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ABSTRACT 

 

Objective: To analyze longitudinal changes of retinal thickness and their predictive value as biomarkers of 

disease progression in idiopathic Parkinson’s disease (iPD). 

Methods: Patients with Lewy body diseases (LBDs) were enrolled and prospectively evaluated at 3 years, 

including patients with iPD (n=42), dementia with Lewy bodies (DLB, n=4), E46K-SNCA mutation 

carriers (n=4) and controls (n=17). All participants underwent Spectralis retinal optical coherence 

tomography and Montreal Cognitive Assessment (MoCA), and Unified Parkinson’s Disease Rating Scale 

(UPDRS) score was obtained in patients. Macular ganglion-inner plexiform layer complex (GCIPL) and 

peripapillary retinal nerve fiber layer (pRNFL) thickness reduction rates were estimated with linear mixed 

models. Risk ratios were calculated to evaluate the association between baseline GCIPL and pRNFL 

thickness and the risk of subsequent cognitive and motor worsening, using clinically meaningful cut-offs. 

Results: GCIPL thickness in the parafoveal region (1- to 3-mm ring) presented the largest reduction rate. 

The annualized atrophy rate was 0.63 µm in iPD patients and 0.23 µm in controls (p<0.0001). iPD patients 

with lower parafoveal GCIPL and pRNFL thickness at baseline presented an increased risk of cognitive 

decline at 3 years (RR 3.49, 95% CI 1.10 – 11.1, p=0.03 and RR 3.28, 95% CI 1.03 – 10.45, p=0.045, 

respectively). We did not identify significant associations between retinal thickness and motor 

deterioration.  

Interpretation: Our results provide evidence of the potential use of OCT-measured parafoveal GCIPL 

thickness to monitor neurodegeneration and to predict the risk of cognitive worsening over time in iPD. 
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INTRODUCTION 

Cognitive impairment is a common and highly disabling feature of Parkinson’s disease (PD). At diagnosis, 

mild cognitive impairment can be detected in 15 to 40% of PD patients and ten years after disease onset 

dementia affects up to 70% of patients 1-4. Some patients with aggressive phenotypes might suffer a more 

rapid cognitive deterioration and earlier instauration of dementia, but the lack of validated clinical 

biomarkers has difficulted the prediction of cognitive deterioration and the development of potential 

neuroprotective agents 1, 2. Such severe PD subtypes are believed to share clinical and pathologic 

commonalities with two other less common diffuse Lewy body diseases (LBD): dementia with Lewy bodies 

(DLB) and PD associated to E46K mutation in the α-synuclein gene (E46K-SNCA) 3. Both entities are 

characterized by a rapidly progressive clinical deterioration with a marked cognitive impairment that 

precedes or coincides with the onset of parkinsonian motor signs 4, 5. PD patients demonstrate frequent 

abnormalities in visual functions, including low contrast visual acuity, contrast sensitivity, color and pattern 

discrimination, depth and movement perception and several higher order visuospatial abilities 6-16. 

Interestingly, visuospatial impairment, one of the earliest and most prominent clinical features of DLB and 

E46K-SNCA patients, is a main predictor of global cognitive decline in PD patients17. Moreover, recent 

evidence support that visual tests might predict PD dementia 18, 19.  

In line with this, the atrophy of macular ganglion cell-inner plexiform layer complex (GCIPL) measured 

with optical coherence tomography (OCT) has been shown to be a good marker of visual dysfunction in 

PD 20, but the link between macular GCIPL thinning and overall cognitive impairment is poorly understood. 

Retinal neurodegeneration, neuronal loss and anomalous α-synuclein deposits within inner retinal layers 

are now well-known pathological features of LBD patients21. Several cross-sectional studies using OCT 

have demonstrated that, compared to age-matched controls, PD patients have an atrophy of inner retina 

which seems to be associated with disease duration and motor disability 22. More recent publications have 

shown that the thinning of macular GCIPL in PD is linked to cognitive impairment in de novo patients 23 

and to the risk of dementia 18. Interestingly, our group found that visual dysfunction in PD is selectively 

associated with the thinning of GCIPL in the 1- to 3-mm diameter ring area around the fovea (parafoveal 
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GCIPL) 20,  an OCT feature that has been also identified in patients with idiopathic REM sleep behavior 

disorder - the earliest (prodromal) phases of LBD 24. So far, only few OCT studies have prospectively 

evaluated the progression of retinal thinning in PD patients 25-27, but none have specifically looked at the 

rate of macular GCIPL atrophy and its relationship with disease worsening.  

