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Abstract 

 
 

The increase in the use of composite materials in recent years has led the 

industry into the development of new composite manufacturing processes, like the 3D 

ultraviolet pultrusion. These new manufacturing processes usually reduce 

manufacturing costs, cycle time or both. Ensuring the quality of the parts manufactured 

with these new processes is critical. Therefore, it is necessary to gain knowledge on 

these manufacturing processes, especially on the behavior of the material during the 

cure. To monitor these processes, the development of new non-destructive inspection 

techniques is required. For the 3D ultraviolet pultrusion, the use of non-contact non-

destructive testing is necessary. Moreover, for structural parts, ensuring the required 

mechanical properties gives added value to the part.  

In this thesis, the viability of air-coupled ultrasonics for plate-like fiber 

reinforced parts manufacturing is evaluated. At first, isotropic materials are evaluated, 

considering the ultraviolet cure of a vinyl ester resin. Air-coupled ultrasonics has proved 

to be fast enough to follow the ultraviolet cure, with quasi-normal ultrasonic 

spectroscopy. Then, the mechanical properties in fiber reinforced polymers with air-

coupled ultrasonics are evaluated. The optimal set-up to generate leaky Lamb waves in 

plates with different properties is defined. Air-coupled ultrasonics showed that is what 

difficult to generate Lamb modes with different velocities, although it was possible with 

a mixed air-coupled laser ultrasonics set-up. Last, leaky Lamb waves where used with 

air-coupled ultrasonics to evaluate the properties of a fiber reinforced polymer during 

the thermal cure. The stiffness tensor of the composite was measured during the cure 

observing the largest variation at the last stages of the cure. 

The main conclusion of this thesis is that the potential of air-coupled ultrasonics 

to monitor the fiber reinforced manufacturing processes is elevated. It can presents both 

the speed required to monitor fast curing processes like ultraviolet cure, with single 

measurements in less than a second; and the ability to characterize the full matrix of an 

orthotropic fiber reinforced polymer, through the use of micromechanical models. Air-

coupled ultrasonics can be used to characterize the properties of materials with different 

geometries, like curves or hollow. 

  



 

vi 

 

 

 



 

vii 

 

Resumen 

 
 

El aumento en el uso de materiales compuestos en los últimos años ha llevado a 

la industria al desarrollo de nuevos procesos de fabricación de maetriales compuestos, 

como la pultrusión ultravioleta 3D. Estos nuevos procesos de fabricación, generalmente 

reducen los costes, el tiempo de ciclo o ambos. Garantizar la calidad de las piezas 

fabricadas con estos nuevos procesos es fundamental. Por lo tanto, es necesario obtener 

conocimiento sobre estos procesos de fabricación, especialmente sobre el 

comportamiento del material durante el curado. Para monitorizar estos procesos, se 

requiere el desarrollo de nuevas técnicas de inspección no destructivas. Para la 

pultrusión ultravioleta 3D, es necesario el uso de pruebas no destructivas sin contacto. 

Además, para las partes estructurales, garantizar las propiedades mecánicas requeridas 

da un valor añadido a la parte. 

En esta tesis, se evalúa la viabilidad de los ultrasonidos con acoplamiento por 

aire para la fabricación de piezas reforzadas con fibra de tipo placa. Al principio, se 

evalúan los materiales isotrópicos, considerando el curado ultravioleta de una resina 

viniléster. Los ultrasonidos con acoplamiento por aire han demostrado ser lo 

suficientemente rápidos como para seguir el curado ultravioleta, por medio de 

espectroscopía ultrasónica en angulo quasi-normal. Después, se evalúan las propiedades 

mecánicas en los polímeros reforzados con fibra con ultrasonidos con acoplamiento por 

aire. Se define la configuración óptima para generar ondas de Lamb por aire, en placas 

con diferentes propiedades. Los ultrasonidos con acoplamiento por aire demostraron 

que es lo difícil generar modos de Lamb con diferentes velocidades, aunque fue posible 

con una configuración mixta de ultrasonidos láser y con acomplamiento por aire. Por 

último, las ondas de Lamb por aire se han utilizado con los ultrasonidos con 

acoplamiento por aire para evaluar las propiedades de un polímero reforzado con fibra 

durante el curado térmico. El tensor de rigidez del material compuesto se midió durante 

el curado observando las mayores variaciones al final del curado. 

La principal conclusión de esta tesis es que el potencial de los ultrasonidos con 

acoplamiento por aire para monitorear los procesos de fabricación reforzados con fibra 

es elevado. Puede presentar tanto la velocidad requerida para monitorizar procesos de 

curado rápido como el curado ultravioleta, con mediciones en menos de un segundo; y 

la capacidad de caracterizar la matriz de rigidez ortotrópica de un polímero reforzado 

con fibra, mediante el uso de modelos micromecánicos. Los ultrasonidos con 

acoplamiento por aire se pueden usar para caracterizar las propiedades de materiales con 

diferentes geometrías, tanto curvas como huecas. 
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Laburpena 

 
 

Material konposatuen erabileraren hazkundeak azken urteetan, material 

konposatuetarako fabrikazio prozesu berriak garatzera bultzatu du industria, esaterako, 

3D pultrusio ultramorea. Fabrikazio prozesu berri hauek, oro har, kostuak, zikloaren 

denbora edota biak murrizten dituzte. Prozesu berri hauekin fabrikatutako piezen 

kalitatea bermatzea ezinbestekoa da. Hori dela eta, beharrezkoa da fabrikazio prozesu 

horien inguruko ezagutza lortzea, batez ere materialak ontzeko garaian. Prozesu horien 

jarraipena egiteko, suntsitzaileak ez diren ikuskapen teknika berriak garatzea 

beharrezkoa da. 3D pultrusio ultramorearentzako, beharrezkoa da kontaktu gabeko 

teknika ez suntsitzaileak erabiltzea. Gainera,pieza estrukturalen kasuan, beharrezkoak 

diren propietate mekanikoak bermatzeak balio erantsia ematen dio piezei. 

Tesi honetan zuntzekin indartutako polimerozko plaka motako piezak, airez 

akoplaturiko ultrasoinuarekin erabiltzeko bideragarritasuna ebaluatu da. Hasieran, 

material isotropoak ebaluatu dira, binilester erretxina baten ontze ultramorea kontuan 

hartuta. Airearen akoplamenduarekin egindako ultrasoinuek ultravioleta ontzea jarraitu 

ahal izateko nahikoa azkarra dela frogatu da, ultrasoinuen espektroskopia bidez, angelu 

ia normala dela medio. Ondoren, airezko ultrasoinuekin zuntzekin indartutako 

polimerozko plaken propietate mekanikoak ebaluatzen dira. Airez akoplaturiko 

ultrasoinuekin Lamb uhinak sortzeko konfigurazio hoberena ebaluatzen da, propietate 

desberdinak dituzten plakekin. Airearen akoplamenduaerabiltzen duten ultrasoinuek 

agerian uzten dute zaila dela abiadura ezberdineko Lamb moduak sortzea, baina laser 

eta airezko ultrasoinuen konfigurazio mistoarekin posible izan zen. Azkenik, airez 

sorturiko Lamb uhinak erabili dira ontze termikoan zuntzez indartutako polimero baten 

propietateak zehazteko. Material konposatuko zurruntasuna ontze garaian neurtu zen, 

ontzearen amaieran aldakuntza handienak ikusiz. 

Tesi honen ondorio nagusia hauxe da: airez akoplaturiko ultrasoinuekin 

zuntzekin indartutako polimerozko fabrikazio prozesuak kontrolatzeko duen potentziala 

handia dela. Bai ultramore ontze prozesu azkarra bezalako prozesuetan, behar den 

abiadura izan dezake, segundo bat baino gutxiagoko neurketekin; eta zuntz indartutako 

polimero baten zurruntasunaren matrize neurtzeko gaitasuna, eredu mikromekanikoak 

erabiliz. airez akoplaturiko ultrasoinuekin geometria ezberdinekin materialen 

propietateak neurtzeko erabil daitezke, kurbatuak eta hutsak adibidez. 
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Chapter 1 

Introduction 

The thesis “Air-coupled ultrasonic inspection of fiber reinforced composite 

materials” has been carried out inside the Mechanical Engineering and Electrical 

Energy Ph.D. program of Mondragon Unibertsitatea in a collaboration between the 

Signal Theory and Communications & the Polymer and Composites Technology 

research groups of Mondragon Unibertsitatea. The Basque Government through the 

Predoctoral Program (grant number PRE_2018_2_0220) has funded this thesis. 

1.1 Motivation  

With the objective of guaranteeing the competitiveness and growth in a 

globalized market, the European industrial sector faces several technological challenges. 

Many of these challenges are aimed to develop new high added value materials. [Premix 

2013]. Inside of the group of high added value materials are the fiber reinforced 

polymers (FRP), due to their many advantages [Premix 2013]: weight reduction, high 

elastic properties and good behavior to fatigue. In fact, the global market of composites 

was estimated to be 81.7 billion dollars in 2016 and is expected to reach 109.4 billions 

by 2022 [EPTA 2018]. Despite those figures, the composite market is mostly restricted 

to low production volume and high added value applications. This is due to the high 

operational cost and low productivity of the manufacturing processes used nowadays. 

According to the result of the analysis carried out by the journal Composites World in 

2018 [Sloan 2018], the 62% of the surveyed did not expect an increase in the use of 

composite in the automobile industry in the next two years. Thus, it would be logical 

that one of the challenges of the manufacturing industries relies on the automation of 

the manufacturing process. In this sense, Bader [Bader 2002] carried out a comparison 

of the cost of the workforce to manufacture the same composite part with different 

manufacturing processes. The study concluded that pultrusion is the most cost efficient 

regarding workforce. 

Pultrusion is a highly automated continuous process to manufacture straight 

profiles with high mechanical properties in the longitudinal direction [Tena 2014]. As it 

can be observed in Figure 1-1, the pultrusion machine is composed of a fiber storage 

section (1), a resin bath (2), a preform (3), a heating mold (4), a pulling system (5) and a 

cutting section (6). The fibers are introduced in a resin bath. Once impregnated, a series 

of preforms guide the fibers to the entrance of the mold where it is thermally cured. 

With a mold, straight profiles or parts with fixed curvature radius can be obtained. 
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Figure 1-1: Traditional pultrusion process. 

Curing the profile inside of a mold carries several limitations [Tena 2015] such 

as elevated process incidences, an insufficient manufacturing speed and a reduced 

manufacturing flexibility. It also requires expensive high pulling force equipment and 

long heated molds.  

These and other limitations are mainly caused by curing inside of a mold. Curing 

outside of a mold could solve some of these limitations, improving the manufacturing 

speed, flexibility or reducing the requirements over high pulling force equipment and 

long molds [Saenz-Dominguez 2018; Tena 2015]. However, curing thermally outside of 

the mold is not viable. Curing with ultraviolet (UV) light has proven to be a cost 

effective technology to cure polymers outside of the mold [Saenz-Dominguez 2018; 

Tena 2015]. Moreover, a reduction in pulling forces, an increase in profile geometry 

flexibility and productivity has been observed [Saenz-Dominguez 2018; Tena 2015]. 

All of these advantages have been obtained through the development of the 3-

dimensional ultraviolet (3D-UV) pultrusion curing process [Tena 2015]. 

The 3D-UV pultrusion curing process (Figure 1-2) is similar to the classical 

pultrusion process (Figure 1-1), with the main differences being in the die, the curing 

technology and the pulling method [Tena 2015]. The 3D-UV process uses a short die, 

which reduces the friction of the uncured composite. The curing is carried out with UV 

light right outside of the mold in a fast manner. The pulling method used is a robotic 

arm, which, contrary to the classical pultrusion, gives flexibility to the manufactured 

parts. Despite these advantages, the 3D-UV curing pultrusion process is still quite new. 

It requires information on the manufactured part, which would ensure part quality. 
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Figure 1-2: 3D-UV pultrusion process [Saenz-Dominguez 2018]. 

The quality of the FRP composite parts can be evaluated from two points of 

view: beauty and safety. Beauty is of importance when the part is exposed, usually in 

expensive sports cars or ships. Despite the importance of the luxury market, the most 

critical area and the one in which 3D-UV pultrusion is mostly focused, is safety. It is for 

safety reasons that the manufacturing processes of FRP have always been forced to 

evaluate many, if not all, of their manufactured parts. Evaluating the manufactured parts 

with the most commonly used destructive tests, which consist of picking the 

manufactured part and destroying it through heat, brute force or others, is not a cost 

efficient means. Moreover, some FRP manufacturing processes present high variability 

[Mesogitis 2014], which may cause the unevaluated part to not have the same quality. 

Since destroying every part that is manufactured is not the best business mode, non-

destructive testing (NDT) comes forth as a good alternative. 

NDT is an interdisciplinary field in science and technology where the properties 

of a part are evaluated without causing any damage to the part. Due to the non-

damaging nature of these tests, NDT can be used to evaluate all of the manufactured 

parts, wasting less material and ensuring the quality of every part. The parts can also be 

evaluated during the manufacturing process itself, where information on how the 

material is changing can be obtained. Evaluating the state of the material at each point 

during the manufacturing process can be used to control the manufacturing process with 

feedback information. Furthermore, the information obtained during the manufacture 

process can be used in the design process itself. The evolution of the evaluated 

properties can be used in future parts, thus saving time and money in the long run. To 

ensure that the information that is obtained is valuable and meaningful for the process, 

finding and selecting the most adequate NDT technique is of outmost importance. 

1.2 State of the art 

This section describes the techniques and methods reviewed throughout the 

dissertation to characterize the properties of composite materials. The literature review 

is dived in three sections:  
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 Evaluation of the techniques that monitor the manufacturing processes of FRP 

materials and selection of the best fitting for the 3D-UV pultrusion (Section 

1.2.1). 

 Evaluation of the techniques to characterize FRP materials with ultrasonics 

(Section 1.2.2). 

 Evaluation of non-contact ultrasonic techniques to characterize composite 

materials (Section 1.2.3). 

1.2.1 Monitoring the FRP manufacturing processes 

1.2.1.1 Contact inspection techniques 

Contact inspection has been long used in FRP manufacturing [Cielo 1989; Fink 

1999; Roberts 1991; Webster 1999]. This techniques do not directly fit a process like 

the 3D-UV pultrusion, but have been used in laboratory environment to gain knowledge 

over the UV cure process [Saenz-Dominguez 2018]. They can also be used as validation 

methods and are therefore evaluated here. 

1.2.1.1.1 Pressure 

Pressure sensing is usually based on the piezoelectric effect, in which a pressure 

applied to an object generates a change in electric voltage. The piezoelectric sensors are 

embedded in a shell where the pressure under measurement and a reference probe can 

be isolated. There are different types of measurements depending on the reference 

pressure (absolute, gage or differential respectively) [Webster 1999]. This kind of 

sensors are most popular in mold filling monitoring [Di Fratta 2013; Govignon 2013], 

as the correct filling of the composite part is crucial to ensure correct mechanical 

capabilities. Figure 1-3 shows an in-mold embedded pressure transducer for resin 

transfer molding (RTM) manufacturing. 

 

Figure 1-3: Pressure transducer for mold filling detection [Legault 2015]. 

Pressure transducers, are one of the simplest and cheapest monitoring sensors. 

Moreover, these sensors are capable of withstanding harsh conditions of temperature 

and pressure, with more than 200 ºC and 20 bars, and are easily embeddable in-mold 

[Konstantopoulos 2014]. However, these sensors require multiple transducers to 

estimate the filling status and cannot monitor the curing process effectively. Since the 
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UV pultrusion does not have a mold to fill and the most important part is the curing, the 

use of pressure transducers does not provide any valuable information. 

1.2.1.1.2 Thermocouples 

Thermocouples are used to measure part temperature. Thermocouples make use 

of the thermoelectric effect, which consists of two metal alloys in contact that produce a 

voltage differential proportional to the temperature difference.  

Thermocouples have been widely used to measure the filling and curing process 

of different FRP manufacturing processes [Balvers 2009; Tuncol 2007]. Distributed 

thermocouples [Hsiao 2006] have been used to obtain an estimation of the temperature 

image of the part being monitored. This is at relatively low cost of sensors and post-

processing complexity. Furthermore, thermocouples can easily be embedded into the 

mold as industrialized thermocouples can withstand up to 750 ⁰C. Figure 1-4 shows an 

example of an embeddable thermocouple. 

 

Figure 1-4: Industrialized thermocouple embeddable into the mold [Thermometrics 

2014]. 

Thermocouples are similar to pressure sensors in their advantages and 

disadvantages. These are simple, easy and cheap to use but can only make 

measurements at a point, with the possibility to make estimation but not actual 

measurements of the whole part. Despite the similarities, thermocouples can actually be 

used to monitor the curing process. 

1.2.1.1.3 Optical fiber interferometry 

Optical fiber interferometry (OFI) sensors make use of the electromagnetic wave 

interference. Fabry-Pérot interferometers are the most popular in optical fiber 

interferometry [Kalamkarov 1999; Zhou 2002]. These interferometers generate a partial 

reflection of the traveling light. When an external strain or thermal deformation 

influences the optical fiber, the spacing between the reflective surfaces vary, as do their 

refractive index [Konstantopoulos 2014]. An example of this is shown in Figure 1-5. 
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Figure 1-5: Increased grating space (b) as opposed to a free fiber (a) [Konstantopoulos 

2014]. 

The optical path is controlled by optical fibers, which make these devices 

compact and economic. Fiber Bragg Grating is the most used technology inside de 

Fabry-Pérot interferometers, where a distributed Bragg reflector is constructed in a short 

segment of the fiber, refracting particular wavelengths of light. Mold embedded optical 

fibers have been used for mold filling [Dunkers 2001] and curing [Jung 2007] 

monitoring. There have also been aims to make smart parts through embedding these 

sensors in the part [Zhou 2002], but embedding the fibers can alter the mechanical 

properties of the part [Roberts 1991; Sirkis 1995].  

