a bad estimate.

To speed up all the calculations (including the initial point clustering), we work on a
subsampled profile (we apply a non-maximum suppression), and once we detect the lines,
we refine them using the original profile points to improve the accuracy of line estimation.

4.4.2. Correspondences

After the previous step, we have several line estimations for each profile, and each line
can be represented by the longest segment formed by the the two most extreme points of the
inlier set. Thus, for each profile we sort its segments using the coordinates of these points
(those closest to the origin first), and then, compute the intersections between consecutive
segments. To avoid bad configurations, we only retain those intersection points that are
close to one of the extreme points of both segments. Moreover, from the whole set of
360 profiles, we initially select those for which the number of intersection points is equal to
the number of nominal intersections.

These selected profiles provide an unambiguous correspondence between detected
and nominal intersection points, which are the control points used to calculate the homo-
grapy between the camera and the laser plane. The nominal intersection points have been
obtained by measuring the calibration pattern using a Coordinate Measuring Machine
(CMM). In our case, we have used the Mitutoyo Crysta-Apex S 9106 CMM model to do
this measurement, which offers a high accuracy (∼0.002 mm). As the cylinders of the
pattern are symmetrical about the central axis of the pattern (which coincides with the axis
of rotation of the system), the CMM has measured the intersection points along a plane
that cuts the pattern and passes through the central axis, which is coincident with the laser
plane (see Figure 9 for a graphical representation).

Many times the set of selected profiles are concentrated in one small area of the
calibration pattern, so the posterior results can be overfit to this area. Furthermore, since
the calibration pattern has manufacturing tolerances, the results may vary depending
on the area used. To avoid this problem, we make a second pass to try to include some
intersection points from unselected profiles and get correspondences that are distributed
in a more uniform way throughout the entire surface of the calibration pattern. Using the
intersection points of the selected profiles, we compute the median for each of the N − 1
intersection points, and then, for each unselected profile we check if its intersection points
are close to these median values. In case of finding at least 2 valid intersection points,
the unselected profile is considered to be partially good and its validated intersection points
are included to the set of correspondences.

4.4.3. Homography Estimation

The previous step provides a set of correspondences between the intersection points
detected in the image and the reference intersection points that are in global coordinates and
rest on the laser plane. More precisely, for each of the N − 1 different reference intersection
points we have several correspondences. Under our experience, instead of using a RANSAC
style algorithm with all correspondence samples, we have had more stable results making
the median of the detected image correspondences for each of the N − 1 different reference
points, and then, computing the homography (in a least squares sense) using the resultant
N − 1 correspondences (Figure 9). The median values are used to compensate possible
manufacturing tolerances (eccentricities, etc.) of the calibration pattern.
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Figure 9. Conceptual representation of the homography estimation. Intersection points of the
whole profile set are simplified using median values and used as correspondences of the reference
intersection points. The computed homography transforms points from the image plane (in image
coordinates) to the laser plane (in global coordinates).

The homography that is estimated transforms points from the image plane to the
laser plane (or viceversa if its inverse is used, since a homography is a 3 × 3 invertible
matrix). For clarification purposes, we assume that the laser plane coincides with the XY
plane of the global coordinate system, i.e., Z = 0. Given that, and following the notation of
Equation (11), the homography transformation chain can be expressed as

pw = (X, Y, W)T = H−1
i (x, y, 1)T = H−1

i (pi, 1)T

Pw = (X/W, Y/W, 0)T
(12)

where pw are the XY homogeneous coordinates of the laser points, Pw are the 3D coordi-
nates of the laser point in the global coordinate system.

4.4.4. 3D Reconstruction

According to Equation (12) points of each of the 360 captured profiles can be trans-
formed to the global coordinate system. However, this transformation moves all points
to the laser plane, i.e., all the profiles are accumulated in the same plane. To reconstruct
properly each profile we have to apply the corresponding rotation to each profile. When
a profile is captured, we know at which rotation step has been captured, since this infor-
mation is provided by the encoder of the rotation stage. Thus, the points of the profile k,
which has been captured at the rotation step j (which equals to j degrees, as 360 profiles
are captured in 360 degrees, i.e., rotation step is 1 degree), must be transformed as follows

(X′, Y′, Z′)T =

 cos(j) 0 sin(j)
0 1 0

−sin(j) 0 cos(j)

Pk
w = RjPk

w (13)

where Pk
w represents the points of the profile k after applying Equation (12), Rj is a rotation

matrix of j degrees about the axis of rotation of the system (which coincides with the Y axis
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of the global system), and (X′, Y′, Z′)T are the resultant global coordinates of the point and
which are used to build the 3D reconstruction of the scanned object (the calibration pattern).