In this study, we aimed to evaluate longitudinally the dynamics of retinal atrophy and visual deterioration 

in PD and the ability of single-timepoint OCT measures and visual test to predict the risk of motor and 

cognitive decline. Furthermore, as a strategy to identify PD patients with worse prognosis, we jointly 

evaluated PD patients together with a cohort of controls, DLB and E46K-SNCA carriers.  

 

METHODS 

Study Design and Participants 

We enrolled 62 patients with LBDs in a 3-year prospective longitudinal study, including patients with 

idiopathic PD (iPD, n=50), DLB patients (n=8) and E46K-SNCA carriers (n=4), and 29 controls. A total 

of 50 LBD patients (n=42 iPD, n=4 DLB, n=4 E46K-SNCA) and 17 controls successfully completed year 

3 of follow-up assessments. Twelve patients (19%) and 12 controls (41%) were lost to follow-up: 4 DLB 

and 2 iPD for severe motor and cognitive worsening related to LBD, 2 iPD had hemorrhagic stroke, 1 iPD 

died of pneumonia, 2 iPD developed ophthalmological exclusion conditions, and 1 iPD and 12 controls 

missed scheduled appointments by 12 months or more. Study participants consisted in a selected cohort of 

patients and controls recruited between 2015 and 2018 in the Department of Neurology at Cruces University 

Hospital and in the Biscay PD Association. Patients with iPD fulfilled Parkinson’s UK Brain Bank criteria 

for the diagnosis of PD and patients with DLB had a diagnosis of probable DLB by 2017 Fourth consensus 

report of the DLB Consortium. All patients were studied in an on-medication condition to complete all 

study assessments. Before study inclusion and at year 3 follow-up all subjects underwent a restrictive 

screening protocol to exclude participants with relevant confounding factors potentially influencing clinical 
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outcomes or retinal OCT measures. The screening protocol consisted in a comprehensive questionnaire on 

co-morbidities, an ophthalmological examination and a structural brain neuroimaging with 3 Tesla MRI. 

We excluded any subject with history of severe smoking (> 20 cigarettes/day) or heavy alcohol use (>4 

drinks/day for men or >3 drinks/day for women), diagnosis of any type or grade of diabetes, uncontrolled 

or resistant elevated blood pressure, obesity (body mass index >30), history of consumption of drugs or 

medications known to induce retinal toxicity or cognitive impairment, chronic inflammatory systemic 

diseases (e.g. lupus erythematosus, sarcoid, Bechet disease), carotid or cerebral artery disease, moderate to 

severe deep white matter cerebral small vessel disease (Fazekas grade 2 or higher), history of brain trauma 

or other structural brain lesions or central nervous system diseases different from PD. Patients with well-

controlled high blood pressure (hypertension) without complications were included in the study. We also 

excluded candidates with spherical equivalent refractive error above 4.00 diopters, more than 3.00 diopters 

of astigmatism or any other ocular condition potentially affecting OCT measures, as detailed in OSCAR-

IB criteria 28. Lastly, to establish reference values for age-related changes in macular OCT measurements, 

we used a dataset of OCT images from 250 healthy volunteers. The study protocol was approved by the 

regional Basque Clinical Research Ethics Committee. All participants gave written informed consent prior 

to their participation in the study, in accordance with the tenets of the Declaration of Helsinki.  

Demographical features and PD-related variables  

Age at baseline and sex were recorded for all participants. Two neurologists experienced in the field of 

movement disorders recorded disease duration, Hoehn & Yahr scale score, Unified Parkinson Disease 

Rating Scale part III (motor examination) scores (UPDRS III) and Levodopa equivalent daily dose (LEDD). 