OFI has been used to monitor residual strains during pultrusion [Kalamkarov 

1999] for straight parts. Optical fibers are delicate, which limits the application in 

industrial environments, and the curved shape of the 3D pultruded part could damage 

them if the curve were too sharp. However, OFI can be used during and after 

manufacturing which may be of interest in some cases. 

1.2.1.1.4 Direct-current 

Direct-current (DC) sensors measure the conductivity of a medium between two 

points as the part closes the circuit between the two measuring points. Once the circuit 

is closed, the voltage output is measured, which is proportional to the ion viscosity (𝜌) 

[Konstantopoulos 2014]. This type of sensors have been used both for mold filling 

[Bickerton 2001; Lawrence 2002; Tuncol 2007] and curing [Garschke 2012; Tena 2013, 

2016] monitoring. Flowing resin closes the circuit during the filling process, thus 

allowing knowing when the resin has reached a point, but it also changes its resistance 

during the curing process, which allows using the same sensor to monitor both. Figure 

1-6 shows an example of a mold embeddable DC sensor. 
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Figure 1-6: Point voltage sensor (a) and  cross-section view (b) [Tuncol 2007]. 

The main advantage of DC sensors lies in their simplicity of use. These easily 

embeddable point sensors measure the voltage drop between two points. Nevertheless, 

point voltage sensors lack information of the state of the surrounding part, despite the 

fact that some have tried to use distributed point voltage sensors [Fink 1999] to get 

more information on the part, only estimations are possible. Moreover, DC sensors 

cannot be used with electrically conducting fibers like carbon fiber.  

DC sensors have been used in UV pultrusion [Tena 2016], but under laboratory 

conditions with a mold in one of the faces of the part. Using DC sensors in-process is 

not a viable solution. However, it is still interesting to consider the information that DC 

sensors can provide to improve the knowledge on the process. 

1.2.1.1.5 Contact-ultrasonic  

Ultrasonic (US) testing is based on the propagation of US waves in the part. US 

transducers convert mechanical strain into electrical signals and vice versa. Usually, US 

testing is based on measuring the time of flight (TOF) and attenuation of the propagated 

waves in usually three different ways: pulse-echo, transmission or pitch-catch. 

US testing has been widely used to monitor the FRP manufacturing processes 

[Aggelis 2012; Aldridge 2014; Liebers 2012], with set-ups like the one shown in Figure 

1-7. The application of US for monitoring, mostly the curing process, focuses on the 

evolution of the mechanical properties during the manufacture process. Most of the 

work done with US has focused in contact-US testing in manufacturing processes that 

use closed molds. For contact-US, the transducers require a fixation pressure to ensure 

the correct transmission of the mechanical waves into the part. With US, it is possible to 

monitor both the filling and curing process of most of the FRP manufacturing processes 

[Konstantopoulos 2014].  
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Figure 1-7: Through thickness ultrasonic measurement [Aggelis 2012]. 

US technique, unlike the other techniques, provides information of the part’s 

elastic properties. This means that apart from a qualitative evaluation of the part, it is 

possible to have a quantitative evaluation of its properties. This is highly interesting in 

order to ensure the quality of the manufactured parts. However, at the same time, US 

testing is usually more complex than other techniques, which is why US testing is not 

always used. 

1.2.1.2 Contactless inspection techniques 

Most of the FRP manufacturing processes are done inside of closed molds like in 

resin transfer molding, autoclave and even classical pultrusion. Since in the 3D-UV 

contact techniques cannot be used in-process, evaluating the non-contact inspection 

techniques is a necessity. 

1.2.1.2.1 Infrared 

Infrared (IR) thermometers monitor the temperature of the surface of a part. 

Unlike thermocouples, IR thermometers are contactless and have thermal radiation 

sensitive photocells to detect the thermal radiation produced by the part. 

IR cameras have been used to measure the temperature in different parts during 

the composite manufacturing process [Cielo 1989; Cuevas 2013; Varnell 1992]. These 

monitoring devices provide a thermal image of the surface or sub-surface of the part 

being manufactured, as shown in Figure 1-8. Since the temperature varies during both 

filling and curing, this technique provides much more information than thermocouples. 
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Figure 1-8: IR thermography result of an uncured carbon fiber composite plate [Cuevas 

2013]. 

For the processes with open mold, IR thermography can be used since there is 

direct vision between de part and the sensor. Yet, IR thermography is limited to 

superficial or sub-superficial thermal imaging. This technique is applicable in 3D-UV 

pultrusion as the curing is done outside of a mold, where direct vision is possible. 

1.2.1.2.2 Electromagnetic  

Electromagnetic (EM) monitoring includes Terahertz (THz) wave and 

Microwave technologies. THz, also known as Millimeter wave; and Microwave 

imaging are emerging NDT techniques used for dielectric (non-conducting, i.e., an 

insulator) materials analysis and quality control in the pharmaceutical, biomedical, 

security, materials characterization, and aerospace industries [Adam 2011; Jepsen 2011; 

Ospald 2013]. Millimeter waves are set in the range of 0.1 − 10 THz [“Terahertz wave 

technology” 2016] while microwaves are in the range of 0.1 − 1000 GHz [Kundu 

2012], even though there is no strict limit in the frequency range and this limit varies up 

to an order of magnitude depending on the author. EM waves have been used to monitor 

de curing process of composite materials [Naftaly 2007; Sommer 2016; Yakovlev 

2015]. An example of the set-up for the THz technique is shown in Figure 1-9. 
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Figure 1-9: Representation of THz pulsed spectroscopy waveform detector for Polymer 

Composite Materials [Yakovlev 2015]. 

EM monitoring can be used as a non-contact technique. It is limited to dielectric 

materials, except in the case of superficial monitoring or with conductive fiber materials 

when the polarization of the electric field and the fiber orientation are perpendicular [Li 

2016; Redo-Sanchez 2006]. This technology is promising for its application to the 

manufacturing of FRPs but it is mostly limited to insulating materials. 

1.2.1.2.3 NCU: ACUS 

Non-Contact Ultrasonic (NCU) is a more recently developed technique than 

contact ultrasonics. The application of NCU is based on the generation of micro-

deformations in the part without a contact between the transducer and the part. This can 

be done in several ways, using magnetostriction or heat to generate a wave in the 

material; or propagating a wave from the air into the material (this is explained in more 

detail in Section 1.2.3.2). ACUS is based on the latter physical concept. ACUS has been 

used to monitor the curing process of polymers [Lionetto 2007a] and has showed 

potential for its use in non-cured FRP parts [Farinas 2012, 2013].  

 

Figure 1-10: Non-contact US monitoring set-up [Lionetto 2007b]. 

ACUS can be used in a similar way to contact-US, which implies that the same 

techniques might me applicable. The difficulty lies in coupling the wave from the air 
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into the material, which is more challenging than in contact-US. However, ACUS can 

characterize elastic properties, which is highly interesting. 

1.2.1.3 Conclusion 

An evaluation of the main requirements of the 3D-UV pultrusion process, 

concerning the different monitoring techniques, is presented in Table 1-1. 

Since the 3D-UV pultrusion focuses in the curing of the material, those 

techniques that cannot monitor the curing do not fit process requirements. The 

contactless nature of the technique is also of outmost importance to apply them in the 

process, although contact techniques can be used out of process to characterize the 

curing process. Measuring over an area has several advantages since it inspects the state 

of more than one point. It gives more information to evaluate the material correctly than 

just from a point. Lastly, measuring the mechanical properties, like Young’s modulus or 

Poisson’s ratio, of the material during the curing can ensure the quality of the 

manufactured part. The data on the mechanical properties could also be used as a way to 

certify the quality of the part meets standards.  

Observing Table 1-1, EM and NCU fit the main process requirements, since are 

contactless, evaluate an area and can inspect inside the material. From two of them 

NCU stands out, since it can characterize elastic properties. This means that NCU, more 

specifically ACUS since it is not limited by the materials electric conductivity, shows 

the most potential for implementation for the 3D-UV pultrusion process. 

Table 1-1: FRP manufacture monitoring techniques for 3D-UV pultrusion. 

Technique Curing Contactless Area Through 

material 

Elastic 

properties 

Pressure      

Thermocouple      

OFI      

DC    
*
  

Contact-US      

IR      

EM    
*
  

NCU (ACUS)      

*
 With limitations in electrically conductive materials. 
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1.2.2 Material characterization with US  

As observed in the previous section, ACUS is the most promising technique to 

monitor the 3D-UV pultrusion process. Most contact-US techniques can be similarly 

applied in NCU, thus, it is necessary to consider them. Therefore, the characterization of 

the elastic properties of materials with both contact and non-contact US, and their 

applicability for ACUS, are evaluated in this section. 

1.2.2.1 Resonant Ultrasonic Spectroscopy 

Resonant ultrasonic spectroscopy (RUS) is the study of the spectra obtained by 

forced mechanical resonance of the samples by a swept frequency excitation. By using 

specimens with simple known geometry and models including specimen symmetry, 

resonant ultrasonic spectroscopy can determine the full elastic stiffness tensor to great 

precision with one measurement. There are a couple of reviews [Leisure 1997; Migliori 

2001] that define the theoretical basis and techniques most used nowadays. There is also 

a review that focuses on acoustic transducers for RUS [Nakamura 2015]. Here only 

some major advances in RUS are presented where the benefits and limitations of the 

technique are evaluated. 

The first application of resonant ultrasonic, resonant sphere spectroscopy. was 

developed by D.B. Fraser and R.C. LeCraw [Fraser 1964]. They showed that the elastic 

and anaelastic properties of solids could be measured as both a function of frequency 

and temperature. They excited a small sphere at different resonant frequencies and then 

captured the decay of the spheres vibration. The internal friction of different modes was 

calculated, which led to a direct calculation of the Lamé constants, 𝜆 and 𝜇, and 

Poissons ratio of the isotropic solid. Yet, the method was limited to small spheres, 

which were not anisotropic. 

Later, a rectangular parallelepiped resonance technique was developed by I. 

Ohno [Ohno 1976] to characterize orthorhombic parallelepiped crystals. The accuracy 

of the determination of the elastic constants was determined by the initial mode 

identification and starting values of the elastic constants, the sensitivity of resonance 

frequencies to the variation of elastic constants, the shape and orientation of the 

specimen and the force applied to the specimen during vibration.  

 

Figure 1-11: Schematic RUS setup. A rectangular parallelepiped suspended along a 

body-diagonal between transmitter and receiver is excited with a frequency sweep 

[Visscher 1991]. 
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Figure 1-12: A RUS spectrum for a copper parallelepiped. The arrows indicate the 

computed frequencies based on a fit of the first 50 resonances [Leisure 1997]. 

A. Migliori et al. [Migliori 1993] developed what is today known as RUS. They 

previously developed and algorithm [Visscher 1991], known as xyz algorithm, that 

computed a variety of anisotropic elastic objects, including spheres, cylinders, eggs, 

parallelepipeds and potatoes, which would be irregularly shaped samples. RUS allows 

for the determination of the full elastic tensor in a single measurement, from cryogenic 

to very high temperatures. 

After RUS was set-out most of the research in the area has focused on [Cheeke 

2017] characterization of small samples [Migliori 2005],characterization of samples in 

low [Whitney 1996] and high [Li 2010] temperatures, characterization of shear modes 

[Wang 2003] and laser excitation and detection [Sedlák 2008]. 

RUS has also been used non-contact with laser ultrasonic generators [Sedlák 

2008], to characterize elastic properties of solids based on the inversion of natural 

frequencies. It has also been applied with ACUS to obtain the relationship between 

plant leaves’ elasticity and their water content [Sancho-Knapik 2012], where it was 

demonstrated that the magnitude and phase spectra of the thickness resonances of plant 

leaves could be used to obtain the elastic constant in the thickness direction. 

1.2.2.2 Through transmission 

Through transmission ultrasonic material characterization is based on the 

measurement of the TOF and attenuation of the ultrasonic wave propagating inside a 

material. It has been known for a long time that the material’s acoustic wave velocity 

(𝑉𝑖𝑗), in the 𝑖, 𝑗 direction, was linked to the elastic tensor (𝑐𝑖𝑗) of the material and its 

density (𝜌): 
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𝑉𝑖𝑗 = √
𝑐𝑖𝑗

𝜌
 (1-1) 

The measurement of the longitudinal or shear wave velocity can be used to 

characterize the stiffness of isotropic or anisotropic materials as long as the density is 

known. Through transmission can be used with a single transducer in pulse-echo or 

multiple transducers in pitch-catch. Different variations where through transmission is 

used have been proposed to characterize materials, here focused in those that work in 

the thickness direction. 

The measurements have mainly focused in contact-US due to the inherent 

difficulties to use NCU. These difficulties are further explained in Section 1.2.3 for 

NCU and Section 1.2.3.2 for ACUS. Specifically when working with a single 

transducer pulse-echo presents the greatest difficulty, where very scarcely has been used 

it been used for ACUS [Álvarez-Arenas 2019]. The signal of the wave reflected in the 

external face of the material is several orders of magnitude greater than that of the inner 

face. Only for materials with low attenuation has pulse-echo been used [Álvarez-Arenas 

2019], which limits its use for FRP. For this reason, the works regarding the use of 

multiple transducers have been evaluated. 

To reduce the number of measurements and the requirement of a coupling 

medium, different techniques have been proposed. B. Hosten et al. [Hosten 1987] 

developed a method to characterize viscoelastic materials with ultrasonic waves 

transmitted through a plate shaped sample immersed in water. They applied 

Christoffel’s equations to analyze the propagation of inhomogeneous waves in 

viscoelastic composite plates. They used a goniometer to precisely control the angle of 

the sample with respect to that of the incoming wave. Analyzing the velocities in 

different angles and the attenuation, they managed to measure the real and imaginary 

coefficients of the stiffness matrix. B. Hosten [Hosten 1991] further developed 

Thomson and Haskell’s plate transfer matrix for the application with isotropic 

viscoelastic materials, emphasizing in heterogeneous mode conversion and propagation 

through non-principal planes. The plate transfer matrix allows linking the top and 

bottoming stresses of the different layers of a plate.  M. Deschamps and B. Hosten 

[Deschamps 1992] presented the exact analytical formulation for the reflection and 

transmission of an ultrasonic plane wave by an immersed anisotropic and viscoelastic 

plate. B. Hosten and M. Castaings [Hosten 1993a] modified the plate transfer matrix to 

introduce the heterogeneity modes generated at the interface of an absorbing medium. 

However, the transfer matrix method (TMM) fails at high frequency-thickness values, 

as it becomes unstable. M. Castaings and B. Hosten developed the delta operator 

technique [Castaings 1994] which solved the high frequency-thickness value 

instabilities. Challis et al. [Challis 1993] presented a high-frequency wideband 

goniometric apparatus to measure compression and shear acoustic wave velocities 

simultaneously. They measured several reverberations in the material. They measured 

the velocity in materials as aluminum, copper, ceramics and others, which showed no 
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attenuation. However, they stated that the attenuation should be measurable if it were 

significant enough. M. Lowe [Lowe 1995] presented an ultrasonic NDT technique to 

monitor multilayered plates, showing how to calculate the complex bulk longitudinal 

and shear velocities for isotropic materials. He showed the relationship between the 

elastic and viscous behavior in the bulk and phase velocities and the attenuation of the 

propagating waves. B. Hosten et al. [Hosten 1996] demonstrated that it was possible to 

apply the previously developed techniques to characterize materials with ACUS, using 

capacitive transducers as emitters and receivers. M. Castaings et al. developed an 

ultrasonic monitoring technique to characterize the complex stiffness matrix of thin 

plates [Castaings 2000]. They used initially estimated valued of the stiffness, with a 

difference of up to 20% from the real values, and applied the simplex inversion 

algorithm to precisely characterize the properties of the viscoelastic plate. 

1.2.2.3 Lamb waves 

Lamb waves are elastic waves whose particle motion lies in the plane that 

contains the direction of wave propagation and the plane normal. An infinite medium 

supports just two wave modes traveling at unique velocities, longitudinal and shear 

waves; but plates support two infinite sets of Lamb wave modes, whose velocities 

depend on the relationship between wavelength and plate thickness. Since many FRP 

materials are plate-like structures, Lamb waves are of great interest for contact-US and 

NCU. Lamb waves can be generated in contact with glued piezoelectric disks 

[Dominguez-Macaya 2016], where multiple modes can be simultaneously generated; or 

with a transducer with a wedge [Dominguez-Macaya 2018], where the mode generated 

is dependent on the angle of the wedge. Lamb waves are specially interesting for ACUS 

due to the improvement in transmission efficiency [Chimenti 2014].  

Lamb waves, for NCU have been long studied. D Alleyne and P. Cawley 

[Alleyne 1992] discussed the selection of the appropriate modes with NCU in water. 

They also showed the advantages of being mode selective and the ability to use the 

technique to detect flaws. M. Castaings and P. Cawley [Castaings 1996] proved the 

frequency-angle relationship when using Lamb waves with ACUS. They presented for 

an isotropic material, aluminum, the dispersion curves of the angle-frequency 

relationship. That way, they presented how to be mode selective when generating Lamb 

waves in the plate. C. Chan and P. Cawley [Chan 1998] demonstrated the effect of high 

attenuation in the propagation of Lamb wave modes. They compared plates with no 

attenuation, with half and with up to four times the attenuation of their original plate. In 

the latter case, the plate behaved as a “fluid plate”, a material that is unable to support 

shear motion. It showed that the velocity of some Lamb modes tended to the 

longitudinal wave velocity, instead of to the shear wave speed as usual. M. Castaings 

and B. Hosten [Castaings 2001] analyzed the propagation of Lamb waves generated 

with ACUS in anisotropic materials. Experimental results showed good agreement with 

the analytically predicted waves, using the TMM, showing direction dependent 

behavior of the propagated modes. M. Castaings and B. Hosten [Castaings 2003] 

analyzed the behavior of Lamb waves in viscoelastic aircraft sandwich structures. They 
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showed that guided modes were coupled due to the viscoelastic properties of the 

materials. The results were validated with FEM software. M. Castaings et al. [Castaings 

2004] analyzed the response of thermos-viscoelastic materials. Both complex 

displacements and stresses at any location in the structures were predicted and validated 

with FEM software. S. Dahmen et al. [Dahmen 2010] developed a hybrid method to 

characterize the nine elastic constants of orthotropic materials. The method combines 

the application of TMM to characterize seven of the elastic constants, while longitudinal 

and shear contact measurements are used to determine the remaining two unknowns. 