4.4.5. Alignment Refinement

All the processing steps described in the previous Sections 4.4.1–4.4.4 are executed
by each camera-laser pair independently. As a result, we obtain several partial 3D re-
constructions of the calibration pattern, one for each camera-laser pair. These partial 3D
reconstructions are correctly aligned in translation and in the rotations of the X and Z axes,
but the alignment in the rotation of the Y axis (the main axis of the rotation stage) is not
guaranteed, since each camera-laser pair has a different origin of the rotation (different
starting point) through the Y axis when applying Equation (13). If this rotation ambiguity
is not solved, the partial reconstructions are not well aligned on the Y axis, and therefore,
if these partial reconstructions were joined, a bad global reconstruction would be seen
(there would be an offset between them). This misalignment effect would be appreciated
especially in those objects that are not completely symmetrical along the Y axis.

To ensure a correct alignment in the rotation of the Y axis we use the planar faces
of the calibration pattern (Figure 5). In each partial 3D reconstruction we can search for
the predominant plane and use its normal to align them all together, i.e., find a rotation
delta in Y axis (∆i) for each camera-laser pair (i) to force that all the plane normals match
and point in the same direction. The final global coordinates (X′′, Y′′, Z′′)T that are used
to build the 3D reconstruction of the scanned object (the calibration pattern) are obtained
after applying this rotation delta to the Equation (13).

(X′′, Y′′, Z′′)T =

 cos(∆i) 0 sin(∆i)
0 1 0

−sin(∆i) 0 cos(∆i)

(X′, Y′, Z′)T (14)

Given that, it is noteworthy that the calibration of each camera-laser pair (i) will be
given by its own homography (Hi) and rotation delta (∆i) as shown in Equations (12)–(14).
Likewise, the final 3D reconstruction will be given by merging all partial 3D reconstructions
of all camera-laser pairs.

The extraction of the predominant plane for each partial 3D reconstruction can be
speed up using the grouping of profiles done in Section 4.4.2. The profiles that were
discarded as correspondences for not having multiple intersection points between lines,
are precisely those that will belong to the part of the calibration pattern where the plane is
located. Therefore, we can identify these profiles and only use their 3D reconstruction to
find the predominant plane.

5. Reconstruction of Revolving Objects

Previous section describes the calibration process of the proposed 3D laser triangu-
lation system. Thus, once the system has been calibrated, it can be used to build the 3D
reconstruction of revolving objects, such as the one shown in Figure 3.

The procedure to scan and reconstruct an object is straightforward. The user has to
place the desired object in the rotation stage and ties it. Then, the user pushes a button and
the system automatically applies a complete rotation (360 degrees) while capturing profiles
with the different camera-laser pairs. Afterwards, the system uses the calibration data (Hk
and ∆k) of each camera-laser pair (k) to apply Equations (12)–(14) to the corresponding
profiles and to obtain the 3D reconstruction of the object.

6. Experiments and Results
6.1. Scheimpflug Distortion

In our experiment an approximated Scheimpflug distortion map for the used cameras
(C5-4090-GigE cameras from Automation Technology Gmbh and Zeiss Planar T* 50 mm
lenses from Nikon) and the estimated homography were calculated resulting in maximum
errors of 2 microns. These errors comes from the fact that a similar camera but without
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Scheimplug angle, i.e., perpendicular camera, has been calibrated with the same lens used
in the Scheimplug camera. A very precise dot calibration pattern with precision of about
2 microns has been used to calibrate the perpendicular camera, noticing practically no
radial distortion, with a re-projection error that comes from the errors of the calibration
plate. The Scheimplug distortion map, calculated with the matlab code of Appendix A,
shows distortions of a similar magnitude that the distortions of untilted camera.