Cognitive and visual outcomes assessment 

General cognition was evaluated with Montreal Cognitive Assessment (MoCA)29, 30. PD patients with 

severe cognitive deterioration at baseline visit (MoCA < 14) were excluded from the study. All visual 

function outcomes were obtained binocularly with best-corrected refraction. We registered high-contrast 

visual acuity (HCVA) and low-contrast visual acuity (LCVA) as the total number of letters correctly 
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identified in, respectively, standard Early Treatment Diabetic Retinopathy Study (ETDRS) charts and Sloan 

2.5% charts (Precision Vision, La Salle, IL) mounted in a retro-illuminated cabinet at 4 meters. Contrast 

sensitivity (CS) was measured with a Pelli-Robson chart at 1 meter under photopic conditions (280 lux) 

and the lowest contrast at which two letters in a triplet were correctly identified was recorded. In addition, 

we performed a detailed evaluation of visual cognition with tests including: the number of correct answers 

in Salthouse Perceptual Comparison Test, Symbol Digit Modalities Test, Picture Completion subtest of the 

Wechsler Adult Intelligence Scale (WAIS) IV, Benton Judgement of Line Orientation Test (H-form at 

baseline, V-form at follow-up), Number Location and Cube Analysis tests of the Visual Object and Space 

Perception (VOSP) battery, inverse of the time to complete Trail Making Test part-A, and the score in 

Clock Drawing Test (Rouleau scoring method). 

OCT Acquisition, Segmentation, and Processing 

Macular and peripapillary OCT images were acquired for each eye using Spectralis spectral-domain OCT 

(SD-OCT) (Heidelberg Engineering, Heidelberg, Germany) and thickness measures were calculated for 

peripapillary retinal nerve fiber layer (pRNFL) and for different combinations of layers and regions of the 

macula, as previously described20 (see Figure 2). Briefly, macular scans consisted of 25 single horizontal 

axial scans covering a 20º x 20º area (512 A-scans per B-scan and 49 frames per B-scan). Peripapillary 

scans consisted of a 12° diameter ring scan manually centered on the optic nerve head (768 A scans per B 

scan, 100 frames per B-scan). All OCT images fulfilled OSCAR-IB quality control criteria28. Baseline OCT 

images were selected as reference with the Follow-Up tool, which ensured identical positioning and 

scanning parameters at follow-up examinations. 

Statistical analysis  

Statistical analysis was done in R (version 3.6.1) and RStudio (version 1.2.1335). Group characteristics 

were compared using Fisher’s exact test for categorical variables and Kruskal-Wallis test for quantitative 

variables. For describing longitudinal progression of OCT measurements, visual function, cognitive and 

motor parameters, multivariate linear mixed-effects regression models (LMM) (lme4 package31) were used. 
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P-values were obtained with lmerTest package. Age and sex were used as fixed effects and a random 

intercept for subjects, separately in iPD patients and controls. To test for differences in retinal and clinical 

variables between iPD patients and controls, an interaction term between time and group was introduced. 

In patients, LMM was further adjusted for the following confounding variables: disease duration at study 

inclusion, UPDRS III score, LEDD, and diagnosis of hypertension. Lost to follow-up in patients was 

assumed not be at random since it was probably associated with study outcomes. Accordingly, to reduce 

estimate bias we also adjusted the LMM for the pattern of missing data (0=observation at two timepoints; 

1=observation at baseline and missing data at follow-up).  

For predicting clinical outcome worsening from OCT-derived and visual parameters, we first fitted linear 

models. Restricted cubic splines analysis with 5 knots revealed a non-linear relationship between baseline 

retinal variables and disease-related changes, which led us to calculate relative risks (RR). For the latter, 

outcomes were categorized as follows: we used a 5-point change in UPDRS III score as the clinically 

relevant change to consider motor worsening 32, 33. The score of MoCA was considered to have declined if 

there was a reduction of 4 points or more, based on the upper limit of the lowest quartile of MoCA score 

changes across two time points in LBD patients. Predictor categorization was based on baseline 

measurements: we averaged baseline z-scores of low contrast visual acuity and visual cognition tests in 