1.2.3 NCU: ACUS 

As mentioned previously, NCU is the technique with which an US wave can be 

generated in a part without contact between the transducer and the part itself. This is of 

great interest in many cases, like for the 3D-UV pultrusion. There are many ways to 

generate the US wave without contact, from different mediums like water or air. In the 

3D-UV pultrusion, only air is usable, since the samples cannot be placed under water. 

Thus, NCU in air needs to be evaluated. 

1.2.3.1 Generation of ultrasonic waves in solids with NCU transducers 

Since NCU has been used for material testing or characterization, generating the 

US wave in the material without contact has been one of the greatest challenges for 

scientists and engineers [Chimenti 2014]. This can be achieved in two ways: generating 

the US wave directly in the part or propagating an US wave through the coupling 

medium, usually water or air, into the part. The generation of US ways directly in the 

part can be achieved with two technologies: EM US generation and Laser US. 

If the part is electrically conductive or ferromagnetic, direct electromagnetic 

generation of ultrasonic in the part can be achieved [Thompson 1990]. Electromagnetic 

acoustic transducers (EMAT) generate ultrasonic waves in the part with two interacting 

magnetic fields, as shown in Figure 1-13 (a). A rapidly changing magnetic field will 

generate eddy currents over the conductive surface, whilst a static magnetic field will 

generate Lorentz forces in the part, leading to a net mechanical displacement of the 

lattice ions. For ferromagnetic materials, additional interactions can occur [Thompson 

1990]. The use of EMATs in conductive materials is delicate and depends on many 

favorable properties, which makes the application limited [Chimenti 2014]. 

Furthermore, EMATs require high electrical conductivity in the part, favorable part 

geometry and powerful magnetic fields, which can cause interferences in other devices. 

When all of the requirements are meet, EMATs qualify as NCU transducers [Chimenti 

2014]. 

Laser US (LUS) is the rapid surface deposition of heat with a high energy 

density [White 1963], as shown in Figure 1-13 (b). If the surface of a body is subjected 

to transient heating (e.g., by electron bombardment or EM absorption) elastic waves are 

produced as a result of surface motion due to thermal expansion. Typically, a high-

power pulsed laser (often a Q-switched Nd:YAG laser) [An 2013; Sedlák 2008], with a 
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small diameter focused beam at the material surface, is used as heating source. As the 

deposited energy is substantial and the area small with a short deposition time, energy 

density is very large. However, due to high thermal energies, it is a concern that these 

may be high enough to evaporate and melt the surface of the material. This process is 

called ablation and it is completely undesirable, as it would render NDT as no more 

non-destructive. 

 

(a) 

 

(b) 

Figure 1-13: (a) EMAT transducer [Nakamura 2012] and (b) LUS wave generator and 

receiver [An 2013]. 

Propagating the wave from a coupling medium, without contact, is usually done 

with water or air. Since water is not always a viable option due to the requirement to 

sink the part, air is the only choice. Air is advantageous since it is present everywhere, 

there is no need to carry it or be kept it in a closed environment. However, air presents 

some disadvantages that other fluids carry, like the inability to propagate shear waves, 

plus several of its own, like the frequency range limitation of 1.5 MHz. However, unlike 

the previous technologies, ACUS can be used for non-conductive materials and does not 

carry the risk of damaging the part. 

1.2.3.2 ACUS 

As mentioned previously, ACUS is the technology were the US measurements 

are carried out propagating the waves from the air into the part and from the part into 

the air back. The transmission between media, air and the part, is one of the main issues 

of ACUS. This issue comes from the acoustic impedance (Z) mismatch that exists 

between the air and the solid materials, either the transducer that is generating the wave 

or the part. When a pressure wave propagating in the air comes across a solid material 

layer the amount of energy that gets into the solid is usually very low. This can be 

observed calculating the acoustic transmission coefficient (T) [Krautkrämer 1990] 

between the boundaries of air (acoustic impedance 𝑍𝑎𝑖𝑟 of 515 Rayl) and a glass fiber 

reinforced polymer (GFRP) [Performance Composites Inc. 2017] (acoustic impedance 

𝑍𝐺𝐹𝑅𝑃 of around 3.5 MRayl) with the following equation: 
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𝑇 =
4𝑍𝑎𝑖𝑟𝑍𝐺𝐹𝑅𝑃

(𝑍𝑎𝑖𝑟 + 𝑍𝐺𝐹𝑅𝑃)2
 (1-2) 

The transmission coefficient is around 0.059%, which means that 99.941% of 

the energy that is traveling through the air is reflected at the GFRPs boundary. That is a 

single boundary and there are usually four boundaries in the system: transducer-to-air, 

air-to-part, part-to-air and air-to-transducer; the transmission is greatly reduced. There 

are techniques that improve the transmission efficiency between the plate and the air, 

like RUS (Section 1.2.2.1) and Lamb waves (Section 1.2.2.3). It is also possible to 

improve the transmission between the transducer and the air. 

1.2.3.2.1 Transducers 

Amongst ACUS transducers, the most popular are piezoelectric [APC 

International 2002; Cobbold 2006; Iriarte 2010; Wilson 1988; Wong 2002], capacitive 

[Caronti 2006; Schindel 1995] and thermoacoustic transducers [Gaal 2016a, 2016b]. 

Their popularity relies on their ease of use, cost and availability. 

Piezoelectric transducers are composed of four sections, shown in Figure 1-14: 

 The active material is the part of the piezoelectric transducer that converts the 

electrical signal into mechanical deformation and vice versa. Most common used 

materials are piezoceramic [Nakamura 2012], polyvinylidene fluoride [Cobbold 

2006], piezocrystal [Iriarte 2010] or piezocomposite [Bernassau 2009].  

 The matching layer increases the transduction of mechanical waves between the 

active material and the propagation medium. It does so by reducing the acoustic 

impedance mismatch between the active material and the air. 

 The backing layer reduces wave reflections from the opposite side of the active 

material. It shortens the pulse length, which improves the axial resolution of the 

measurements. The material should have an acoustic impedance equal to the 

active material but high attenuating to avoid reflections. 

 The encapsulation is usually made out of rigid and electrically conductive 

materials. This is to both protect the inner delicate parts of the transducer and 

provide electric and EM isolation. 
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Figure 1-14: Piezoelectric transducer schematic. 

Capacitive micomachined transducers (CMUT), Figure 1-14, is a type of US 

transducer that relies on the capacitive effect between conducting layers. CMUTs are 

built on silicon with micromachining techniques. The CMUTs consists of a thin flexible 

plate suspended over an air cavity. A thin metal layer on top of the transducer with an 

insulating foam between the contoured backplane and the upper electrode. When an 

alternating current is induced into the conductive capacitance, there is a variation in the 

distance between plates, which generates an acoustic wave. The air cavity, acts as a 

natural spring, which reduces significantly the impedance mismatch [Schindel 1995] 

 

Figure 1-15: CMUT schematic. 

Thermoacoustic transducers transform thermal energy fluctuations into sound. 

They achieve acoustic wave generation by direct application of an electrical signal and 

without the use of any moving components. A thermoacoustic transducer causes local 

vibration of air molecules resulting in a proportional pressure change. Since there is no 

boundary from the place where the wave is generated to the air, the mismatch is 

reduced. Moreover, the thermoacoustic transducers do not resonate, which means that 

the generated acoustic pattern, like a single short pulse, is generated instead of larger 

resonating one. On the bad side, thermoacoustic transducers have only been used as 

transmitters and not receivers. 

There are also other kind of transducers, which are called laser microphones or 

optical microphones [Fischer 2016]. These transducers are quite new and at least an 

order of magnitude more expensive than the previous ones. Optical microphones have a 

much high sensitivity, since they apply laser US technology to detect the signal. These 

transducers, however, can only work as receivers and are known to pick noise from all 

of the directions. 

Apart from the different technologies of transducers, the use of array transducers 

can be widely advantageous. They can be used to either control the focal distance 

electronically, instead of geometrically; or to control the direction of the generated wave 

[Farinas 2012]. Moreover, they could be used to measure the phase velocity of Lamb 

waves in a fast way [Farinas 2012]. However, nowadays there are nearly no ACUS 

transducer arrays due to the large wavelength of ultrasound in the range under 1 MHz. 

The size of the transducers is inversely proportional to the frequency. The active 
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elements of the array need to be at a distance of less than half a wavelength of each 

other, to ensure grating-lobe free beamforming. With use of waveguides this can be 

achieved at low (40 KHz) frequencies [Jager 2019]. 

1.3 Critical assessment of the state of the art 

Monitoring the manufacturing of FRP processes has shown to be of great 

interest for the industry. Much effort has been put in different monitoring techniques, 

each of them shows advantages and disadvantages in its application. The techniques that 

make punctual measurements are often the simplest to use and cheapest. However, they 

also provide with the fewest information. They can measure one or more points of the 

parts, with distributed sensors, but can only estimate the rest. The techniques that 

provide information on the status of the materials over an area usually require more 

complex systems, electronics and signal processing. These techniques can be non-

contact, meaning that they usually require some sort of direct vision between the part 

and monitoring system. This can be done through a transparent mold or without any 

physical media in between. 

In the case of 3D-UV pultrusion, the process itself limits the capability of using 

contact-monitoring techniques. Monitoring based on both EM waves and ACUS have 

shown the greatest potential for applications like 3D-UV pultrusion. EM waves are 

limited to be used in non-conductive materials and cannot determine the elastic 

properties of the material. ACUS has shown drawbacks, compared to EM waves, due to 

the difficulty to couple the wave from the air into the composite. However, ACUS gives 

the possibility to monitor the process and characterize the material at the same time. 

Due to that, ACUS is the technique with the highest potential. 

ACUS presents drawbacks coupling waves between the air and composite, but 

this drawback is not only limited to air and composite. This coupling mismatch is also 

present in the transducers that propagate the wave into the air. Selecting the right 

technology of transducer is critical to ensure that the energy is transmitted from the 

transducer into the air. Piezoelectric and capacitive transducers can be used as emitter 

and receiver, which is advantageous, and is innocuous for the material, contrary to LUS 

generators. Particularly piezocomposite transducers have been observed to have a wide 

frequency range and efficiency. 

Another focal point in ACUS monitoring, as for the manufacturing process, is 

the temperature variation due to the cure. The curing process heats not only the part but 

also the surrounding air. The variation of the temperature in both elements needs to be 

measured, to ensure the reliability of the measurements. 

ACUS has shown great applicability in material characterization and defect 

detection. Materials with isotropic, orthotropic and other kind of anisotropy types have 

been characterized with high precision using the air as a couplant. It is clear, however, 

that even though impedance mismatch has been reduced with the use of proper 
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transducers and appropriated techniques, measurements in ACUS require high precision 

and sensitive electronics.  

Several techniques for the characterization of materials with US have been 

developed. Most of the techniques allow obtaining the materials stiffness and viscosity. 

Techniques with contact and non-contact have been developed, with good results, even 

despite non-contact impedance mismatch limitations. The techniques that apply direct 

transmission through the material were first developed, but in non-contact, this carries 

limitations. Inspecting through the material cannot always be applied as the process may 

require one sided access or have two layers of material separated by air. That is, the part 

may have a closed, such as circular or hexagonal geometry, where three layers of air 

and two material layers would separate the transducers. 

In the process of 3D-UV pultrusion the likelihood of manufacturing such parts is 

high, therefore, limiting that application. The 3D-UV pultrusion process, due to its own 

characteristics, manufactures long and plate-like geometries, curing out of a mold. This 

leads to show that the application of Lamb wave monitoring techniques are the most 

appropriate ones. 

However, in composite manufacturing processes, not much effort has been put 

regarding ACUS. This may probably be due to the fact that most manufacturing 

processes use a mold or a bag, or other kind of surrounding structure. These structures 

prevent the use of ACUS, as contact techniques make much more sense. 

Therefore, in order to monitor the curing process with ACUS, at the time little 

work has been done. The few work that have been done have focused on monitoring the 

curing of resin matrixes, characterizing the material in some defined curing moments 

and proving the viability of the technique. 

1.4 Objectives 

The main objective of the thesis is to evaluate the properties of composite 

materials during the UV pultrusion manufacturing process. To do this, the work has 

focused on three sections: evaluation of the isotropic viscoelastic properties of the resin 

matrix during the UV curing, evaluation of the properties of a curved geometry 

manufactured with the 3D-UV out-of-die pultrusion curing process and the evaluation 

of the anisotropic elastic properties of the GFRP during the thermal curing. To achieve 

this objective, several operative objectives have been defined: 

 To evaluate the monitoring techniques that can show applicability for the FRP 

manufacturing processes. 

 To evaluate the use of fast simultaneous measurements of the viscoelastic 

properties of resin during the UV curing process. 

 To analyze the variation of elastic properties of anisotropic materials during the 

thermal curing process. 
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 To analyze the effect of the curvature in the evaluation of anisotropic properties 

of 3D-UV pultruded profiles.  

1.5 Outline of the thesis 

The remainder of this document is organized as follows: 

In Chapter 2 a fast ACUS quasi-normal resonant spectroscopy monitoring 

process for UV curing of polymers based on is presented. In Chapter 3 a comparison of 

the evaluation of straight and curved GFRP profile properties is presented. In Chapter 4 

an ACUS based on LLW to obtain the elastic properties of a GFRP plate during the 

thermal curing is presented. Finally, Chapter 5 summarizes the work done and the main 

conclusions obtained, as well as the future lines that can serve to complete and expand 

the work presented in this doctoral thesis. 
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Chapter 2 

Monitoring the UV curing of a vinyl ester 

resin with ACUS 

One of the main objectives of this thesis is to evaluate the evolution of the 

viscoelastic properties of the resin during the UV curing. Therefore, in this chapter the 

evolution of the viscoelastic properties of a vinyl ester (VE) during the UV curing with 

quasi-normal ACUS resonant spectroscopy is analyzed. These viscoelastic properties 

are compared with the degree of curing (DoC) estimations based on DC sensor 

measurements. The first section of this chapter presents the theoretical background over 

the acoustic longitudinal and shear properties; and the mechanical longitudinal, shear, 

Young’s modulus and Poisson’s ratio are obtained. The second section presents the set-

up and methodology used in this analysis. The third presents the results of the 

measurements whilst the fourth one shows the conclusions obtained from this analysis. 

2.1 Theoretical background 

2.1.1 Single-layer normal plane wave 

The acoustic properties of a transmitted US wave in a plate surrounded by a 

fluid can be evaluated with the use of resonant ultrasonic spectroscopy [Álvarez-Arenas 

2010]. In the simplest case, a non-attenuating fluid, air, surrounds a single-layered plate 

where a plane wave is incident to the plate in a normal angle with respect to the surface. 

The transmission coefficient (𝑇𝐶) of this plane incident wave in the plate can be 

obtained using the following expression [Álvarez-Arenas 2010]: 

𝑇𝐶 =
2𝑍𝑓𝑍𝑠

2𝑍𝑓𝑍𝑠 cos(𝑘𝑙𝑑) + 𝑖(𝑍𝑓
2 + 𝑍𝑠

2) sin(𝑘𝑙𝑑)
 (2-1) 

where𝑍𝑓 and 𝑍𝑠 are the acoustic impedances of the air and the plate respectively; 

𝑘𝑙 is the wavenumber of the longitudinal wave in the plate and 𝑑 is the thickness of the 

plate. 

Evaluating the 𝑇𝐶 over a range of frequencies provides the frequency response 

of the plate to the plane wave propagating in the air (named as TC spectrum from now 

on). The TC spectrum is dependent on the acoustic longitudinal wave properties of the 

plate, the longitudinal velocity and attenuation, as well as the density of the plate. The 

acoustic longitudinal wave properties and density of the plate can be evaluated as 

proposed by Alvarez-Arenas [Álvarez-Arenas 2003], even when the thickness of the 

plate is not previously known. Once the TC spectrum is obtained, the thickness of the 

plate is estimated from the phase of the transmitted pulse at the resonance frequency. 
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Once the thickness is known, the longitudinal velocity is estimated from the resonance 

frequency of the plate. The longitudinal attenuation is estimated from the 𝑄-factor of the 

resonance peak and the reflection coefficient at the fluid-solid boundary. With these 

initial estimations of the longitudinal acoustic properties, values close to the real ones 

are obtained. To improve the precision of the estimated longitudinal wave properties, 

the measured TC spectrum is fitted with the theoretical one from Eq. (2-1). The acoustic 

properties of the experimental and theoretical model are fitted through a stochastic 

gradient descent algorithm [Álvarez-Arenas 2003]. From the calculated acoustic 

longitudinal properties, the mechanical longitudinal modulus can be obtained, as is later 

explained in Section 2.1.3. 

To obtain the mechanical properties of the plate that are usually of greatest 

interest (Young’s modulus, shear modulus and Poisson’s ratio) it is necessary to work in 

non-normal incidence angles [Fariñas 2013]. The 𝑇𝐶 of a plate is no longer defined as 

in Eq. (2-1), since it does not support shear wave propagation nor is dependent on 

incidence angle. 

2.1.2 Multi-layer non-normal plane wave transmission 

When a plane wave is incident on a single layer or multilayered solid plate at an 

oblique incidence, as depicted in Figure 2-1, both longitudinal and shear waves are 

generated in the plate. To calculate the 𝑇𝐶 of an 𝑁-layered system the stresses and 

displacements at the interfaces need to be related as follows [Thomson 1950]:  

[
 
 
 
 
𝜉𝑛

𝜁𝑛

𝜎𝑛
𝜏𝑛

2𝐺𝑛]
 
 
 
 

= [

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

]

[
 
 
 
 
𝜉𝑛−1

𝜁𝑛−1

𝜎𝑛−1
𝜏𝑛−1

2𝐺𝑛−1]
 
 
 
 

 (2-2) 

where 𝜉 and 𝜁 are the particle displacements in the surface and thickness 

direction at the boundaries, 𝜎 and 𝜏 are the normal and shear stresses respectively, and 

𝐺 is the shear modulus. The subscript 𝑛 defines the layer's lower boundary, the 𝑛 − 1 

defines the upper boundary and the expressions for the matrix elements, 𝑎11, 𝑎12, … 𝑎44 

are obtained from the layer properties.  
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Figure 2-1: Plane-wave transmission in a multilayered plate. 