Real calibration of the laser-camera homography was made by fitting projecting
the laser over a calibrated revolution cone, assuming that the distortion map can be
avoided. The errors obtained in the homography estimation were smaller that 7 microns.
The advantage of this method resides on the fact that difficult and error-prone Scheimpflug
calibration procedures can be avoided, which can at the end be more costly and less precise
than this simpler method.

6.2. Calibration Repeatability and Accuracy

In order to demonstrate the repeatability of the proposed calibration method, we
have performed the calibration 10 times. Moreover, to introduce variability in the data,
the pattern has been placed in a different initial position for each calibration, providing
a different set of profiles as input. At each calibration execution we have calculated the
calibration data and the 3D reconstruction of two different objects: (1) the calibration
pattern, and (2) an object that is similar in shape to the calibration pattern, but with a small
change in the size (different height and different diameter lengths). The idea of introducing
this second object is to see results without the possible effects of overfitting due to the
usage of the same object for both calibration and test.

We have used these 3D reconstructions to perform some measurements and provide
a comparison between them. More precisely, we have measured the diameter of several
cylinders. Furthermore, the height of a plane at different locations has been estimated for
the calibration pattern as well (see Figure 10 for a graphical representation of measured
cylinders and planes). In all cases we have used points of the inner and outer part of the
3D model to estimate cylinders and planes of the outer and inner parts respectively.

Figure 10. Measured cylinders and planes for each calibration execution during the repeatability
experiments (see text for details). Inner cylinders and plane are highlighted in blue, while outer
cylinders and plane are in red color.

Tables 1 and 2 show the error (expressed in millimeters) of these measurements respect
to the nominal values, which have been obtained using a CMM (Mitutoyo Crysta-Apex
S 9106, which offers a high accuracy, ∼0.002 mm).

To provide a robust central tendency, truncated mean of the results of the 10 cali-
brations has been calculated, i.e, extreme values (best and worst) have been discarded
during the mean computation. Moreover, the standard deviation of the error of these
10 calibrations is shown for each measurement. These standard deviation values are low,
which indicates that the calibration algorithm offers a good repeatability.
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Table 1. Mean and standard deviation error (in mm) of some primitives (cylinders and planes) of the
calibration pattern respect to nominal values using different calibrations.

Calibration Pattern Error

Measurement Nominal Mean Stdev

Diameter_OUT 44 0.064 0.009
Diameter_OUT 71 0.115 0.005
Diameter_OUT 97.01 0.017 0.005
Diameter_OUT 123 0.059 0.016

Diameter_IN 50.94 0.031 0.008
Diameter_IN 76.95 0.067 0.041
Diameter_IN 102.95 0.084 0.087
Diameter_IN 129 0.18 0.047
Plane_OUT 121.96 0.194 0.014

Plane_IN 132 0.061 0.012

Table 2. Mean and standard deviation error (in mm) of some primitives (cylinders) of an object, which
is similar in shape to the calibration pattern, respect to nominal values using different calibrations.

Object with Similar Shape Error

Measurement Nominal Mean Stdev

Diameter_OUT 72.044 0.126 0.011
Diameter_OUT 98.062 0.244 0.014
Diameter_OUT 124.075 0.268 0.031
Diameter_OUT 150.091 0.053 0.06

Diameter_IN 46.948 0.068 0.016
Diameter_IN 71.99 0.055 0.04
Diameter_IN 96.96 0.1 0.094
Diameter_IN 121.992 0.107 0.142

To obtain each measurement (related to cylinder or plane), points of the 3D recon-
struction that are close to the corresponding nominal value have been sampled, and then,
a specified fitting algorithm has been applied. Thus, it is noteworthy that the errors that
are shown in Tables 1 and 2 accumulate the error of: (i) the laser (sensor accuracy), (ii)
the centering of the object on the axis of rotation, (iii) the proposed calibration method
and (iv) the fitting algorithms. In fact, the effect of the error in the centering of the object,
which mechanically depends on the claws that tie the object at its bottom, is noticeable by
observing the errors, since in the upper and outer areas of the object there is more error
than in the lower and bottom areas respectively (a slight pitching effect).

As an supplementary measure of accuracy, we have calculated the distance between
the 3D reconstructed model and its corresponding original 3D model for the object with
similar shape. We have compared each of the previous 10 3D reconstructions of this object
against its original 3D model. The mean and standard deviation of the errors of these
10 comparisons has turned out to be 0.151 mm and 0.015 mm respectively. As stated before,
these errors values accumulate the error of several sources (the laser, the centering of the
object, the quality of the calibration and the fitting algorithm).