LBD patients for classifying iPD patients into two groups using K-means clustering20, and including DLB 

and E46K-SNCA within the classification as models. Also, iPD patients were categorized into retinal 

thickness tertiles. The tertile cutoffs were selected using as reference retinal thickness distribution of 250 

controls aged 40 to 83 years. iPD patients below 25th percentile were assigned to the lowest thickness tertile 

(for parafoveal GCIPL: 72.1 to 89.7 µm; for pRNFL: 83 to 92.5 µm), patients in the interquartile range 

were categorized as the intermediate tertile (parafoveal GCIPL: 89.7 to 98.9 µm; pRNFL: 92.5 to 107 µm), 

and individuals above 75th percentile were allocated to the highest tertile (parafoveal GCIPL: 98.9 to 116 

µm; pRNFL: 107 to 125 µm). RR were adjusted for baseline age, disease duration, sex and LEDD with 

robust Poisson regression models. Logistic regression was used to test whether any baseline clinical 

variable was associated with motor or cognitive worsening. 
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RESULTS 

Demographics and clinical features of study population at baseline 

The demographics and clinical characteristics of study participants are detailed in Table 1. Briefly, DLB 

patients were significantly older (Bonferroni-corrected p-value < 0.05). Mean UPDRS III score was 27.6 

in iPD, 10 points less than in DLB. Cognitive impairment was more severe for E46K-SNCA and DLB than 

for iPD, and MoCA score was significantly lower in iPD than in controls (Bonferroni-corrected p-value = 

0.02). At study inclusion, 28.5% of iPD patients, 25% of E46K-SNCA and 62.5% DLB had well-controlled 

hypertension and the majority of iPD participants (83.7 %) were akinetic-rigid subtype. 

Visual outcomes at baseline were worse in iPD patients compared to controls (Fig.1A), and, overall, visual 

impairment was more severe in E46K-SNCA and DLB patients (Table 1). According to baseline visual 

outcomes, iPD patients were phenotypically classified into 2 groups using K-means clustering. The first 

group, “moderate to severe visual dysfunction” group, included 16 iPD patients (32%), 7 DLB patients and 

3 symptomatic E46K-SNCA carriers, whereas the second group, “mild visual dysfunction” group, included 

34 iPD patients (68%), 1 DLB patient and 1 asymptomatic E46K-SNCA mutation carrier.  

OCT measures at study inclusion showed that, in the central 3-mm of the macula, GCIPL was significantly 

thinner in DLB compared to iPD and controls, and inner nuclear layer (INL) thickness was significantly 

lower in E46K-SNCA carriers than in iPD. In fact, the difference was largest in the parafoveal area (GCIPL, 

DLB vs iPD -9.6 µm, DLB vs control -10.7 µm; INL, E46K-SNCA vs iPD -4.25 µm, E46K-SNCA vs 

controls -3.27 µm). Bonferroni-corrected pairwise comparisons were non-significant for the remaining 

thickness parameters of the macula and pRNFL. 

At baseline, parafoveal thickness of GCIPL and INL in iPD were significantly correlated with MoCA score 

and UPDRS III score (Fig.3A), being correlation coefficients slightly higher for GCIPL than for INL. 

Cognitive and motor scores were not correlated in iPD patients, although the relationship was significant 

when AR-iPD subtype was separately analyzed (r=-0.36, p=0.021). 
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Progression of motor, cognitive and visual impairment after 3 years of follow-up 

From the 50 LBD patients that completed follow-up visit, 17 patients (34%) (14 iPD, 1 DLB and 2 E46K-

SNCA) suffered a clinically relevant motor progression (Δ UPDRS III ≥ 5 points). Motor worsening was 

not associated with any baseline clinical variable, except for baseline UPDRS III score (OR: 0.897, 

p=0.016), whereby per one unit increase in the initial UPDRS III score the odds of having an increase of 5 

points or more in UPDRS III at 3 years decreased by a factor of 0.90. 