The continuity of particle velocities and stresses at the interface of each 𝑛-layer 

allows defining the 𝑁-layer multilayer system as: 

[
 
 
 
 

𝜉𝑁

𝜁𝑁

𝜎𝑁
𝜏𝑁

2𝐺𝑁]
 
 
 
 

= ∏[𝐴]𝑛

𝑁

𝑛=1

[
 
 
 
 
𝜉0

𝜁0

𝜎0
𝜏0

2𝐺0]
 
 
 
 

 (2-3) 

where the elements of each of the [𝐴]𝑛 layers are obtained as in Eq. (2-2). 

Applying boundary conditions to Eq. (2-3) the 𝑇𝐶 of the multilayered plate can be 

obtained [Álvarez-Arenas 2003]. 

When the TC spectrum is evaluated for oblique incidence, the effect of the shear 

wave resonance over the longitudinal resonance can be observed [Álvarez-Arenas 

2002], this can be observed later in the results in Figure 2-3 (a). If the angle of incidence 

is close to normal angle with respect to the surface of the plate, the interference of the 

shear wave resonance with the longitudinal resonance can be observed. This 

interference in the spectrum, according to Thomson [Thomson 1950], is composed of a 

local maxima and minima, and is dependent on the shear velocity and attenuation 

[Madigosky 1979] : 

𝑐𝑠 =
𝑓𝑠𝑟𝑒𝑠

𝑑

𝑚
 (2-4) 

𝛼𝑠 = (𝛼𝑙 2⁄ )(𝑐𝑙 𝑐𝑠⁄ )3 
(2-5) 

where 𝑐 and 𝛼 are the longitudinal (subscript 𝑙) and shear (subscript 𝑙) velocities 

and attenuations respectively, 𝑓𝑠𝑟𝑒𝑠
 is the frequency in the centre of the local maxima 

and minima of the interference and 𝑚 is the resonance order. An example can also be 

observed later in the results in Figure 2-3 (a). 

Once the 𝑇𝐶 is calculated, as in the normal single layer plate case, it is necessary 

to make an initial approximation of the values of the acoustic properties of the 
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multilayered plate. Since the acoustic properties are composed of the longitudinal and 

shear velocities and attenuations of each of the layers, one way to approximate the 

acoustic properties is to consider the multilayer system as a single layer [Álvarez-

Arenas 2018]. With the initial estimation as a single layer, the properties of each of the 

layers can be simultaneously fitted with the multilayer model. If the layers cannot be 

separated, this is the best procedure. Another way to approximate the acoustic properties 

is to make independent measurements of each of the layers of the multilayer material. If 

it is possible to separate the layers, the initial estimations should be closer to the real 

values than with the previous method. Once the initial estimations of the acoustic 

properties have been carried out, the experimental TC spectrum can be fitted as in the 

multilayer case to obtain the correct acoustic properties. 

2.1.3 Relationship between the acoustic and mechanical properties 

The determination of the density and the mechanical viscoelastic properties like 

Young´s modulus and Poisson’s ratio, as well as the loss tangent, is based upon the 

relationship between the acoustic and the mechanical properties for isotropic 

viscoelastic materials [Álvarez-Arenas 2010; Qiao 2011]. To obtain the density of the 

material, the transmission coefficient at the minimum transmission point 𝑇𝑚𝑖𝑛, where 

the thickness resonance has the least effect, is evaluated: 

𝑇𝑚𝑖𝑛 =
4𝑍𝑝

2𝑍𝑎
2

(𝑍𝑝
2 + 𝑍𝑎

2)
2 (2-6) 

where 𝑍 = 𝜌𝑐𝑙 for the plate (subscript 𝑝) and air (subscript 𝛼), and  and 𝑐𝑙 are 

the density and longitudinal wave velocity of the plate and the air. 

For viscoelastic solids, Young’s modulus and Poisson’s ratio are defined as 

complex mechanical properties, where the real part corresponds to the elastic behavior 

and the imaginary part corresponds to the viscous behavior. To calculate Young’s 

modulus and Poisson’s ratio, the complex viscoelastic longitudinal (𝐿∗) and shear (𝐺∗) 

modulus need to be calculated. The longitudinal viscoelastic modulus is related to the 

longitudinal acoustic velocity and attenuation, while the shear viscoelastic modulus is 

related to the shear acoustic velocity and attenuation. As the relationship of both 𝐿∗ and 

𝐺∗ with their respective longitudinal and shear acoustic properties is identical, the 

modulus 𝑀∗ in Eq. (2-7) and (2-8) can be substituted by either 𝐿∗ or 𝐺∗ [Qiao 2011]: 

𝑀∗ = 𝑀′ + 𝑀′′ (2-7) 

𝑀′ =
𝜌𝑠𝑐

2(1−(
𝛼𝑐

𝜔
)
2
)

(1−(
𝛼𝑐

𝜔
)
2
)
2  and 𝑀′′ =

2𝜌𝑠𝑐
2(

𝛼𝑐

𝜔
)

(1−(
𝛼𝑐

𝜔
)
2
)
2 

(2-8) 

M′ is the longitudinal or shear storage modulus, and M′′ is the longitudinal or 

shear loss modulus. It can be observed from Eq. (2-8) that the acoustic velocity and 
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attenuation are directly related to the viscoelastic properties. From the complex 

viscoelastic longitudinal and shear modulus, the bulk modulus 𝐾∗ and Young’s modulus 

𝐸∗ can be calculated [Qiao 2011]: 

𝐾∗ = 𝐾′ + 𝑖𝐾′′ where 𝐾′ = 𝐿′ −
4

3
𝐺′ and 𝐾′′ = 𝐿′′ −

4

3
𝐺′′ (2-9) 

𝐸∗ =
9𝐾∗𝐺∗

3𝐾∗ + 𝐺∗
 (2-10) 

Poisson’s ratio for linearly viscoelastic materials 𝜈∗ is defined as follows 

[Tschoegl 2002]: 

𝜈∗ =
3𝐾∗ − 2𝐺∗

2(3𝐾∗ + 𝐺∗)
 (2-11) 

However, shear wave propagation in the liquid resin is will take place with a 

very low velocity and a very high attenuation coefficient. These features imply that 

Poisson's ratio will be very close to 0.5, imaginary parts will be large and that the 

influence of shear waves on longitudinal transmission will be much reduced. In the 

curing process, the liquid resin will only be liquid until the gelation point, where shear 

wave attenuation will be dramatically reduced [Lionetto 2013] and the properties related 

to shear waves can be measured. 

2.2 Set-up and methodology 

To estimate the properties of the VE resin and polycarbonate (PC) the set-up 

shown in Figure 2-2 was built. Two broadband transducers were aligned in a quasi-

normal incidence angle (3º) with the sample between them. The US transducers were 

piezo-composite unfocused transducers made at the Consejo Superior de 

Investigaciones Científicas (CSIC) with a working range from 400 kHz to 800 kHz 

[US-Biomat 2015]. In order to drive the transducers, the signal generator of a 

PicoScope5000 and a Falco WMA-300 amplifier were used to generate a tone burst of 

600 kHz - 200 Vpeak-to-peak with 10 square pulses. At the receiving side, a Femto HQA-

15M-10T charge amplifier with 10 V/pC gain and the oscilloscope of the 

PicoScope5000 were used to register the signals. 

To monitor the cure, a PC plate with 1.9 mm thickness was placed under the VE 

resin to sustain it during the liquid state. The mechanical and acoustic properties of the 

PC plate, measured in Section 2.3.1, are 1210 kg/m3 density and 2125 m/s longitudinal 

velocity, which are close to those of the VE and other resins, around 1000-1200 kg/m3 

density and 1500-2500 m/s longitudinal velocity [Lionetto 2007b]. The similarity in 

these properties enhances acoustic transmission between layers, thus making the choice 

of this material adequate. 

The resin used in the experiment was a UV curable VE supplied by Irurena S.A 

(IRUVIOL GFR-17 LED). To cure the polymer, a UV light source (Phoseon Fire Flex) 
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with 395 nm wavelength and 1.6 W/cm
2
 power density, was placed obliquely to the 

sample (60º). Despite the oblique irradiation, the intensity over the incident area in the 

sample was assumed as homogeneous. With the UV light, curing is done from top to 

bottom. Therefore, to ensure a homogeneous cure along the thickness a sample of 1.9 

mm thickness was manufactured. Additionally, reducing the thickness, the bulk effect 

and the temperature gradient generated by the exothermic nature of curing are reduced, 

resulting in higher accuracy measurements. 

To monitor the DoC, an Optimold DC sensor (Synthesites Innovative 

Technologies Ltd.) was placed in contact with the resin. The DC technique has been 

proven to be able to monitor the UV curing of polymers and their composites [Tena 

2016]. The DC sensor was placed at the same distance as the ACUS transducer with 

respect to the UV light to ensure equal curing degree at the measured area. Two pairs of 

thermocouples were also placed. A pair in contact with the upper and lower part of the 

PC plate (TPC-VEthin and TPC-Air in Figure 2-2) to monitor the temperature. The other pair 

(TAirUp and TAirDown in Figure 2-2) were placed 30 mm away from the face of the VE and 

the PC. The measurements of the DC was registered using an Optimold software and 

the measurements of the thermocouples using a DAQ9219.  

 

Figure 2-2: Set-up to monitor the UV curing process with ACUS. 

To evaluate the acoustic properties, the transmitted ultrasonic signal was 

measured without neither the PC nor the VE layer. This signal was used as a reference 

of the frequency response of the system, which includes the electronic equipment, the 

transducer and the air between them. The US transmitted signal was later measured with 

the layer or layers between the transducers. For the signal of the system and the signal 
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transmitted through the layers, a discrete Fourier transform (DFT) (by a fast Fourier 

transform (FFT) algorithm) was carried out. The DFT response of the system without 

layers was used as a reference and compared with the DFT with the plates [Álvarez-

Arenas 2003]. This comparison provides the frequency response of the layers only, 

eliminating the effect of the equipment used and the air. This evaluation was done for 

three scenarios: before curing, during curing and after curing. In each of these three 

scenarios a total of four tests were carried out, with a single measurement of the system. 

Before curing, two tests were carried out where each material, VE and PC, were 

characterized separately. In the first test, the 1.9 mm PC plate was characterized in order 

to obtain the parameters of the PC. In the second test, a 5.92 mm liquid VE (named as 

VEthick from now on) was characterized. Since the liquid VEthick resin requires a solid 

layer to hold it, a 0.1 mm PC was placed under the VEthick. The choice of a thicker resin 

layer in combination with a thin PC plate is adopted to make an approximation of a 

single layer material. However, the properties calculated for the VEthick as a single layer 

were later recalculated during curing, using these measurements as an initial 

approximation. 

During curing, the 1.9 mm PC plate and a 1.9 mm VE (named as VEthin from 

now on) were measured as a bilayer material. The choice of a 1.9 mm PC, instead of the 

0.1 mm one, is adopted to thicken the sample and ensure that at least one resonance of 

the bilayer system is inside the bandwidth of the transducers. The properties estimated 

before curing were used as initial parameters. The thickness of the VEthin and the elastic 

properties were measured as a bilayer system before turning the UV light on. The 

properties were estimated in three phases. First, the thickness during curing was 

evaluated. Second, the temperature variation in the PC and air was considered to reduce 

de error in the measurements. Last, the viscoelastic properties of the VEthin resin during 

curing were finally evaluated taking into account the previous thickness and 

temperature conditions. 

After curing, the VEthin plate was removed from the PC supporting plate and its 

thickness and properties were measured at room temperature in the same fashion as 

before curing. 

2.3 Results 

2.3.1 Characterization before curing 

The TC spectrum of the PC and the VEthick were evaluated before curing. Figure 

2-3 shows, for both materials, the measured TC spectrum, the initial estimation and the 

final estimation after fitting the curves with the resonance model. Figure 2-3 (a) shows 

the TC spectrum for the PC and Figure 2-3 (b) for the thick VEthick. In Figure 2-3 (b), 

the VEthick shows two resonance peaks at 520 kHz and 651 kHz, which are the fourth 

and fifth resonances respectively. The order of the resonance peak in the VEthick can be 

calculated since the resonance frequency is repetitive in equidistant frequency hops, 
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131 kHz in the case of VEthick. In Figure 2-3 (a), the PC only shows one resonance peak 

at 559 kHz, which is the first one. The maximum TC of the VEthick and PC are also 

different, with -44 dB and -46 dB at their respective resonances. Since a 0 dB TC in the 

resonance frequencies would mean that the material is non-attenuating, the higher TC of 

the VEthick implies that its longitudinal wave attenuation is lower that of the PC. The 

minimum TC in the VEthick is at 590 kHz, whilst it is not visible in the PC TC spectrum, 

as it is out of the frequency range of the transducers. However, a lower minimum value 

in the TC of either material would mean a higher acoustic impedance mismatch, which 

is related to a higher velocity or density. The phase of the VEthick is higher than that of 

the PC at their first visible resonance. The higher phase indicates either a lower velocity 

or a thicker sample in the VEthick. The PC presents at the TC spectrum and phase an 

interference, which is caused by the shear waves, unlike the VEthick. This interference, at 

475 kHz in Figure 2-3 (a), is encircled in yellow and is composed of a local minima and 

maxima in the TC. The position of this interference, to the left of the first resonance of a 

single layer PC, indicates that the shear wave velocity is under half the velocity of the 

longitudinal waves. 

  

(a) (b) 

Figure 2-3: Frequency response of the PC plate (a) and the VEthick plate (b). 

The acoustic properties, as well as the thickness, of both the PC and VEthick are 

shown in Table 2-1. The estimated thickness for the PC with ACUS is within the range 

measured with a micrometer. The longitudinal velocities for both the VEthick and PC are 

in the expected range for those materials [Asay 1967; Lionetto 2007b; Selfridge 1985]. 

The longitudinal attenuation, normalized to 1 Hz, and shear velocity of PC also fit the 

expected ones [Asay 1967; Selfridge 1985]. 
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Table 2-1: Extracted acoustic properties before curing. 

Material 

Thickness 

estimated 

(mm) 

Thickness 

measured 

(mm) 

Longitudinal 

velocity 

(m/s) 

Shear 

velocity 

(m/s) 

Longitudinal 

attenuation 

(dB/m) 

Shear 

attenuation 

(dB/m) 

PC 1.9 
1.88 ± 

0.05 
2125 897 440·10

-6
 1.96·10

-3
 

Liquid 

VEthick 
5.92 - 1572 - 223·10

-6
 - 

The mechanical properties of the PC and the VEthick are reported in Table 2-2. 

The values obtained for the PC are within the expected range [Asay 1967; Selfridge 

1985]. The viscous properties on either the VEthick or the PC could not be compared to 

data in bibliography. Moreover, the viscous properties of the Poisson’s ratio shown in 

Table 2-2 are completely elastic, as it was zero up to three significant figures. 

Table 2-2: Extracted mechanical properties before curing. 

Material 

Young’s 

modulus 

(GPa) 

Shear 

modulus 

(GPa) 

Bulk 

modulus 

(GPa) 

Poisson’s 

ratio 

Density 

(kg/m
3
) 

PC 2.67 + 0.33i 0.96 + 0.12i 4.11 + 0.2i 0.39 1210 

Liquid 

VEthick 
- - 2.77 + 0.07i 0.5 1124 

2.3.2 Characterization during curing 

2.3.2.1 Variation of the thickness of VEthin 

Knowing the thickness of the VEthin resin during curing is critical to ensure the 

precision of the properties estimated for the resin [Álvarez-Arenas 2003]. Before the 

UV light is turned on, and the exothermic cure reaction begins, the thickness of the 

VEthin resin can be simply estimated as in Section 2.1.1. Once curing is finished the final 

thickness of the VEthin resin can be measured as previously and validated with a 

micrometer. During curing, estimating the thickness by ACUS requires accurate values 

of the surrounding air temperature and PC properties, and with the current set-up, it is 

not possible. Thus, in order to overcome this difficulty, the thickness of the VE resin is 

estimated assuming that the chemical shrinkage of the resin is proportional to the DoC 

[Antonucci 2002] measured by de DC sensor. Figure 2-4 shows the evolution of the 

DoC registered by the DC sensor and the estimated thickness of the VE resin layer 

during curing. 
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Figure 2-4: Thickness of the VEthin with the DoC. 

2.3.2.2 Variation of the properties of PC  

The exothermic nature of the curing of VE resin modifies the temperature of the 

PC plate and, consequently, the effects of this heating must be considered. Figure 2-5 

shows the evolution of the temperature in the upper (PC-VEthin) and lower (PC-Air) 

boundaries of the PC. Due to the small thickness of the PC, the temperature inside was 

considered as a mean of the PC- VEthin and PC-Air temperatures. The maximum 

temperature measured was 98 ºC in the PC- VEthin boundary. Since the glass transition 

temperature of the PC is 140 ºC and the working range is up to 120 ºC, it is assumed 

that the mechanical stability of the PC plate is guaranteed. However, the thickness [The 

Engineering ToolBox 2003] and ultrasonic velocity [Asay 1967] change in this 

temperature range for PC. On one hand, as the thermal expansion for PC is 70·10
-6

 

m·m
-1

·ºC
-1

 [The Engineering ToolBox 2003], the change in thickness for a 1.9 mm plate 

is ~8 µm. As the maximum variation in thickness is less than 0.5% of the total 

thickness, thermal expansion effect has been neglected. On the other hand, the 

longitudinal velocity changes more significantly with a -2.4 m·s
-1

·ºC
-1

 variation rate 

[Asay 1967]. At the maximum PC- VEthin temperature, this implies a PC velocity of 

1999 m/s, a reduction of 6% compared to the initial 2125 m/s. Therefore, the 

temperature in the PC at any given time has to be taken into account to correct the 

longitudinal wave velocity. 
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Figure 2-5: Temperatures in the PC plate during curing. 