Taking into account all the experiments presented above, we can point out that the
system offers an accuracy of tenths of a millimeter with a variability of hundredths of
a millimeter.

Real Case

As an additional evidence of the validation of the proposed system, we have made
experiments with an industrial part (Figure 3) that is being used in a real factory. We
have used it as a reference to validate the accuracy of the calibration. Being a result of an
industrial manufacturing process, this part undergoes a series of measurements (designed
and defined by expert metrologists) at some key points to ensure that the tolerances are
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met. These measurements are usually performed using a CMM, which offers high precision
results. Thus, we have considered several of these measurements and we have calculated
them using both the CMM and a metrology software which we have provided as input the
scanned and reconstructed 3d model of the part using the laser 3d triangulation system
described above (Section 4).

Comparing the results of both alternatives, we observed that the errors are less than
0.1 mm, which indeed, is accurate enough to be used for this real application. The details
of the repeatability and reproducibility (R&R) experiments that led to this value can be
found in [8].

6.3. Discussion

The proposed calibration methodology requires the use of a calibration pattern, whose
main design features have been defined in Section 4.2. Getting a similar pattern can be
a laborious task, but it only needs to be done once. In return, the proposed calibration
process itself is fast (it takes less than 1 minute), simple, and requires minimal user inter-
vention. Summing up, the user places the calibration pattern on the rotation stage and
ties it, and then, the system automatically applies a complete rotation (360 degrees) while
capturing profiles with the different camera-laser pairs. Afterwards, the system process
automatically each profile to extract the lines, the correspondences against the reference
points and estimate the calibration data. It should be noted that the automatic processing
of each profile has proven robust to the noise that can appear during the capture of profiles.

The experiments have been carried out using two different surface materials. The cali-
bration object is made of machined steel finished with a dark coating which has a certain
specular component, while the validation object is made of plastic resin that has a greater
diffuse component. In both cases we have observed an adequate behavior of the optical
system, requiring only to adjust the exposure time of the cameras. Additionally it has also
been tested with forged steel objects. It is noteworthy that very specular materials, such as
glass or machined metals, are not suitable for the proposed system.

Considering the intended use we wanted to give to the proposed laser 3d triangulation
system (emphasize simplicity and automaticity of use within some bounds of accuracy),
we have discarded the use of the Scheimpflug distortion. The impact on accuracy (microns
according to our experiments of Section 6.1) is not significant, and it simplifies greatly the
calibration process, allowing us to offer an almost automatic solution.

Apart from being synchronized with a rotation stage, the proposed calibration method
requires knowledge of the coordinates of the reference control points (Section 4.4.2) to
perform automatically all the processing. Given that, our calibration method could be
adapted to work with other calibration patterns just by providing the new coordinates of
the reference control points. The requirement for these new calibration patterns is that
they must generate a staircase shape in the profiles when the laser hits their surface (see
Figure 7).

7. Conclusions

This paper describes a laser 3d triangulation system oriented to revolving pieces. It
combines 3 cameras and 2 lasers to capture and reconstruct most of the surface of the
objects that want to be scanned. Moreover, it includes Scheimpflug adapters to offer more
flexibility in the setup of the cameras and lasers, i.e., to maximise the focus of the depth of
field of the camera on the laser plane despite the orientation of both devices. Aside from
the flexibility of the setup, another advantage of the proposed system is that it is easy to use,
offering a high degree of automation of the entire process. The object to be reconstructed is
automatically rotated using a rotation stage, and the 3 camera-laser pairs are synchronized
in such a way that in each rotation step profiles are captured and processed automatically.
The entire scan and reconstruct process takes less than 1 minute for each object, so it is
another point in favor of the proposed 3d triangulation system as well.
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Likewise, a fast and automatic calibration method is proposed to fine-tune the system.
This calibration method uses a calibration pattern that has been designed to generate a
staircase shape when the laser planes intersect with its surface. Indeed, this shape is what
allows to perform an automatic processing of profiles in search of lines, their intersections,
generate correspondences against the reference control points and to estimate the calibra-
tion data. For the calibration process, the calibration pattern is treated as an object in the
sense that the user places the pattern on the rotation stage and it is rotated automatically
to capture the profiles. Thus, the proposed calibration method is automatic and takes less
than 1 minute. In order to achieve this high degree of automaticity and speed in calibration,
the effect of Scheimpflug distortion has not been considered. Nonetheless, this has little
impact on accuracy when using 50 mm lenses (microns, according to our experiments).
Finally, in cases where the Scheimpflug distortion cannot be avoided, simple procedures
for its calculation and the conditions were it can be avoided have been also presented.