Regarding the progression of cognitive disability, iPD patients showed a significant decrease in the mean 

MoCA score (from 24.8 to 23.3, LMM p=0.01) while in controls it slightly increased from 26.8 to 27.6 

(LMM, p=0.360). The decrease in the MoCA score was more pronounced for E46K-SNCA (from 19.0 to 

15.5) and DLB (from 24.0 to 16.0) than for iPD. At follow-up, 8 iPD (19%), 4 DLB (100%) and 1 E46K-

SNCA (25%) presented a worsening of 4 points or more in MoCA. Interestingly, cognitive worsening was 

not associated with initial MoCA score or any other demographic or disease-related clinical variable. 

Although primary visual functions were clearly affected at baseline in iPD patients as compared to controls, 

the dynamics of the relative changes were similar, and we found only small differences over time (Fig.1B). 

Clinically significant worsening of high contrast visual acuity (loss of 5 or more letters, corresponding to 

one logMAR line of ETDRS chart) was observed in 2.5% of iPD patients, with no significant differences 

when compared to controls. The decrease in low contrast VA of 5 letters or more was present in a higher 

percentage of participants, but in a similar proportion between of iPD patients (20%) and controls (29.4%, 

p=0.67), and differences in annualized changes were not statistically significant (LMM, group x time, 

p=0.781). Intriguingly, the rate of low contrast VA deterioration was more prominent in E46K-SNCA and 

DLB groups (% change, -37.4 and -20.5, respectively) than in iPD or controls (Fig.3). In iPD patients, 

median contrast sensitivity decreased from 1.90 to 1.77 logCS at follow-up (LMM, p<0.001), whereas in 

controls the median of 2.10 logCS did not change, although the difference in the rate of contrast sensitivity 

change was not statistically significant (LMM, group x time, p=0.06). Regarding visual cognition tests, we 

failed to find within group significant changes at follow-up, except for Symbol Digit Modality Test in 
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controls (annualized estimate -1.5, p=0.014). However, we found a significant interaction effect of time 

and group for Benton Line Orientation Judgement (LMM, p=0.04), and Salthouse Perceptual Comparison 

Test (LMM, p=0.03) (Fig.1B).  

Increased rate of GCIPL and peripapillary RNFL thinning in iPD patients 

Using LMM analysis adjusted for age at baseline and sex, we detected a distinct rate of macular GCIPL 

atrophy between iPD patients and controls (Fig.2). In the control group, the annualized estimates of GCIPL 

thickness were -0.33 µm in the 6-mm disc, -0.19 µm in the central 3-mm disc and +0.07 µm in central 1-

mm disc. Additionally, when the annualized GCIPL estimates were calculated in controls for rings around 

the fovea, -0.23 µm decrease was found in 1- to 3- mm (parafoveal) ring, and -0.37 µm in the 3- to 6-mm 

perifoveal ring (Table 2). In iPD patients, the annual rate of atrophy was largest in the parafoveal ring (-

0.67 µm), which was two times greater than in controls and statistically significant (LMM, group x time, 

p=0.007). Similarly, the overall thickness loss in 3-mm disc (-0.63 µm) was also significant and 

significantly higher than in controls (LMM, group x time, p=0.005), as well as within the central 1-mm disc 

(-0.24 µm, LMM group x time, p=0.045). However, the rate of thinning in the 6-mm disc (-0.51 µm) and 

3- to 6- mm perifoveal ring (-0.47 µm) was not significantly different in iPD patients compared to controls. 

These estimates slightly increased after adjusting for age and disease duration at baseline, sex, UPDRS III 

score, LEDD, hypertension and missing data pattern (Table 2). When other macular layers were evaluated 

using LMM, we only observed statistically significant changes for outer plexiform-Henle fiber-outer 

nuclear layer complex (OPL-HF-ONL) complex in iPD patients, with a thinning ranging from -0.39 to -

0.25 µm, but this thinning rate was not statistically different from that observed in controls. The average 

pRNFL thickness also decreased significantly over time in iPD patients (-0.55 µm/year, p<0.001) but not 

in controls (-0.15 µm/year, p=0.192) (LMM group x time, p=0.015) (Table 2).   