2.3.2.3 Variation of the properties of air 

The heat generated during curing of VE resin is transferred to the PC plate as 

well as to the air. Heat transfer analysis is complex since both the convection on the VE 

resin and the radiation of the UV lamps must be considered. The experimental 

measurement of the temperature distribution in the air around the set-up is a highly 

complex task. A simplified model of the temperature of the air based on two linear 

zones is applied; the first region goes from the sample surface to the thermocouple 

placed in the mid-distance and the second from this thermocouple to the transducer. As 

can be seen in Figure 2-6 the temperatures in both sides of the set-up varied less than 6 

ºC, except for short spikes, so it is considered that the temperature in these points during 

curing are constant.  

 

Figure 2-6: Temperatures in the upper (TAirUp) and lower (TAirDown) layers of air at 

30 mm distance from the VEthin and the PC. 
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Consequently, the temperature distributions in both sides were estimated as 

follows: 

 In the upper zone, the temperature between the emitting transducer and the 

thermocouple is considered to be constant (23 ºC) during the whole curing 

process. However, from the thermocouple to the VE resin surface, it increases 

linearly from 23 ºC up to the temperature measured at the VE-PC interface 

(Figure 2-6). Even if this temperature is not real, since in the inner side of the 

VE the bulk effect induces higher temperatures than in the surface, it is the most 

conservative value. 

 In the bottom zone, the temperature between the transducer and the 

thermocouple is also considered to be 23 ºC. The temperature between the 

thermocouple and the PC surface also vary linearly as in the upper zone and 

goes from 23 ºC up to the PC-Air temperature in each instant (Figure 2-6). 

Based on this these estimated temperature distributions, the density and sound 

velocity in the air have been corrected during curing, considering that the coefficient for 

both the change in sound velocity is 0.606 m·s
-1

·ºC
-1

 and -0.00325 kg·m
-3

·ºC
-1

 for the 

density.  

2.3.2.4 Evolution of the properties during curing 

Once the effect of the temperature in the external elements, PC and air, was 

taken into account the properties of the VEthin during curing were evaluated. The 

longitudinal and shear velocity and attenuation, as well as the longitudinal and shear 

viscoelastic modulus of the VEthin are shown in Figure 2-7. In Figure 2-7 (a) and (b) the 

longitudinal acoustic and mechanical properties are presented. The longitudinal elastic 

modulus 𝐿’ is 3 GPa at the beginning of the cure, which is an expected value as it is 

close to the values for epoxy [Aldridge 2014] and polyester resins [Lionetto 2013]. The 

first measurable variation in the viscoelastic properties is detected after 5 seconds of UV 

light exposure. The first variation observed is a reduction in the resonant frequency of 

the multilayer plate, which is linked to either a softening of the VE or a thickness 

increase. The softening, or reduction of the stiffness, was already observed by other 

authors [Chokanandsombat 2013; Kister 2015; Li 2000] as the resin crosses the zero 

crosslink density point. This reduction of the stiffness can be observed to stop at 25 

seconds, where it starts to regain stiffness. The ratio of change of velocity reaches its 

maximum point at around 67 seconds, where the temperature in the VEthin can be 

observed to be maximum, in Figure 2-5. In fact, the attenuations rate shifts from an 

increase in attenuation to a reduction at that point in time. Despite reaching the 

maximum temperature at 67 seconds, the curing still goes on at a lower rate. At around 

95 seconds, the shear wave interference was finally detectable in the spectrum. The 

evolution of the shear properties is presented in Figure 2-7 (c) and (d). Observing the 

shear storage and loss modulus it is visible that the value of the shear loss modulus is 

smaller than the shear storage modulus. The gelation point is considered to be the point 

in which the shear storage and the loss modulus have the same value [Martin 2000], 
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which would point out that this point was already crossed once shear waves were 

measured. The evolution of the shear properties are closely similar to the longitudinal 

properties, with Poisson’s ratio showing no change at 0.37. 

  

(a) (b) 

  

(c) (d) 

Figure 2-7: Evolution of the acoustic properties during the cure: (a) longitudinal wave 

properties, (b) longitudinal complex modulus, (c) shear wave properties and (d) shear 

complex modulus. 

To ensure the reliability and precision of the US resonant technique to monitor 

curing, the data obtained were compared with the measurements of the DoC sensor. 

Figure 2-8 (a) shows the evolution of the longitudinal elastic modulus and the DoC 

during curing. It can be observed that both follow the same trend. In both cases, the zero 

crosslink point can be seen at around 25 seconds. In Figure 2-8 (b), a scatter plot of the 

estimated Young’s modulus with the DoC percentage is presented. The initial DoC is 

65% as shear waves where not measurable until that point. The scatter plot also shows 

the differences in the rate of change of elastic properties in time. At lower DoCs, the 

number of points is scarcer than at higher DoCs were the rate of change is smaller. 
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(a) (b) 

Figure 2-8: Longitudinal storage modulus and DoC (a), and evolution of the elastic 

Young’s modulus with the DoC (b). 

2.3.3 Characterization after curing 

The measured acoustic properties after curing at room temperature are compared 

with the properties at the beginning in Table 2-3. Taking into account the acoustic 

properties in Table 2-1 and Table 2-3, with the VEthick and VEthin, it can be observed that 

the difference is less than 3% in the values of the longitudinal wave. This difference 

may be due to the VEthick not being a real single layer. However, it proved to be a good 

approximation. It can also be observed that the longitudinal attenuation is larger at the 

end than in the beginning of the curing, as it can happen in fast curing processes 

[Lionetto 2013]. The shear wave velocity and attenuation could not be compared to the 

beginning of the cure, as they were not detectable up until a high curing point. The 

estimated final thickness suffered a reduction of ~7% from the initial one, validated 

with a micrometer. Regarding the viscoelastic properties measured at room temperature 

(Table 2-3 and Table 2-4) and at the end of curing, when the temperature is roughly 50 

ºC higher than room temperature Figure 2-5), these are different. The temperature 

difference causes a decrease in the longitudinal and shear wave velocities of the VEthin 

similarly to the case of the PC material.  

Table 2-3: Extracted acoustic properties of the VEthin. 

Material 

Thickness 

ACUS 

(mm) 

Thickness 

micrometer 

(mm) 

Longitudinal 

velocity 

(m/s) 

Shear 

velocity 

(m/s) 

Longitudinal 

attenuation 

(dB/m) 

Shear 

attenuation 

(dB/m) 

Liquid 

VEthin 
1.89 - 1551 - 249 10

-6
 - 

Cured 

VEthin 
1.76 1.8 ± 0.05 2351 1065 757 10

-6
 3.5 10

-3
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The mechanical properties after the curing are shown in Table 2-4. Comparing 

the VEthin at the beginning of the cure, an increase in stiffening is observed. Young’s 

modulus in Table 2-4 is 10% higher than that at the end of the curing in Figure 2-8 (b). 

This difference is caused by the cooling of the VEthin. It should be noted that Poisson’s 

ratio is consistent at 0.37. 

Table 2-4: Extracted elastic mechanic properties of the VEthin. 

Material 

Young’s 

modulus 

(GPa) 

Shear 

modulus 

(GPa) 

Bulk 

modulus 

(GPa) 

Poisson’s 

ratio 

Density 

(kg/m
3
) 

Liquid 

VEthin 
- - 2.7 + 0.07i 0.5 1126 

Cured 

VEthin 
3.3 + 0.8i 1.2 + 0.3i 4.47 + 0.35i 

0.371 – 

0.01i 
1052 

 

2.4 Conclusions 

In this chapter, ACUS spectroscopy has been used to monitor the UV curing of a 

VE resin. This technology has proved to be useful to monitor a fast curing process were 

contact between the part and the transducer cannot be made, such as UV curing.  

During curing, due to the exothermic nature of the process, the temperature of 

the resin increases sharply. This increase in temperature in the resin alters the properties 

of the PC plate and the air surrounding it. These changes in the properties need to be 

taken into account when characterizing the resin’s properties. Thus, extra sensors like 

thermocouples are required to reduce the error in the measurements. 

Moreover, curing causes chemical shrinkage in the resin sample, which needs to 

be considered. Measuring the thickness by ACUS with a resolution under 150 µm 

required a more complex set-up, due to the changes in air properties. Thus, the thickness 

was indirectly estimated based on the DoC measured with the direct-current sensor. 

The mandatory use of a PC thin-plate to support the liquid resin must be 

considered during data analysis, by applying a bilayer material model.  

At the earlier stages of curing, only the longitudinal waves where measurable 

due to the great attenuation of shear waves in the liquid VE resin. However, above the 

gel point, shear waves can be registered. Consequently, with the simultaneous 

measurement of longitudinal and shear properties, Young’s modulus was characterized. 
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When the measurements of the ACUS spectroscopy were combined with the 

direct current sensor, a correlation between the DoC and the estimated Young’s 

modulus can be observed. It must be pointed out that the Young’s modulus values 

obtained by ACUS fitted with values reported in the VE’s technical datasheet. 
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Chapter 3 

Leaky Lamb waves with ACUS 

The second goal of this thesis is to evaluate the properties of composite materials 

without contact based on guided waves. Using leaky Lamb waves, without contact, 

presents different challenges to ensure correct and efficient measurement in samples 

with different geometries. Thus, in this chapter the efficiency to generate guided waves 

with focused and unfocused transducers for straight and curved GFRPs parts is 

evaluated. The first section focuses on the theoretical background of guided waves in 

composite materials. The second section presents the set-up and methodology followed. 

The third section presents the results, whilst the last one shows the conclusions. 

3.1 Theoretical background 

A plane wave propagating in a semi-infinite fluid (Figure 3-1) is defined by the 

polarization vector 𝑷𝑓 = [cos(𝜃) , sin(𝜃) cos(𝜙) , sin(𝜃) sin(𝜙)] and wave vector 

𝒌𝑓 = 𝑘𝑓𝑷𝑓. When the plane wave propagating in the fluid comes across a semi-infinite 

solid layer, several waves can be generated inside, among other depending on the 

mechanical properties of the solid. Particularly, when the solid is a FRP composite, 

some mechanical properties, like the stiffness, are directionally dependent and present 

an orthotropic anisotropy. The stiffness of the FRP composite can be defined using the 

Voight matrix notation [𝐶𝑖𝑗] (Eq. (3-1)) [Hosten 1987] where 𝑖 and 𝑗 are the three axes 

(1,2,3). The three principal axes in a FRP are: the fiber direction, which is axis 1 for 

unidirectional composites and axes 1 and 2 for bidirectional FRP; and non-fiber 

direction, which are axes 2 and 3 for unidirectional composites and only axis 3 for 

bidirectional FRP. For FRP with other lay-ups ([0,+45,-45,0] for example), one might 

choose the reference for the axes as preferred. 

 

Figure 3-1: Incident wave in plate. 
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[𝐶𝑖𝑗] =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
− 𝐶22 𝐶23 0 0 0
− − 𝐶33 0 0 0
− − − 𝐶44 0 0
− 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 − − 𝐶55 0
− − − − − 𝐶66]

 
 
 
 
 

 (3-1) 

When an incident plane wave interacts with an orthotropic material, a reflected 

wave with 𝑷𝑟 = [−cos(𝜃) , sin(𝜃) cos(𝜙) , sin(𝜃) sin(𝜙)] and 𝒌𝑟 = 𝑘𝑓𝑷𝑟 is generated, 

along with at most three refracted waves with 𝑷𝐽, 𝒌𝐽 where 𝐽=𝑙,𝑠1,𝑠2 (Figure 3-2) 

[Hosten 1991]. The three refracted waves are one quasilongitudinal (𝑙) and two 

quasishear (𝑠1, 𝑠2) waves. The two quasishear waves propagate with a polarization with 

respect to the first and second axes. When the incident wave is in the direction of an 

axis (sin(𝜙) = 0 or sin(𝜙) = 1), only two waves are generated, a quasilongitudinal (𝑙) 

and a quasishear (𝑠) wave. There is only one shear wave because the velocity of both 

shear waves coincides in the axes [Rokhlin 1986]. For each refracted wave, the critical 

angle is defined by 𝜃𝐽lim
= arcsin(𝑘𝐽 𝑘𝑓⁄ ) [Hosten 1991]. 

 

Figure 3-2: Refracted waves in semi-infinite FRP medium. 

When the FRP composite is not a semi-infinite medium and, instead, has a plate-

like geometry, Lamb waves are generated in the FRP. If Lamb waves are propagating in 

a plate surrounded by a semi-infinite fluid, some of the energy of the Lamb wave is 

leaked into the fluid. In order to measure Lamb waves without contact, the leaked 

acoustic energy is measured. This method is known as leaky Lamb waves (LLW) 

[Giurgiutiu 2015; Karim 1990].  

To model the dispersion curves of the LLW in plate-like FRP composites, 

several analytical methods have been proposed, amongst which the transfer matrix 

method (TMM) [Castaings 2003] and the stable matrix method (SMM) [Wang 2001] 

are the most used. 
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3.1.1 Transfer matrix method 

The process to calculate the dispersion curves of the LLW with the TMM is 

carried out in two steps. First, the wavenumber of the refracted longitudinal and shear 

wave (or waves), together with their associated polarization vectors are obtained. Then 

the transfer matrix that relates the displacements at both surfaces of the plate, the top 

and bottom of the plate, can be calculated considering stress and displacement 

continuity in the plate. When the plate is composed of multiple layers with different 

properties, these two steps are carried out for each layer iteratively and the transfer 

matrix of the plate is calculated by multiplying the transfer matrices of all layer. 

In an anisotropic solid, the Christoffel’s equation holds [Auld 1973]: 

Γ𝑖𝑗𝑃𝑗 − 𝜌𝑠𝜔
2𝑃𝑖 = 0 (3-2) 

where Γ𝑖𝑗 is element of the Christoffel’s tensor, where 𝑖 and 𝑗 are the three axes 

1,2,3. Γ𝑖𝑗 relates the mechanical properties of the plate (stiffness [𝐶𝑖𝑗] and density 𝜌𝑠) 

and those of the refracted waves (angular frequency 𝜔 and wavenumber 𝒌𝐽) [Auld 

1973]. Non-trivial solutions of Γ𝑖𝑗 are obtained by an eigenvalues analysis of Eq. (3-2), 

where the eigenvectors represent the polarization vectors of the refracted waves [Auld 

1973; Hosten 1991]. 

In order to obtain the eigenvectors, firstly, the wavenumbers of the refracted 

shear and longitudinal waves, 𝒌𝐽 is decomposed in the 1, 2 and 3 axes directions, with 

the unitary vectors 𝒙1, 𝒙2 and 𝒙3 respectively:  

 𝒌𝐽 = 𝑘𝐽1𝒙1 + 𝑘𝐽2𝒙2 + 𝑘𝐽3𝒙3 (3-3) 

According to Snell’s law, the wavenumber of the 𝐽 refracted wave in the 1 and 2 

axes (𝑘𝐽1 and 𝑘𝐽2) is the same as the wavenumber in the fluid in the same direction (𝑘𝑓1 

and 𝑘𝑓2 respectively) [Hosten 1991]. This implies that for all 𝐽 mode, in the 1 or 2 

directions, the wavenumber  will be the same (𝑘1 or 𝑘2): 

𝑘𝑓1 = 𝑘𝐽1 = 𝑘1 and 𝑘𝑓2 = 𝑘𝐽2 = 𝑘2 (3-4) 

From Eq. (3-3) and Eq. (3-4), it can be observed that only 𝑘𝐽3 is unknown. 

Resolving the eigenvalue and eigenvector problem from Eq. (3-2), 𝑘3 can be obtained 

[Hosten 1991]. 𝑘3 contains all 𝑘𝐽3 solutions: 

𝑎(𝑘3
2)3 + 𝑏(𝑘3

2)2 + 𝑐(𝑘3
2) + 𝑑 = 0 (3-5) 

where 𝑎, 𝑏, 𝑐 and 𝑑 are coefficients dependent on the mechanical properties of 

the plate (stiffness [𝐶𝑖𝑗] and density 𝜌𝑠) and the refracted waves (angular frequency 𝜔 

and wavenumber 𝑘1, 𝑘2) . 
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In the non-principal axes, 𝑘3
2 in Eq. (3-5) has three real solutions, one for each 𝐽 

refracted wave. In the principal axes, there are also three real solutions, but only two of 

them are physically true, since there are only two refracted waves [Rokhlin 1986]. In 

our case, due to the geometries obtained in the 3D UV pultrusion process, the analysis is 

narrowed down to the principal axis 1 and thickness axis 3. For this case, 𝑘3
2 has a real 

solution for each 𝐽 refracted wave (𝐽 = 𝑙, 𝑠). The two solutions of 𝑘3
2 can be positive or 

negative real numbers. If 𝑘3
2 is a positive number, 𝑘3 will have two real solutions, a 

positive and a negative . However,a negative 𝑘3 makes no physical sense and is thefore 

ignored. 𝑘3
2 is positive under the condition that the incidence angle 𝜃 of the 𝒌𝑓 wave is 

under the critical angle 𝜃𝐽𝑙𝑖𝑚
. This condition is called the subcritical regime. If 𝑘3

2 is a 

negative number, 𝑘3 will have to solutions that are purelly imaginary. As in the 

previous case, a negative imaginary 𝑘3 makes no physical sense. This condition is 

called the hypercritical regime, when the incidence angle 𝜃 of the 𝒌𝑓 wave is larger than 

the critical angle 𝜃𝐽𝑙𝑖𝑚
. 