The presented experiments validate the accuracy of the proposed laser 3d triangulation
system when compared against the measurements made with a CMM. We have reported
an accuracy of few tenths of a millimeter, which could be enough for several applications.
In fact, as an evidence of its potential use, this system is already being used in a real factory
to control the quality of the manufacturing process of an industrial part.
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Appendix A. Matlab Distortion Map Calculation

clear all;
close all;

focal = 50;
sx = 5.5*1.0e-3; sy = 5.5*1.0e-3;
Sizex = 4096; Sizey = 3072;
Cx = Sizex /2; Cy = Sizey /2;
d = focal / sx;

Ku=[d, 0, Cx; 0 d, Cy; 0, 0, 1];
Ku1 = inv(Ku);
K1 = 0.1; K2 = 0.01;

sampleo = 256;
mapXu = zeros(Sizex/sampleo , Sizey/sampleo );
mapYu = zeros(Sizex/sampleo , Sizey/sampleo );
mapX = zeros(Sizex/sampleo , Sizey/sampleo );
mapY = zeros(Sizex/sampleo , Sizey/sampleo );

for i = 1: sampleo:Sizex
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for j = 1: sampleo:Sizey
p = [i; j; 1];
pn = Ku1 * p;

xun = pn(1)/pn(3); yun = pn(2)/pn(3);
r2 = xun^2 + yun ^2; r4 = r2^2;

xdn = xun * (1 + K1 * r2 + K2 * r4);
ydn = yun * (1 + K1 * r2 + K2 * r4);
pd = Ku * [xdn; ydn; 1];

nx = int32(i / sampleo) + 1;
ny = int32(j / sampleo) + 1;

mapXu(nx ,ny) = i; mapYu(nx,ny) = j;
mapX(nx,ny) = pd(1)/pd(3); mapY(nx,ny) = pd(2)/pd(3);
end
end

% Visualize distorsion map
Figure ~(1)
subplot (1,2,1);

ErrX = mapX -mapXu;
ErrY = mapY -mapYu;
quiver(mapXu , mapYu , ErrX * 10.0, ErrY * 10.0, ’k’, ’AutoScale ’,’off’);
hold on; scatter(mapX(:), mapY(:), ’r.’);
title(’Untilted␣Camera ’);
axis equal; axis ([-300 4300 -300 3500]);
xlabel(’X␣(pixels)’);
ylabel(’Y␣(pixels)’);
hold on;

% Sheimpflug angle and transformations
theta = 25;
cth = cosd(theta); sth = sind(theta);

Rt = [cth , 0, -sth ;...
0, 1, 0;...
+sth , 0 , cth];
Hth = [Rt(1,1) * Rt(3,3) - Rt(1,3) * Rt(3,1), Rt(2,1) * Rt(3,3) - Rt(2,3) * Rt(3,1), 0;...
Rt(1,2) * Rt(3,3) - Rt(1,3) * Rt(3,2), Rt(2,2) * Rt(3,3) - Rt(2,3) * Rt(3,2), 0;...
Rt(1,3) / d, Rt(2,3) / d, Rt(3 ,3)];

% Transform points from perpendicular plane to sheimpflug plane
mapshux = zeros(size(mapXu )); mapshuy = zeros(size(mapYu ));
mapshdx = zeros(size(mapX )); mapshdy = zeros(size(mapY ));

for i = 1:size(mapX , 1)
for j = 1:size(mapX , 2)
pux = mapXu(i, j);
puy = mapYu(i, j);

pdx = mapX(i, j);
pdy = mapY(i, j);

pshu = Hth * [pux; puy; 1];
pshd = Hth * [pdx; pdy; 1];
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mapshux(i, j) = pshu (1) / pshu (3);
mapshuy(i, j) = pshu (2) / pshu (3);

mapshdx(i, j) = pshd (1) / pshd (3);
mapshdy(i, j) = pshd (2) / pshd (3);
end
end