Prediction of disease worsening from retinal OCT and visual function parameters 

Our results showed that iPD patients in the lowest parafoveal GCIPL thickness tertile at baseline had 

increased adjusted relative risk (RR) of cognitive worsening compared with those in higher tertiles (RR 
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3.49, 95% CI 1.10 – 11.11, p=0.03). On the other hand, the risk of motor worsening of iPD patients based 

on baseline parafoveal GCIPL thickness was not significant (RR 0.63, 95% CI 0.57 – 6.18, p=0.566). 

Similarly, the RR of cognitive decline between patients in the lowest pRNFL tertile compared to patients 

in the intermediate and highest pRNFL tertiles was significant (RR 3.28, 95% CI 1.03 – 10.45, p=0.045), 

but not for motor deterioration (RR 1.91, 95% CI  0.75 – 4.90, p=0.193). When patients were classified 

according to their visual outcomes at baseline, the risk of general cognition worsening was almost five 

times greater for patients with visual dysfunction (RR 4.69, 95% CI 1.34 – 16.5, p=0.01), even after 

adjusting for confounders (RR 4.79, 95% CI 0.91 – 21.18, p=0.06). Conversely, the risk of motor 

deterioration was not different for patients with and without initial visual impairment (adjusted RR 1.15, 

95% CI 0.36 – 3.61, p=0.242). 

DISCUSSION 

To the best of our knowledge, this is the first prospective longitudinal study to investigate the rate of GCIPL 

and pRNFL thinning over time in iPD patients using SD-OCT, and the first to show that GCIPL thickness 

measured by OCT at a single timepoint can be used as a marker of subsequent worsening of general 

cognition. 

Age-related reduction rate of GCIPL thickness in healthy population has been measured in previous OCT 

studies, with estimated annual thinning up to 0.25 µm in cross-sectional studies and 0.19 µm to 0.32 µm in 

longitudinal studies 34, 35, which is in line with the annual decrease of 0.33 µm that we found for the control 

group in our study. However, the progression of disease-related retinal thinning in iPD has not been 

extensively explored. Previous studies investigating longitudinal retinal changes in PD have only evaluated 

total macular volume or average pRNFL thickness 25-27. In a prospective 5-year follow-up study, Satue et 

al.26 reported for the first time that macular thinning in PD patients was greater than in controls, finding the 

largest differences in inner nasal (-8.21 µm), outer inferior (-7.85 µm) and inner temporal (-6.87 µm) 

macular sectors. These authors also reported that, compared to controls, pRNFL thickness reduction was 

significantly higher in temporal and superotemporal sectors (3 to 4 µm thinning). Later, Ma et al.27 found 
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in a study of 22 PD patients that macular thickness decreased 7 µm and pRNFL 6 µm after 2.5 years of 

follow-up. A more recent study evaluating 19 early-stage PD patients found a mean decrease in macular 

thickness of 7.4 µm without significant changes in pRNFL thickness after an average follow-up of 19 ± 8.5 

months25. In our study, pRNFL thickness reduction was almost 4 times greater in patients, with a 

comparable annual thinning rate to that found by Satue et al.26. More importantly, according to our findings, 

the progression of GCIPL atrophy in the macula was three times greater in iPD patients than in controls. 

Unfortunately, the lack of longitudinal OCT studies evaluating GCIPL thinning over time in PD, renders it 

difficult to compare our results. 

Our findings revealed that iPD patients with lower initial GCIPL and pRNFL thicknesses presented an 

increased risk of cognitive decline at 3 years. Similarly, iPD patients with visual dysfunction at baseline 

had 4-times the risk of global cognition deterioration at follow-up. Furthermore, in our study, GCIPL and 

pRNFL measurements were not associated with the progression of motor features. No significant 

differences were observed in terms of age, sex, LEDD, disease duration and general cognition in patients 

with and without motor progression, but lower UPDRS III score at baseline was associated with motor 

progression. The pathophysiological explanation for the observed relationship between the progression of 

cognitive decline and retinal atrophy and the lack of association of the latter with the progression of motor 

symptoms is intriguing. First, it is important to bear in mind that visual stimuli are the main input for most 

of the standard neuropsychological tests and that the retina is the first processing station of visual 

information in the central nervous system. Basic computations for the analysis and interpretation of images, 

like edge detection, are accomplished in the retina, where immunohistological studies in PD have detected 

neuronal loss, synaptic and dendritic abnormalities and deposits of phosphorylated alpha-synuclein, 

especially in ganglion cells 21. While abnormalities in perception and processing of visual information in 