Assuming that the FRP material is elastic, attenuation is not considered, and 

therefore the 𝒌𝐽 should be a real number. However, according to the generalized Snell’s 

law, for angles larger than 𝜃𝐽𝑙𝑖𝑚
, the 𝒌𝐽 waves attenuate with a damping vector 𝒌𝐽

′′ for 

the direction of axis 3 [Hosten 1991]. At angles larger than 𝜃𝐽𝑙𝑖𝑚
 the refracted waves 

become evanescent [Deschamps 1996] So, for the hypercritical regime, Eq. (3-3) 

becomes 

𝒌𝐽
∗ = 𝒌𝐽 − 𝑖𝒌𝐽

′′ = 𝑘𝐽1𝒙1 − 𝑖𝑘𝐽3
′′ 𝒙3 (3-6) 

The polarization vectors 𝑷𝐽 are obtained as eigenvectors solving the eigenvalue 

problem from Eq. (3-2) [Hosten 1991]. For the subcritical regime we have 

𝑃3 = −Γ𝐽31𝑃𝐽1/Γ𝐽33 (3-7) 

and for the hypercritical regime 

𝑃𝐽3 = 𝑖Γ𝐽31𝑃𝐽1/Γ𝐽33 (3-8) 

where 𝑃𝐽3 is the component of polarization vector of the 𝐽 wave in the 3 

direction and Γ𝐽𝑖𝑗 is the 𝑖𝑗 element of the tensor matrix for the 𝐽 refracted wave. The 𝑃𝐽1 

component of the polarization vector is normalized [Hosten 1991]. In the subcritical 

regime, both 𝒌𝐽 and 𝑷𝐽 are vectors of real numbers, but in the hypercritical regime both 

𝒌𝐽
∗ and 𝑷𝐽

∗ are vectors of complex numbers.  

To model the transfer matrix the displacement and stress vectores in the lower 

boundary (+ superscript) of the plate are defined. The displacement vector in the 1 and 

3 axes is 𝒖𝑛
+ = [𝑢𝑛

+, 𝑤𝑛
+]𝑇 and the strees vector is 𝝈𝑛

+ = [𝜎𝑛
+, 𝜏𝑛

+]𝑇 . The amplitude 

vectors of the refracted wave in the upper (− superscript) and lower  boundaries are 
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defined as 𝒂𝑛
− = [𝑎𝑛

−, 𝑐𝑛
−]𝑇 and 𝒂𝑛

+ = [𝑎𝑛
+, 𝑐𝑛

+]𝑇 respectively. To obtain the transfer 

matrix of a layer with thickness 𝑑, the matrix that links the displacements and stresses at 

upper and lower interfaces of the layer is considered [Hosten 1993b]: 

[
𝒖𝑛

+

𝝈𝑛
+] = [𝑇]𝑛 [

𝒂𝑛
+

𝒂𝑛
−] =

[
 
 
 
 
𝑃𝑙1𝑅 𝑃𝑠1𝑄 𝑃𝑙1𝑅

−1 𝑃𝑠1𝑄
−1

𝑃𝑙3𝑅 𝑃𝑠3𝑄 −𝑃𝑙3𝑅
−1 −𝑃𝑠3𝑄

−1

𝑖𝑎1𝑅 𝑖𝑎2𝑄 𝑖𝑎1𝑅
−1 𝑖𝑎2𝑄

−1

𝑖𝑎4𝑅 𝑖𝑎5𝑄 −𝑖𝑎4𝑅
−1 −𝑖𝑎5𝑄

−1]
 
 
 
 

[
𝒂𝑛

+

𝒂𝑛
−] (3-9) 

where 𝑅 = 𝑒−𝑖𝑘𝑙𝑑; 𝑄 = 𝑒−𝑖𝑘𝑠𝑑, 𝑑 = 𝑑𝑛 − 𝑑𝑛−1 and 𝑎1, 𝑎2, 𝑎4 and 𝑎5 are 

coefficients dependent on the properties of the layer (stiffness [𝐶𝑖𝑗] and thickness 𝑑) and 

those of the refracted waves (polarization vector 𝑷𝐽 and wavenumber 𝒌𝐽). 

Eq. (3-9) can also be expressed as [𝑆]𝑛
+ = [𝑇]𝑛[𝑉]𝑛, where [𝑆]𝑛

+ is the 

displacement and stress vector in the lower boundary of a 𝑛-layer and [𝑉]𝑛 is the 

amplitude vector. Assuming [𝑉]𝑛 to be constant for the 𝑛-layer [Hosten 1993b], and 

consequently [𝑆]𝑛
− = [𝐸]𝑛[𝑉]𝑛, where [𝑆]𝑛

− is the displacement and stress vector in the 

lower boundary of the 𝑛-layer. The matrix [𝐸]𝑛 is equal to [𝑇]𝑛, but the 𝑅 and 𝑄 terms 

are 1 [Hosten 1993b]. Thus, the transfer matrix [𝐴]𝑛 for the 𝑛-layer can be obtained as 

follows: 

[𝑆]𝑛
+ = [𝑇]𝑛[𝐸]𝑛

−1[𝑆]𝑛
− (3-10) 

[𝐴]𝑛 = [𝑇]𝑛[𝐸]𝑛
−1 

(3-11) 

[𝑆]𝑛
+ = [𝐴]𝑛[𝑆]𝑛

− 
(3-12) 

To calculate the transfer matrix for an 𝑁-layer material ([𝐴]𝑁) the continuity of 

displacements and stresses in the different layers (𝑛 and 𝑛-1) is considered: 

[𝑆]𝑛
+ = [𝑆]𝑛−1

−  (3-13) 

then [𝐴]𝑁 can be expressed as [Hosten 1993b]: 

[𝐴]𝑁 = ∏[𝐴]𝑛

𝑁−1

𝑛=0

 (3-14) 

With this multilayer transfer matrix, the dispersion curves of the LLW for a 

composite material can be obtained, by establishing the boundary conditions for a plate. 

The displacements at the upper and lower boundaries of the 𝑁-layer plate are the same 

(𝒖0
− = 𝒖𝑁−1

+ = 𝒖) and the stresses are zero (𝝈0
− = 𝝈𝑁−1

+ = 𝟎). Thus Eq. (3-12) can be 

rewritten as follows [Castaings 2003]: 
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[
𝒖
𝟎
] = [𝐴]𝑁 [

𝒖
𝟎
] (3-15) 

To ensure that Eq. (3-15) has non-trivial solutions, and therefore LLW 

propagate, det ([𝐴]𝑁) = 0 must be fulfilled. The 𝒌𝑓 waves that fulfil the condition will 

propagate LLW in the composite plate. 

3.1.2 Stiffness matrix method 

TMM is fast and efficient, but it becomes numerically unstable at large 

frequency-thickness values [Castaings 1994]. This instability is known as “small 

differences of large numbers” [Giurgiutiu 2015]. The SMM was developed to overcome 

TMM associated instability problems [Wang 2001]. 

As TMM, SMM has two steps. First, the wavenumber 𝒌𝐽 [Wang 2001] and the 

polarization vectors 𝑷𝐽 are obtained. Then, the transfer matrix is obtained. For 

multilayer plates, another step is required to relate the transfer matrix of each layer. As 

in Section 3.1.1, only propagation in the principal axis 1 will be evaluated. 

Considering the wave propagating in the principal axis 1, two solutions for 𝑘3 

are obtained [Wang 2001]: 

𝑘𝐽3 = √(−𝐵 ± (𝐵2 − 4𝐴𝐶)1 2⁄ ) 2𝐴⁄  (3-16) 

where the – sign is for the 𝐽 refracted longitudinal wave and + is for the 𝐽 

refracted shear wave. 𝐴, 𝐵 and 𝐶 are coefficients dependent on the mechanical 

properties of the plate (stiffness 𝑪𝑖𝑗 and density 𝜌𝑠) and the refracted waves (angular 

frequency 𝜔 and wavenumber 𝑘𝐽1). 

The solution to Eq. (3-16) only has two solutions, while Eq. (3-5) has three 

solutions. To calculate the polarization vector 𝑷𝐽 Wang and Rokhlin proposed the 

following expression [Wang 2001]: 

𝑃𝐽3 =
𝜌𝑠𝜔

2 − 𝐶11𝑘1
2 − 𝐶55𝑘𝐽3

2

(𝐶13 + 𝐶55)𝑘1𝑘𝐽3
 (3-17) 

Yet, the main benefit of the SMM, regarding the TMM is how the transfer 

matrix is obtained. 

The displacement, stress and displacement vectors in the upper and lower 

boundaries are defined as in Section 3.1.1. In the SMM, the displacement and stress 

terms in equations Eq. (3-9) to Eq. (3-15) are rearranged, with the final objetive of 

eliminating the thickness term that is present in diagonal of [𝐴]𝑛 [Wang 2001]. The 

displacements in the upper and lower boundaries of the 𝑛-layer is related with the 

amplitude as 
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[
𝒖𝑛

−

𝒖𝑛
+] = [𝑇]𝑛

𝑢 [
𝒂𝑛

−

𝒂𝑛
+] =

[
 
 
 
𝑃𝑙1 𝑃𝑠1 𝑃𝑙1𝑅

−1 𝑃𝑠1𝑄
−1

𝑃𝑙3 𝑃𝑠3 −𝑃𝑙3𝑅
−1 −𝑃𝑠3𝑄

−1

𝑃𝑙1𝑅 𝑃𝑠1𝑄 𝑃𝑙1 𝑃𝑙1

𝑃𝑙3𝑅 𝑃𝑠3𝑄 −𝑃𝑙3 −𝑃𝑠3 ]
 
 
 
[
𝒂𝑛

−

𝒂𝑛
+] (3-18) 

and the stresses in the upper and lower boundaries as 

[
𝝈𝑛

−

𝝈𝑛
+] = [𝑇]𝑛

𝜎 [
𝒂𝑛

−

𝒂𝑛
+] =

[
 
 
 
𝑖𝑎1 𝑖𝑎2 𝑖𝑎1𝑅

−1 𝑖𝑎2𝑄
−1

𝑖𝑎4 𝑖𝑎5 −𝑖𝑎4𝑅
−1 −𝑖𝑎5𝑄

−1

𝑖𝑎1𝑅 𝑖𝑎2𝑄 𝑖𝑎1 𝑖𝑎2

𝑖𝑎4𝑅 𝑖𝑎5𝑄 −𝑖𝑎4 −𝑖𝑎5 ]
 
 
 
[
𝒂𝑛

−

𝒂𝑛
+] (3-19) 

Considering that the amplitudes [
𝒂𝑛

−

𝒂𝑛
+] have to be the same, from Eq. (3-18) and 

Eq. (3-19) the relationship between the displacements and stresses can be obtained: 

[
𝝈𝑛

−

𝝈𝑛
+] = [𝑇]𝑛

𝜎[𝑇]𝑛
𝑢−1

[
𝒖𝑛

−

𝒖𝑛
+] (3-20) 

[𝐾]𝑛 = [𝑇]𝑛
𝜎[𝑇]𝑛

𝑢−1
 (3-21) 

As it can be observed from Eq. (3-18) and Eq. (3-19), the stiffness matrix [𝐾]𝑛 

([𝐴]𝑛 for TMM), does not have the thickness term in its diagonal, which will keep the 

stiffness matrix as a regular matrix [Wang 2001]. 

For the multilayer plate, the case for two adjoining plates is considered, [𝐾]𝑛 

and [𝐾]𝑛−1: 

[
𝝈𝑛

−

𝝈𝑛
+] = [𝐾]𝑛 [

𝒖𝑛
−

𝒖𝑛
+] and [

𝝈𝑛−1
−

𝝈𝑛−1
+ ] = [𝐾]𝑛−1 [

𝒖𝑛−1
−

𝒖𝑛−1
+ ] (3-22) 

where 𝝈𝑛
+ = 𝝈𝑛−1

− , 𝒖𝑛
+ = 𝒖𝑛−1

− , [𝐾]11 to [𝐾]22 are 2x2 submatrices  

[𝐾]𝑛 = [
[𝐾]11

𝑛 [𝐾]12
𝑛

[𝐾]21
𝑛 [𝐾]22

𝑛 ] and [𝐾]𝑛−1 = [
[𝐾]11

𝑛−1 [𝐾]12
𝑛−1

[𝐾]21
𝑛−1 [𝐾]22

𝑛−1] (3-23) 

Excluding 𝝈𝑛
+ and 𝒖𝑛

+ in the first equation of Eq. (3-22) and substituting in the 

second of Eq. (3-22), 𝝈𝑛
− and 𝒖𝑛

− are related with 𝝈𝑛−1
+  and 𝒖𝑛−1

+ : 

[
𝝈𝑛

−

𝝈𝑛−1
+ ]

= [
[𝐾]11

𝑛 + [𝐾]21
𝑛 ([𝐾]11

𝑛−1 − [𝐾]22
𝑛 )−1[𝐾]12

𝑛 −[𝐾]21
𝑛 ([𝐾]11

𝑛−1 − [𝐾]22
𝑛 )−1[𝐾]21

𝑛−1

[𝐾]12
𝑛−1([𝐾]11

𝑛−1 − [𝐾]22
𝑛 )−1[𝐾]12

𝑛 [𝐾]22
𝑛−1 − [𝐾]12

𝑛−1([𝐾]11
𝑛−1 − [𝐾]22

𝑛 )−1[𝐾]21
𝑛−1] [

𝒖𝑛
−

𝒖𝑛−1
+ ] 

(3-24) 

By calculating Eq. (3-24) iteratively for each of the 𝑁-layers, the stiffness matrix 

[𝐾]𝑁 can be obtained, which will still be regular [Wang 2001]. 
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Following a similar procedure as in the TMM, based on the multilayer matrix 

[𝐾]𝑁 the dispersion curves for the LLW are obtained. The same boundary conditions as 

previously are considered with the displacement being equal at the boundaries and 

stresses zero: 

[
𝟎
𝟎
] = [𝐾]𝑛 [

𝒖
𝒖
] (3-25) 

As in the case for TMM for the cases that det ([𝐾]𝑁) = 0, the condition to 

propagate LLW will be fulfilled. 

3.1.3 Mixed TMM & SMM 

The SMM method presents a numerical problem at low wavenumbers and high 

frequency values [Kamal 2014]. When the wavenumber 𝑘𝑗3 for the principal axis is 

calculated in Eq. (3-16), the elements 𝐵 and 𝐶 are dependent on the angular frequency 

(𝜔). At high frequencies and low wavenumbers, the wavenumber 𝑘𝑗3 becomes purely 

imaginary, although the radical should never become negative for angles under the 

critical angle. 

In this thesis, a mixed TMM&SMM method is proposed to the limitations of 

both TMM and SMM. For the calculation of 𝒌𝐽 and 𝑷𝑗, eigenvectors and eigenvalues 

are calculated like in the TMM. However, for the transfer matrix calculation, the SMM 

is employed, to avoid instabilities at high frequency thickness values. 

3.2 Set-up and methodology 

3.2.1 Straight and curved composite plate 

To evaluate the elastic properties, a composite profile with a straight and a 

curved section manufactured by 3D-UV pultrusion process [Tena 2015] was used. The 

profile was a GFRP composite with unidirectional E-Glass rovin fiber with a VE 

matrix. Its thickness was 3 mm, its density 1940 kg/m
3
 and it had an omega shape in the 

thickness direction (Figure 3-3). The omega part had a straight plate-like section of 160 

mm x 25 mm. This section was measured over the range of 60 mm, with 0.6 mm steps, 

as it can be observed in Figure 3-4: Set-up for the measurement of the straight section.. 

The omega part also had a curved plate like section of 90º and with 190 mm radius in its 

furthermost face. This section was also measured over the curve range of 60 mm, which 

is a radial distance of 18.1º of angle, as can be observed in Figure 3-5.  
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Figure 3-3: Omega geometry. 

To measure the propagation of Lamb waves at different distances, two different 

set-ups were built for the straight and curved sections. It was necessary to use two 

different manipulators to displace the transducers, due to the different geometries of 

both sections. A lineal manipulator was used for the straight section and a rotational 

manipulator for the curved section. The electronic equipment used to generate and 

receive the US wave was also different in both set-ups. The common equipment for 

both set-ups included: two pairs of wideband piezocomposite transducers from 200 kHz 

to 400 kHz and 400 kHz to 800 kHz made at the CSIC; a goniometer to control the 

incidence angle of the US wave; and a 10 V/pC Femto HQA-15M-10T charge 

amplifier. 

For the straight section, apart from the aforementioned equipment, an Airtech 

1000 from Ingenieur-Büro Dr. Hillger was used as a manipulator. The USPC 4000 

AirTech, from the same company, was used to excite the transducers and to capture the 

data. The excitation signal was a train of square pulses with 1 to 20 pulses length and a 

voltage from 50 V to 200 V. Several pulse lengths and voltages were used for different 

measurements. For the transducer with the lowest frequency, 200 kHz to 400 kHz, a 

single pulse with the highest voltage, 200 V, could excite all of the frequency range of 

the transducer. At higher frequencies with the other transducers, 400 kHz to 800 kHz, a 

single pulse could only excite the lowest frequencies, up to 550 kHz. The higher 

frequency transducers where more efficient at their lowest working frequency, which 

required longer train pulses, of up to 20 pulses, to ensure that the highest frequencies, 

550 kHz to 750 kHz, were propagated and measured. The excitation voltage was 

reduced from 200 V to 50 V since high voltages were not necessary. 

For the curved section, an A3200 manipulator from Aerotech was used to 

displace the transducer rotationally. A HP 33120A signal generator and a Falco-WMA-

300 power amplifier were used to excite the transducers. A Tektronix MDO4104-B 

oscilloscope was used to capture the signals. The excitation signal used was the same as 

for the straight section, however, the minimum voltage used was 100 V instead of 50 V. 

A higher than 50 V signal was necessary due to a worse coupling of the wave in the 

curved section. 
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Figure 3-4: Set-up for the measurement of the straight section. 

 

 

Figure 3-5: Set-up for the measurement of the curved section. 

To obtain the dispersion curves of the straight and curved section a 2-

dimensional fast Fourier transform (2D-FFT) was carried out [Alleyne 1990]. The 

results of the 2D-FFT where later compared with the theoretical dispersion curves 

obtained with the mixed TMM&SMM model, explained in Section 3.1.3. The elastic 

properties of the GFRP were initially approximated [Castaings 2004]. For curvatures 

with wide radius over 100 mm radius, which is the case for the GFRP plate, the same 

TMM model can be used for the straight and curved sections [Fong 2005]. 