% Visualize distorsion map
subplot (1,2,2);
ErrX = mapshdx - mapshux;
ErrY = mapshdy - mapshuy;
quiver(mapshux , mapshuy , ErrX * 10.0, ErrY * 10.0, ’k’, ’AutoScale ’,’off’);
hold on;
scatter(mapshux (:), mapshuy (:), ’r.’);
title(’Tilted␣Camera ’);
xlabel(’X␣(pixels)’);
ylabel(’Y␣(pixels)’);
axis equal; axis ([-300 4300 -300 3500]);

% Create points on a board as seen by camera
% transform to perpendicular and scheimplug.
% H calculations with/without distortions
% error calculation on the distortion plane.

size_board = 50;
nRows = 7;
nCols = 7;
pts_w = zeros(2, nRows * nCols );
origenX = - (nRows - 1) * size_board / 2;
origenY = - (nCols - 1) * size_board / 2;

for i = 1:nRows
for j = 1:nCols
ptijX = (i - 1) * size_board + origenX;
ptijY = (j - 1) * size_board + origenY;
pts_w(:, (i - 1) * nCols + j) = [ptijX; ptijY];
end
end

% Transformation from board to the camera
Tcam = [0; 0; 1000];
RcamZ = [0; 0; -1];
RcamX = [1; 0; 0];
RcamY = cross(RcamZ , RcamX );
Hcam = Ku * [RcamX , RcamY , Tcam];

pointsu = zeros(3, nRows * nCols);
pointsh = zeros(3, nRows * nCols);
pointshd = zeros(3, nRows * nCols );

% Perpendicular projection
for i = 1:nRows*nCols
pcam = Hcam * [pts_w(:, i); 1];
pcam = pcam / pcam (3);
pn = Ku1 * pcam;

xun = pn(1)/pn(3);
yun = pn(2)/pn(3);
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r2 = xun^2 + yun ^2; r4 = r2^2;

xdn = xun * (1 + K1 * r2 + K2 * r4);
ydn = yun * (1 + K1 * r2 + K2 * r4);
pd = Ku * [xdn; ydn; 1];

psh = Hth * pcam;
pshd = Hth * pd;
psh = psh / psh (3);
pshd = pshd / pshd (3);

pointsu(:, i) = pcam;
pointsh(:, i) = psh;
pointshd(:, i) = pshd;
end

% Verify homografy without errors
H = homography_solve(pts_w , pointsh (1:2 ,:));
H = H / H(3 ,3);

Hd = homography_solve(pts_w , pointshd (1:2 ,:));
Hd = Hd / Hd(3 ,3);

H1 = Hth * Hcam;
H1 = H1 / H1(3 ,3);

disp(H - H1);
disp(Hd - H1);

% Projection distorted pt on world plane
pointshWd = zeros(3, nRows * nCols);
Hd1 = inv(Hd);

% Proyect point on the perpendicular image
for i = 1:nRows*nCols
ptWd = Hd1 * [pointshd (1:2, i); 1];
ptWd = ptWd / ptWd (3);
pointshWd(:,i) = ptWd;
end

disp(pts_w (1:2 ,:) - pointshWd (1:2 ,:));

return

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function v = homography_solve(pin , pout)

if ~isequal(size(pin), size(pout))
error(’Points␣matrices␣different␣sizes ’);
end
if size(pin , 1) ~= 2
error(’Points␣matrices␣must␣have␣two␣rows’);
end
n = size(pin , 2);
if n < 4
error(’Need␣at␣least␣4␣matching␣points ’);
end
% Solve equations using SVD
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x = pout(1, :);
y = pout (2 ,:);
X = pin (1 ,:);
Y = pin (2 ,:);
rows0 = zeros(3, n);
rowsXY = -[X; Y; ones(1,n)];
hx = [rowsXY; rows0; x.*X; x.*Y; x];
hy = [rows0; rowsXY; y.*X; y.*Y; y];
h = [hx hy];
if n == 4
[U, ~, ~] = svd(h);
else
[U, ~, ~] = svd(h, ’econ’);
end
v = (reshape(U(:,9), 3, 3)).’;
end
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