PD might be in part related to the injury of cortical and subcortical areas of the brain 36-38, the involvement 

of the retina in visual cognition abnormalities of PD patients is firmly supported by several in-vivo 

electrophysiological and OCT studies 39. Our findings underpinning that visual dysfunction and macular 

GCIPL and pRNFL atrophy can independently predict the progression of cognitive disability in iPD are 
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supported by the recent publication by Leyland et al 18. Moreover, visual loss has an impact on physical 

activity, mental stimulation and social interactions - factors reported to reduce the progression of cognitive 

impairment and the risk of dementia 40. Therefore, all the aforementioned aspects may contribute to the 

effect of retinal injury and associated visual impairment on future risk of dementia, as observed in elderly 

population 41, 42. Finally, our findings showing a lack of association between motor worsening and macular 

GCIPL atrophy may suggest different pathophysiological mechanisms underlying neurodegeneration of the 

retina and brain structures involved in motor manifestations. To date only one neuroimaging study has 

evaluated in-vivo the relation between retinal thickness and the integrity of brain regions involved in motor 

manifestations of PD, finding an association between inner retinal atrophy and lower dopamine transporter 

(DAT) uptake in substantia nigra 43. However, the majority of previous OCT studies in PD failed to 

demonstrate statistically significant results or yielded contradictory findings regarding the link between 

retinal atrophy and motor disability or disease duration 22. Given that macular GCIPL atrophy has been 

reported in de novo PD patients 23 and in prodromal phases of LBD 24 and the lack of its correlation with 

disease duration or motor manifestations, it may suggest that retinal injury is an early phenomenon of iPD. 

Nonetheless, the mechanisms mediating the initiation and progression of retinal thinning in iPD are 

unknown. Ortuño-Lizaran et al.44 identified phosphorylated alpha-synuclein reactive cells in the retina of 9 

postmortem PD patients and 4 patients with incidental LBD. More recently, Shi et al.45 observed that retinal 

capillary complexity was decreased in the 2.5 mm annular zone that approximately coincides with 

parafoveal region in which we found the largest retinal atrophy. In line with this, Kwapong et al.46 found a 

correlation between the impairment in the microvasculature in that area and GCIPL thinning. However, the 

precise contribution of the microvasculature and alpha-synuclein as a causal factor for inner retinal thinning 

remains challenging, and probably several non-identified factors contribute. Regardless of the cause, our 

study showed that GCIPL thickness, mainly in the parafoveal region, and pRNFL thickness in iPD patients 

decreased at a faster rate than in the controls, and patients with lower baseline retinal measures were at 

higher risk of suffering cognitive decline. 
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Our study has some limitations. First, the confidence intervals of the estimated risk of our analyses are 

wide, probably as the result of the sample size. Secondly, clinically significant changes for UPDRS III have 

been reported in the literature, and 5-point cut-off value is valid in clinical practice for patients with HY 

scores I to III, as in our sample 32, 33. However, the clinically significant change for MoCA score in iPD has 

not been stablished. We used a 4-point cut-off value based on the distribution of MoCA changes in LBD 

patients, but this value may need to be confirmed in future studies. Another potential limitation is that we 

did not consider the influence of non-dopaminergic medications in cognitive and visual function. Also, loss 

to follow-up in patients was assumed to be not at random, which might have biased the estimates of risk 

ratios. Therefore, our data should be interpreted with caution. Despite these limitations, this study had many 

strengths. Due to the prospective study design, we were able to observe changes in GCIPL and pRNFL 

thickness of iPD patients at 3 years. Moreover, mixed-models were used for controlling for within-patient 

correlations and missing data pattern was introduced in the models - which is more robust for longitudinal 

data analysis than previously used statistical analyses. Finally, predictions of motor and cognitive 

impairment from baseline OCT measures have not been previously contemplated in iPD and robust Poisson 

models were used to provide unbiased estimates of risk ratios.  