3.2.2 Transducer efficiency: geometry and multimode generation 

The generation of guided waves in solids with ACUS has proved to be a task 

that requires high precision in the choice of incidence angle [Castaings 1996]. Selecting 

this angle is not always a simple task when either the approximate material properties 

are unknown or the shape of the surface is curved.  

In straight plates, an unfocused transducer generates a single incidence angle in 

the surface of the plate. To generate multiple incidence angles with an unfocused 

transducer it is necessary to change the angle of the transducer. Therefore, to generate 
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multiple modes with different velocities it is necessary to make several measurements at 

different angles. A focused transducer, unlike the unfocused one, generates multiple 

incidence angles in the surface of the plate [Giacchetta 2015]. Since multiples incidence 

angles are generated simultaneously, there is no need to move the transducer to generate 

this effect. With focused transducers, several modes can theoretically be generated in 

the straight plate. 

In curved plates, the shape of the surface causes the incident wave to behave 

differently than for straight plates. With unfocused transducers, unlike for the straight 

plate, multiple incidence angles are generated in the surface of the curved plate. The 

curvature causes the incident plane wave to scatter into different incident angles in each 

of the infinitesimal sections of the curve. This way, several incidence angles can be 

generated from a single incident plane wave. With focused transducers, the behavior of 

the wave with the surface is the same, the only difference being that the incident wave 

could already generate multiple incidence angles. 

On the one hand, generating multiple incidence angles simultaneously could be 

beneficial, since several modes could be simultaneously excited. On the other hand, the 

scattered incidence angles also disperse the energy of the US wave into each of the 

incident angles. With a technique like ACUS, dispersing the energy in the form of 

useful and non-useful incidence angles may cause an inability to measure any signal at 

all. This means that evaluating the efficiency in generating several modes is necessary. 

First, it is necessary to evaluate the efficiency of each of the transducers 

independently in order to be able to make a comparison between them, since different 

transducers have different efficiency transducing waves into the air. In order to measure 

the efficiency of the transducers, a set-up was built to measure their sensitivity in a 

simple pulse echo. The sensitivity was calculated dividing the input voltage with the 

output voltage, to obtain the relationship between input and output. This was later 

simply transformed into dB. The transducers where placed at a distance of 50 mm from 

a thick wood block, used just as the reflective boundary for the waves propagating 

through the air, with a normal incidence angle. The distance of 50 mm is the focal 

distance of the focused transducers. The transducers used where the NCG200-D19, 

NCG200-D19-P50 and NCG500-D19-P50 from ULTRAN and a previously described 

pair from the CSIC. Second, to measure the efficiency in generating and measuring 

guided waves, the same set-up as in Section 3.2.1 was used for the straight and curved 

sections. 

In addition to the fully ACUS measurements, hybrid ACUS-LUS measurements 

were carried out, showed in Figure 3-6. LUS is advantageous when the objective is 

trying to measure several modes, since its efficiency does not depend on the incidence 

angle like ACUS. The LUS measurements were carried out with a Polytec PSV-500-

3D, a 3-dimensional laser Doppler vibrometer (3D-LDV). The 3D-LDV measures the 

velocity of the vibration of the surface of the material in the three axes. Some modes are 

more present a higher displacement in different directions (propagation, thickness…), as 
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it is later observed in Section 3.3.2, where the use of a 3D-LDV, as opposed to a 1D-

LDV, is advantageous. Another advantage of the LDV is the possibility to obtain an 

image of the area of the plate, either the straight or the curved section. The propagation 

of different waves can be observed along each section. The 3D-LDV, however, is a 

costly equipment that requires high precision in the location of the plate. The 

measurement points in the plate are calibrated once, a process that is done manually, 

and the position of the plate must be kept fixed. In processes where this changes, this is 

a limitation. 

 
 

Figure 3-6: Set-up for the measurement of the straight and curved section with the 3D-

LDV. 

3.3 Results 

3.3.1 Straight and curved composite plate 

The results for the propagated LLW for the straight and curved sections can be 

observed in the Figure 3-7 (a) and Figure 3-7 (b) respectively. Measurements made with 

different train pulses at different frequencies were put together in the observable range 

of 200 kHz to 750 kHz. 

In Figure 3-7, the modes with different phase velocities were measured changing 

the angle of the goniometer and the train pulse length. The A0 mode in both Figure 3-7 

(a) and Figure 3-7 (b), which is the lowest order mode, has almost constant velocity, 

less than 5% change, along the measurement range. This means that the A0 mode was 

measured at a fixed incidence angle, close to 9º, in the whole range. The S0 mode, the 

second lowest order mode, reduces its velocity more than 40%. This has a direct effect 

in the incidence angle, which changes from close to 4º at the highest velocity to close to 

7.5º at the lowest measured. The A1 mode was also measured and can be observed in 

Figure 3-7. Despite different modes usually having different velocities and incidence 
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angles, that is not always the case. For example, when the velocity is the same or the 

incidence angles are close to each other, around 1º difference, it is possible to 

simultaneously measure multiple modes. This is the case for the A1 mode, which was 

simultaneously measured with the S0 n the 400 kHz to 750 kHz range. Thanks to the 

wide bandwidth of the transducers, several modes with the same velocities could be 

simultaneously measured. 

To enhance the captured signals, due to the non-homogeneous transmission 

efficiency of the transducers over their working range of 200 kHz to 400 kHz and 

400 kHz to 800 kHz, the dispersion curves where normalized. Each measurement that 

was carried out, for each mode and frequency range, was normalized with respect to its 

maximum voltage. This was done over short frequency ranges of 10 kHz and 25 kHz, to 

avoid the aforementioned transducer effect. To reduce the noise that arouse from the 

measurements, the data under 50% of the maximum amplitude was considered as zero. 

For the curved plate, Figure 3-7 (b), the measured LLW was not as efficient as for the 

straight section, due to angle scattering, which can be observed to be noisier than the 

straight plate, Figure 3-7 (a). 

The experimental curves were fitted with the analytical dispersion curves 

calculated with the TMM&SMM mixed model. The initial approximation of the 

orthotropic elastic properties for the GFRP were taken from [Castaings 2004]. The 

estimated values of the properties for both sections are presented in Table 3-1. 

Observing the dispersion curves calculated with the model and the measured from the 

GFRP, a difference in the dispersion curves for the straight and curved plate can be 

observed. This difference can be observed at the frequency at which the velocity of the 

S0 mode changes. The frequency for this initial change is around 525 kHz for the 

straight plate, whilst it is at around 575 kHz for the curved section. This difference was 

not expected for this curve radius, since the behavior of Lamb waves should be equal 

[Fong 2005]. However, a simple test measuring the thickness showed the cause for such 

a disparity. The thickness of the straight and curved were not equal, with 6.66% 

thickness difference. This variation of 0.2 mm thinner thickness in the curved section, 

whilst in the range of acceptance for the manufactured part, can cause a huge difference 

in the estimated properties with guided waves. The calculated curve in Figure 3-7 (b) 

already includes this difference in the thickness. With the corrected part thickness for 

the curved section, Table 3-1 shows very small differences in the properties of the 

straight and curved sections. These differences might be caused by many reasons, like 

small differences in local density that may have been present in between both areas. 

This would not be far from what would be expected since less resin with the same 

amount of fiber would alter the density of the section. 
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(a) (b) 

Figure 3-7: Lamb wave measured and calculated dispersion curves of the straight (a) 

and curved (b) sections of the part. 

Table 3-1: Fitted elastic properties for the main direction of the plates. 

Section 
Thickness 

(mm) 

Density 

(kg/m
3
) 

𝑪𝟏𝟏 

(GPa) 

𝑪𝟏𝟑 

(GPa) 

𝑪𝟑𝟑 

(GPa) 

𝑪𝟓𝟓 

(GPa) 

Straight 3 1900 49.8 9.1 24.2 6.3 

Curved 2.8 1900 50.3 9.3 24.3 6.6 

 

3.3.2 Transducer efficiency: geometry and multimode generation 

To evaluate the efficiency of transducers with difference geometry, four pairs of 

piezocomposite transducers were tested. The transducers sensitivity at their resonance 

frequency is presented in Table 3-2. The NCG200 focused and unfocused transducers 

were evaluated at their main resonance frequency of 200 kHz. It can be observed from 

the sensitivity result that the unfocused transducers show 4-5 dB higher transmission 

rate at their resonance frequency. The CSIC-300 and NCG500 were tested at 300 kHz, 

since that was their peak resonance frequencies. It can be observed quite a difference 

between both the transducers in the efficiency range, since the CSIC transducers 

showed 22-24 dB improvement compared to the focused ULTRAN ones. The 

difference in sensitivity was also quite meaningful comparing it with those at 200 kHz, 

with a minimum of 11 dB. 

Observing the results of the four pairs of transducers in Table 3-2, an important 

detail is observable regarding their resonance frequency. Despite expecting their 

resonance to be fixed at 200 or 300 kHz, the resonance frequencies had a variation of up 
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to 15%. This is usually done in wideband transducers to widen the frequency band. 

Instead of having a single transducer with a wider resonance band, since that reduces 

the efficiency, each transducer from the pair resonates at a slightly difference 

frequencies, which increases the bandwidth. 

Table 3-2: Sensitivity of the evaluated piezocomposite transducers in pulse-echo. 

Excitation 

frequency 

(kHz) 

Manufacturer Model 
Serial 

Number 

Resonance 

frequency 

(kHz) 

Sensitivity 

(dB) 

200 kHz ULTRAN 

NCG200-

D19 

350317 232 -41 

350318* 174 -40 

NCG200-

D19-P50 

350350* 207 -45 

350351 175 -45 

300 kHz 

CSIC CSIC-300 

170
*
 278 -29 

171 287 -29 

ULTRAN 
NCG500-

D19-P50 

290423 333 -53 

290424* 340 -51 

*
 Used as transmitter to evaluated the efficiency measuring guided modes. 

To analyze the efficiency to propagate guided waves, two different incidence 

angles were tested: 9º, to excite the A0 mode; and 0º, to test if any mode could be 

excited with the focused or unfocused transducers. In order to test the efficiency 

generating guided waves, the transducers in Table 3-2 were tested for the two incidence 

angle scenarios. The transducers with the asterisk in Table 3-2 where used as 

transmitters, while the rest were used as receivers. The focused and unfocused 

transducers from ULTRAN where mixed for the test at 200 kHz and the focused 

ULTRAN and unfocused CSIC transducers where mixed for the 300 kHz test. The 

combinations of transmitter and receiver transducer can be observed in Table 3-3 and 

Table 3-4. The transducers from different manufacturers and different geometries where 

combined to test whether if combining them would provide any advantage, like 

multimode measurement or improved sensitivity. 
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For the measurements at 0º incidence angle, or normal incidence angle, no 

guided mode was measurable. No mode was measurable with any combination of 

transducers, not even the S0 mode that is generated at around 4º, as seen in Section 

3.3.1. The focused transducers either don’t have enough aperture to be able to excite 

angles where LLW are generated or the energy is scattered so much that the transducers 

are not sensitive enough. The inability to measure anything at a normal angle, even with 

focused transducers, reduces the possibility of using ACUS without any knowledge on 

the material properties or the angles where LLW are excited. 

At 9º incidence angle, as would be expected from the measurements in Section 

3.3.1, the A0 could be measured with all the transducer combinations. The normalized 

results for the different transducer combinations are shown in Table 3-3 and Table 3-4. 

The results where normalized at 0 dB for each of the receiver pair. Observing the results 

of the transmission efficiency measured for the A0 mode, the non-focused transducers 

were always the most efficient. Since the energy is not scattered over a range of 

incidence angles, this is the expected behavior. According to the results for the straight 

plate, Table 3-3, it can be observed that the difference in the transmission efficiency 

between the focused and the unfocused ULTRAN transducers is between 1 dB to 3 dB. 

To calculate this difference, the difference in transducer sensitivity was compensated 

from Table 3-2 (+2 dB for the focused 200 kHz transducer and +12 dB for the focused 

300 kHz transducer). The transmission efficiency for ACUS transducer was observed to 

be inhomogeneous over their working range, in Section 3.3.1. This implies that 

analyzing the efficiency to generate LLW, the transducer resonance frequency needs to 

be taken into account. The resonance frequency for each transducer, shown in Table 

3-2, differs up to 15% from the theoretical one. Since transmission efficient is uneven 

over the working frequency range, when the resonance frequency of the transmitter and 

receiver are close to each other, the efficiency should be increased. The resonance 

frequency difference causes the difference from the non-focused and focused to be 

reduced under certain circumstances. Observing for the test at 300 kHz, in Table 3-3, 

this effect can be observed much clearly. The resonance frequencies of the CSIC and 

ULTRAN transducers differ up to 68 kHz, whilst less than 10 kHz from their own pair. 

The unfocused transducers show a higher transmission rate, even with the correction of 

their sensitivity. Using the CSIC transducers as transmitter and receiver the difference is 

up to 47 dB better than using the CSIC as transmitter and the ULTRAN as receiver. 

However, the difference falls to only 8 dB in when the transmitter used is from 

ULTRAN. Since the difference in the resonance frequency of the ULTRAN and CSIC 

transducers is of almost 20%, the efficiency of the transmission between the same pair 

is enhanced. 

Comparing the results at the curved section, in Table 3-4, the differences in 

efficiency were smaller between the focused and unfocused transducers than in the 

straight section. In the case of the measurements at 200 kHz, the focused and unfocused 

transducers were virtually identically efficient. The similarity may also be due to the 

resonance frequency differences. For the measurements at 300 kHz, the difference is 
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almost as high as for the straight section, with 38 dB better transmission for the 

unfocused transducers. The smaller difference in efficiency compared with the straight 

plate might be related to the geometry of the plate and the behavior of the plane wave 

that in incident to the surface. Since a curved section generated multiple incidence 

angles in its surface with the plane wave, the energy is dispersed into various angles. 

Since this dispersion only happens in the curved section for unfocused transducers, it 

would be expected for their efficiency to be reduced. For the focused transducers, on the 

other hand, since the wave had already multiple angle components, this effect is not so 

noticeable. In fact, it was observed the focused transducer, in the same way of 

unfocused transducers, required to be placed with the adequate incidence angle, 9º in 

the A0 case. When the angle was slightly changed, the efficiency sharply fell, which 

may explain why nothing was observable at normal incidence. 

Table 3-3: Normalized transmission efficiency of guided modes in the straight 

section. 

Transducer 

(200 kHz) 

NCG200-

D19 (dB) 

NCG200-

D19-P50 

(dB) 

Transducer 

(300 kHz) 

CSIC-300 

(dB) 

NCG500-

D19-P50 

(dB) 

NCG200-

D19 
0 -3 CSIC-300 0 -47 

NCG200-

D19-P50 
0 -1 

NCG500-

D19-P50 
0 -8 

Table 3-4: Normalized transmission efficiency of guided modes in the curved 

section. 

Transducer 

(200 kHz) 

NCG200-

D19 (dB) 

NCG200-

D19-P50 

(dB) 

Transducer 

(300 kHz) 

CSIC-300 

(dB) 

NCG500-

D19-P50 

(dB) 

NCG200-

D19 
0 -1 CSIC-300 0 -38 

NCG200-

D19-P50 
0 0 

NCG500-

D19-P50 
0 -6 

With the use of the focused or unfocused transducers, modes with different 

velocities could not be simultaneously measured. The results showed that the reason for 

not being able to measure more than one LLW mode might be the low efficiency in 

both generating and measuring them out of their incidence angles. The hybrid ACUS 

and 3D-LDV was used to test whether several modes were simultaneously generated in 

the straight or curved section. The results of the measurement are shown in Figure 3-8. 
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Figure 3-8 (a) shows the displacement in the propagation direction of the guided waves 

in the curved section. Figure 3-8 (b) shows the displacement in the thickness direction 

of the guided waves in the curved section. Figure 3-8 (c) shows the displacement in the 

propagation direction of the guided waves in the straight section. Figure 3-8 (d) shows 

the displacement in the thickness direction of the guided waves in the straight section. 

  

(a) (b) 

  

(c) (d) 

Figure 3-8: Laser measurement of the simultaneous generation of Lamb modes with 

different velocities in the curved (a,b) and straight (c,d) sections: displacement in 

propagation direction (a,c) and in the thickness direction (b,d). 

In Figure 3-8 (a), most clearly, and (b) and (c), less clearly, two guided modes 

can be observed. The measurements of multiple modes with different velocities proves 

that, in fact, several modes can be generated simultaneously. These two modes, the A0 

and S0, show not only different velocities but also different amplitudes. The difference 

in amplitude is related to the attenuation of each mode at a certain frequency, as well as 

the different efficiency in generating each mode. If several modes with different 
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velocities are generated, it means that the energy is dispersed into different incidence 

angles. Since ACUS requires such high sensitivity for the transducers, dissipating the 

energy does not allow measuring several modes simultaneously. The LDV, compared 

with ACUS, is more sensitive, since it avoids the transmission losses present at the 

interface of the plate and the ACUS transducer itself. Moreover, in the case of the 3D-

LDV, it is sensitive to the plate displacement in the three axes. This is important since 

the different Lamb wave modes displace in different direction. In Figure 3-8 (a) and (b), 

the difference in the particle displacement velocity can be observed for the S0 mode. 

The S0 mode presents a higher amplitude in Figure 3-8 (a) than it does in Figure 3-8 

(b). In fact, in the straight section, Figure 3-8 (c) and (d), this difference is still more 

clearly observable. In Figure 3-8 (c), the S0 mode can be observed and measured whilst, 

in Figure 3-8 (d), it is not. 

3.4 Conclusions 

In this chapter, the effect of the curvature in the guided waves velocity and the 

efficiency to generate LLW has been theoretically and experimentally evaluated with 

ACUS and 3D-LDV.  

For both sections of the GFRP profile, the straight and the curved sections, the 

dispersion curves could be obtained over a wide range, from 200 kHz to 800 kHz. The 

straight section showed better transmission than the curved section. The dispersion 

curves for the straight and curved section were calculated with the TMM&SMM mixed 

method, which provided the same results for material properties. The radius of 190 mm 

of the curved section of the GFRP plate showed no difference in the behavior compared 

with the straight section. It was observed, however, that changes in the thickness of less 

than 7%, which might be in the acceptable range for the material, has a far greater effect 

on the LLW than the curvature.  