In conclusion, this work represents the first prospective longitudinal OCT study investigating the rate of 

retinal thinning over time in iPD patients and its relationship with motor and cognitive outcomes. As the 

main findings, we showed that after 3 years of follow up the progression of macular GCIPL and pRNFL 

atrophy was three to four times greater in iPD patients than in controls and that retinal thickness measured 

by OCT at a single timepoint could be used as a potential markers of subsequent worsening of general 

cognition in iPD. Future studies with larger sample sizes and more follow-up time points will be needed to 

validate the suitability of macular GCIPL and pRNFL thickness measurement with OCT for monitoring 

neurodegeneration and as an imaging biomarker of cognitive decline in iPD.  
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FIGURE LEGENDS 

Figure 1. Visual outcomes. (A) Differences in baseline visual outcomes between controls and iPD patients. 

Significant differences are indicated with an asterisk (Wilcoxon Rank Sum Test, *p<0.05, **p<0.01, 

***p<0.001). (B) Longitudinal changes in visual outcomes. Relative changes (percentage) of visual 

outcomes were calculated as [(follow-up visual score – baseline visual score)/ baseline visual score]*100. 

# p-value < 0.05 for the interaction term between group and time in linear mixed models. Note that the 

results of n=50 iPD patients and n=29 controls are represented in (A) and the results of n=42 iPD patients 

and n=17 controls in (B). Abbreviations: BLOJ, Benton Line Orientation Judgment; CS, contrast 

sensitivity; CDT, Clock Drawing Test, reproduction, corrected with Rouleau method; HCVA, high-contrast 

visual acuity (number of correct letters); LCVA, low-contrast visual acuity (number of correct letters); 

SMDT, Symbol Digit Modality Test; SPCT, Salthouse Perceptual Comparison Test; TMT, part-A (s), time 

to complete Trail Making Test, part-A; VOSP, CA, cube analysis subitem of VOSP; VOSP, NL, number 

location subitem of VOSP; WAIS, Figure completion part of WAIS-IV. 

Figure 2. Progression of retinal atrophy in peripapillary RNFL, and in 5 layer-complexes of the macula 

divided in 1-mm, 1- to 3-mm and 3- to 6-mm areas. The 1- to 3-mm area corresponds to the parafoveal area 

of the macula. Estimated changes of macular and peripapillary thickness between baseline and year 3 

follow-up, adjusted for age and sex, are displayed and negative values represent retinal thinning over time. 

Abbreviations: ELM-BM, retinal complex including external limiting membrane, ellipsoid band, retinal 

pigment epithelium and Bruch membrane; GCIPL, ganglion cell-inner plexiform complex; INL, inner 

nuclear layer of the retina; LBD, Lewy body diseases; mRNFL, macular nerve fiber layer; OPL-HF-ONL, 

outer plexiform-Henle fiber-outer nuclear layer complex; pRNFL, peripapillary retinal nerve fiber layer. 

Figure 3.  (A) Scatterplots represent the relationship between GCIPL thickness in the parafoveal area (1- 

to 3-mm) and MoCA and UPDRS III scores at baseline. (B) Progression of cognitive and motor 

manifestations. Parameter estimates from linear mixed-effect models were converted to and plotted as 

condition means and SE. iPD patients were divided into subgroups according to baseline thickness in the 

parafoveal area (1- to 3-mm ring) of GCIPL in the macula, baseline pRNFL thickness, and baseline visual 
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outcomes. Retinal thicknesses of iPD patients were divided into tertiles according to the reference 

population, and visual impairment was determined using K-means clustering (see methods). 11 iPD patients 

from the lowest retinal thickness tertile and 31 iPD patients from the intermediate and highest tertiles 

completed follow-up visit. 31 patients that were classified as mild visual dysfunction and 11 as moderate 

to severe visual dysfunction completed 3-year visit. Abbreviations: GCIPL, ganglion cell-inner plexiform 

complex; MoCA, Montreal Cognitive Assessment; pRNFL, peripapillary nerve fiber layer; r, Pearson 

correlation coefficient; UPDRS III, Unified Parkinson’s Disease Rating Scale, motor examination. 
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