Comparing focused and unfocused transducers, unfocused transducers showed to 

be more efficient. Comparing the efficiency to generate guided waves, however, fitting 

the resonance frequency of the transducers showed to be most critical. Fitting the 

frequency improved the efficiency of the transducers up to 39 dB. The use of focused 

transducer did not provide any benefit in order to generate multiple modes. No modes 

could be generated if normal transmission incidence angle, which would have been 

most useful. Moreover, the transduction efficiency of focused transducers was observed 

to decrease if the incidence angle was varied from the same used for unfocused 

transducers.  

With the ACUS set-up LLW with different velocities were not measurable. 

However, with the use of a hybrid ACUS and 3D-LDV, modes with different velocities 

were measurable. The measurements made with the 3D-LDV showed that, indeed, 

several modes were generated in the plate, both in the straight and curved sections. The 

loss in efficiency due to incidence angle misplacement of ACUS transducers and the 

requirement to measure efficiently from various angles prevents it. 
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The 3D-LDV presents clear improvements in sensitivity with respect to ACUS, 

although it can only be used as a receiver. LDV, specifically the 3D-LDV, measures all 

the vibrations in the surface of the material, independently of the velocity or frequency, 

as long as it is inside of the measurement range. However, this advantage is also a 

disadvantage for small plates. In small plates, the reflection of the wave in the edges is 

also measured and could lead to noisy measurements. In the case of the ACUS, this 

noise is greatly limited, because the angle at which the ultrasonic waves are leaking into 

the air is different from the angle of the transducer. The inability to measure waves with 

different velocities and directions with ACUS is an advantage in some applications. 
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Chapter 4 

Monitoring the thermal curing of a GFRP 

with ACUS 

The third goal of this thesis is to evaluate the properties of composite materials 

during curing without contact. Due to the complexity of composite materials and the 

inability to always access through both sides, inspection methods that are single-sided 

and can be applied for anisotropic materials are necessary. In this chapter, the use of 

LLW to monitor the cure process of a GFRP is evaluated. The first section focuses on 

the theoretical background to model the composite material and simplify its anisotropy. 

The second section presents the set-up and methodology used. The third section 

presents the results, whilst the last one shows the conclusions.  

4.1 Theoretical background 

4.1.1 Micromechanics 

Modelling the properties of composite materials can be quite difficult due to 

their anisotropy. Since FRPs have orthotropic anisotropy at most, the anisotropy level is 

reduced. This orthotropic anisotropy is defined by nine stiffness tensors that are 

dependent on the directional properties of the composite. Directly measuring all of those 

nine tensors with US testing requires measurements in the different directions and in 

some cases that is not possible. For example, when the part has a plate like geometry, 

measuring the properties of the fiber direction cannot be directly done, since the 

transducer size can be bigger than the thickness. Luckily, for FRP materials, the 

orthotropic anisotropy can be further simplified, assuming a micromechanical model 

which consists of a combination of the resin and the fiber [Minakuchi 2016]. With this 

model, which is used for unidirectional fiber in this case, the directional properties of 

the composite are dependent on the resin and fiber separately. This model is of special 

interest in cases like cure monitoring of an FRP. During curing, the properties of the 

whole composite are changing, but in reality, only the properties of the resin change, 

since the fiber stays the same. The resin is an isotropic material and the fiber brings the 

orthotropic anisotropy into the composite material. If the properties of the fiber and the 

resin are known, the directional elastic Young’s modulus (𝐸), shear modulus (𝐺) and 

Poisson’s ratio (𝜈) of an unidirectional FRP are defined as [Minakuchi 2016]: 

𝐸1 = 𝐸1𝑓
𝑉𝑓 + 𝐸𝑚(1 − 𝑉𝑓) +

4𝑉𝑓𝑘𝑓𝑘𝑚𝐺𝑚(1 − 𝑉𝑓) (𝜈𝑚 − 𝜈12𝑓
)
2

𝑘𝑚(𝑘𝑓 + 𝐺𝑚) + 𝐺𝑚𝑉𝑓(𝑘𝑓 − 𝑘𝑚)
 (4-1) 
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𝐸2 = 𝐸3 =
1

(1 4𝑘𝑇⁄ ) + (1 4𝐺23⁄ ) + (𝜈12
2 𝐸1⁄ )

 (4-2) 

𝐺12 = 𝐺13 = 𝐺𝑚

𝐺12𝑓
+ 𝐺𝑚 + 𝑉𝑓(𝐺12𝑓

− 𝐺𝑚)

𝐺12𝑓
+ 𝐺𝑚 − 𝑉𝑓(𝐺12𝑓

− 𝐺𝑚)
 (4-3) 

𝐺23 = 𝐺𝑚

𝑘𝑚 (𝐺𝑚 + 𝐺23𝑓
) + 2𝐺23𝑓

𝐺𝑚 + 𝑉𝑓𝑘𝑚 (𝐺23𝑓
− 𝐺𝑚)

𝑘𝑚 (𝐺23𝑓
+ 𝐺𝑚) + 2𝐺23𝑓

𝐺𝑚 − 𝑉𝑓(𝑘𝑚 + 2𝐺𝑚) (𝐺23𝑓
− 𝐺𝑚)

 
(4-4) 

𝜈12 = 𝜈13 = 𝜈12𝑓
𝑉𝑓 + 𝜈𝑚(1 − 𝑉𝑓) +

𝑉𝑓𝐺𝑚 (𝜈𝑚 − 𝜈12𝑓
) (𝑘𝑚 − 𝑘𝑓)

𝑘𝑚(𝑘𝑓 + 𝐺𝑚) + 𝑉𝑓𝐺𝑚(𝑘𝑓 − 𝑘𝑚)
 

(4-5) 

𝜈23 = 1 − (𝐸2 2𝑘𝑇⁄ ) − (2𝐸2𝜈12
2 𝐸1⁄ ) (4-6) 

where 

𝐺𝑚 =
𝐸𝑚

2(1 + 𝜈𝑚)
 (4-7) 

𝐺23𝑓
=

𝐸3𝑓

2 (1 + 𝜈23𝑓
)
 (4-8) 

𝑘𝑚 =
𝐸𝑚

2(1 − 𝜈𝑚 − 2𝜈𝑚
2 )

 (4-9) 

𝑘𝑓 =
𝐸3𝑓

2 (1 − 𝜈23𝑓
− 𝜈23𝑓

2 )
 (4-10) 

𝑘𝑇 =
𝑘𝑚(𝑘𝑓 + 𝐺𝑚) + 𝑉𝑓𝐺𝑚(𝑘𝑓 − 𝑘𝑚)

(𝑘𝑓 + 𝐺𝑚) − 𝑉𝑓(𝑘𝑓 − 𝑘𝑚)
 (4-11) 

where 𝑉𝑓 is the fiber volume content of the FRP and subscripts 𝑓 and 𝑚 refer to 

the fiber and resin respectively. The subscript numbers (1,2,3) represent the direction of 

the material properties, where 1 represents the direction of the fibers, and 2 and 3 are the 

transverse directions. These properties are related to the orthotropic elastic tensor as 

[ABAQUS 2009]: 

𝐶11 = 𝐸1(1 − 𝜈23𝜈32)Υ 
(4-12) 

𝐶22 = 𝐸2(1 − 𝜈13𝜈31)Υ 
(4-13) 
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𝐶33 = 𝐸3(1 − 𝜈12𝜈21)Υ 
(4-14) 

𝐶12 = 𝐸1(𝜈21 − 𝜈31𝜈23)Υ 
(4-15) 

𝐶13 = 𝐸1(𝜈31 − 𝜈21𝜈32)Υ 
(4-16) 

𝐶23 = 𝐸2(𝜈32 − 𝜈12𝜈31)Υ 
(4-17) 

𝐶44 = 𝐺12 
(4-18) 

𝐶55 = 𝐺13 
(4-19) 

𝐶66 = 𝐺23 
(4-20) 

where 

Υ = 1 (1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈31𝜈13 − 2𝜈12𝜈32𝜈13)⁄  
(4-21) 

𝜈ij 𝐸𝑖⁄ = 𝜈𝑗𝑖 𝐸𝑗⁄  
(4-22) 

where 𝑖, 𝑗 = 1,2,3. 

Using the micromechanics model from Eq. (4-1) to (4-11), there are only two 

unknowns to define during curing, 𝐸𝑚 and 𝜈𝑚, instead of the nine of a completely 

unknown orthotropic material. 

4.1.2 Mixed TMM & SMM 

To model the LLW curves, the micromechanical model in Section 4.1.1 is used, 

where the material is orthotropic, but only has 𝐸𝑚 and 𝜈𝑚 as unknowns. The mixed 

TMM&SMM shown in Section 3.1.3. is used, without further change in the model but 

the way the matrix [𝐶𝑖𝑗] is obtained. During curing, to calculate the dispersion curves of 

the LLW, the matrix [𝐶𝑖𝑗] is adapted and the LLW calculated with the mixed 

TMM&SMM. 

4.2 Set-up and methodology 

To monitor the evolution of the orthotropic elastic properties, three GFRP plates 

consisting of eight quasi-unidirectional glass fiber layers were manually impregnated 

with VE resin provided by Irurena S.A (IRUVIOL GFR-17 without photo-initiators). 

Three plates where evaluated to ensure the repeatability of the measurements. Due to 

the manual impregnation and lack of a mold, the thickness of the plates varied between 

3 and 3.4 mm. The resin was accelerated for a resin cure time of five hours at room 

temperature. After the curing process, a postcure at 100 ºC for one hour was carried out. 
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Under the GFRP plate a thin, 0.03 mm, plastic sheet was placed. This sheet prevents the 

coupling of mechanical waves between the GFRP plate and the structure under it. In 

addition, since the thickness of the plastic film is less than 1% of the thickness of the 

plate, its effect on the LLW is negligible. The evolution of the curing degree was 

characterized with a differential scanning calorimeter (DSC) from Mettler Toledo. 

To estimate the elastic properties of the FRP material during the curing process, 

the set-up shown in Figure 4-1 was used. A set-up that consisted of a fully ACUS 

measurement and a hybrid ACUS-contact US measurement was used. For the fully 

ACUS, a pair of broadband ACUS transducers with a working range of 200 to 400 kHz 

manufactured at the CSIC, the same used in Chapter 3, where placed in pitch catch. For 

the hybrid ACUS-contact, the ACUS transducers was used as a generator and a piezo 

disc (referred as PZT from now on) was placed in contact with the FRP as a receiver. 

The ACUS transducers were placed at an oblique and constant angle of 4.5º ± 0.5º 

during the whole curing process. This angle was selected according to the results of 

Section 4.3.1, in order to excite the S0 and A1 modes. To drive the transducer the 

Tektronix AFG-1022 signal generator and the Falco WMA-300 power amplifier were 

used. A three-pulse square wave tone burst at 300 kHz was used. This waveform 

maximizes the transmitted wave energy in the 200 kHz to 400 kHz frequency spectrum, 

which is the working range of the transducers. For the fully ACUS, at the receivers side 

a Femto HQA-15M-10 T charge amplifier with 10 V/pC gain was used. For the hybrid 

ACUS-contact, the amplifier of a Panametrics 5077PR was used. To capture the signal 

of the ACUS and hybrid measurements the Tektronix MDO4104 oscilloscope was used 

to register the signals. A measurement of the curing was carried out every 15 minutes 

after 45 minutes of the beginning of the cure. 

 

Figure 4-1: Set-up to measure the LLW with a fully ACUS and a PZT receiver. 
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The measurements made with the ACUS and hybrid measurements were carried 

out equally. In both cases, the ACUS transducer was used as a generator with both the 

ACUS and PZT as a receiver. To measure the phase velocity of the LLW it was 

necessary to displace the ACUS generator, since the PZT in contact could not be 

displaced. The ACUS generator was displaced in the main direction of the fiber. To 

maximize the resolution of the spatial frequency, the total measurement distance was 

150 mm. The further the total measurement distance, the better the resolution is. 

However, at the beginning of curing, the signal is highly attenuated and at a greater 

distance than 150 mm no signal was measurable. The step size was chosen to be 2 mm, 

since the step size limits the minimum measurable velocity. At 2 mm steps with 150 

mm distance, the minimum measurable velocity is 802 m/s at a frequency of 400 kHz. 

The minimum measured velocity for the propagated modes is more than twice that 

velocity, as is later observed in Section 4.3.1 and Section 4.3.2. To obtain the dispersion 

curves of the experimental measurements a 2D-FFT was carried out over the captured 

data.  

To fit the measured dispersion curves with the mixed TMM&SMM, the 

micromechanical model was used. The properties of the glass fiber [Mounier 2012] and 

the thickness (Table 4-1), measured with a micrometer after the curing, were considered 

constant during curing. The properties of the VE resin, on the other hand, were fitted 

through a stochastic gradient descent algorithm. The fiber volume content and density 

of the composite, where fitted once at the first instant where LLW were measurable. 

The density and fiber volume content of the GFRP were latter measured in several 

points of the plates according to ASTM D792-08 and ASTM D3171-09 by burn off, 

respectively. Young’s modulus and Poisson’s ratio for the VE resin were calculated for 

each step after LLW were measurable. The initial conditions for the GFRP and the resin 

are shown in Table 4-1. For the fiber volume content and density, what other authors 

achieved for hand lay-up was used as an initial reference [Avila 2005]. For the initial 

properties of Young’s modulus and Poisson’s ratio, intermediate values of the 

properties of the fully cured VE resin where selected [Dominguez-Macaya 2019].  

Table 4-1: Initial parameters of the composite. 

Material 

Young’s 

modulus 

(GPa) 

Poisson’s 

ratio 

Density 

(kg/m
3
) 

Fiber volume 

content (%) 

Thickness 

(mm) 

VE 1.65 0.4 1160 - - 

Glass 72.5 0.2 2550 - - 

GFRP - - 1855 50 3.2 ± 0.2 
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4.3 Results 

4.3.1 Sensitivity analysis 

Measuring the propagation of guided waves in a curing FRP material can be 

difficult due to the highly attenuative nature of the material and complex mechanical 

properties. Simplifying the orthotropic anisotropy with the micromechanical model, 

where only the resin properties change, reduces the complexity. However, guided waves 

are highly dispersive and are composed of an infinite number of modes. Selecting which 

mode or modes is critical to ensure the desired results. Thus, evaluating the variation in 

the dispersion curves with the change in the properties of the resin is necessary, mainly 

using such a technique as ACUS LLW.  

LLW do not propagated in composite materials, at least, until after the gelation 

point has been reached, but more usually measured after vitrification. Considering the 

micromechanical simplification of the composite material the change of the mechanical 

properties are exclusively due to the resin curing process. The VE resin’s Young’s 

modulus and Poisson’s ratio are the most interesting terms, since they change the most. 

To evaluate the change in LLW dispersion curves depending on both of these 

mechanical properties, two scenarios were evaluated theoretically with the mixed 

TMM&SMM method in the frequency range going from 200 kHz to 400 kHz. The 

thickness selected for both scenarios was 3.2 mm, to ensure that the theoretical analysis 

and the experimental measurements (Section 4.3.2) were the same. At the first scenario, 

the Young’s modulus is varied between 3.3 GPa, which corresponds to the material 

fully cured [Dominguez-Macaya 2019], and 1.65 GPa for a partially cured material. The 

difference in Young’s modulus between both plates is 1.65 GPa, and will be called as 

𝛥𝐸 from now on. In this scenario, Poisson’s ratio is kept constant at 0.37. At the second 

scenario, Poisson’s ratio is changed for these two curing degrees, assuming that the 

Poisson’s ratio is 0.37 for the fully cured material [Dominguez-Macaya 2019], and 0.45 

for the partially cured one. The difference in Poisson’s ratio between both plates is 0.08 

and will be called as 𝛥𝜈 from now on. For this second scenario, Young’s modulus is 

kept constant with a value of 1.65 GPa, to ensure that the dispersion curves are in the 

inspection range. The sensitivity is established as the rate of change of the wavenumber 

(in percentage) in the 𝛥𝐸 or 𝛥𝜈 range. 

Figure 4-2 shows the dispersion curves for the partially and fully cured GFRP 

plates with different Young’s modulus. From Figure 4-2, the first thing that can be 

observed is that all of the modes that are visible present a similar behavior in the 

partially cured and completely cured plates. When the material stiffens, the modes 

response increases in frequency. This is why in the partially cured plate five modes are 

visible (A0, S0, A1, S1 and S2), whereas only four are visible in the fully cured plate 

(A0, S0, A1 and S1). From Figure 4-2 it can also be observed that the S1 mode is 

superimposed with the A1 mode. This makes the S1 mode undistinguishable from the 

A1 mode. Therefore, observing this, the modes that could be potentially used to 

evaluate the evolution of the material properties are the A0, S0 and A1 modes. 
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(a) (b) 

Figure 4-2: Dispersion curves for the partially (a) and fully (b) cured GFRP for 𝛥𝐸. 

The lowest order mode (A0) is observed to change significantly between the 

partially and fully cured GFRP, as shown in Figure 4-3. The slope of the A0 mode in 

both plates is constant. In the case of the A0 mode, the slope of the wavenumber 

indicates that it’s a constant velocity. This can be calculated due to the relationship 

between the velocity, frequency and wavenumber of the mode. Since the slopes and 

velocities of both plates are constant, the sensitivity can be calculated in the whole 

working range. The sensitivity for the wavenumber of the A0 mode between the 

partially and fully cured plates is ~30%.  

 

Figure 4-3: A0 mode in the partially and fully cured GFRP for 𝛥𝐸. 

The S0 mode for the partially and fully cured plate is shown in Figure 4-4. To 

calculate the sensitivity of the S0 mode, it is necessary to separate it into two regions. 

These regions are divided by an inflexion point. The inflexion point is the frequency at 

which the S0 mode’s slope changes significantly. The inflexion point for the partially 

cured plate is at 260 kHz, whereas for the fully cured plate it is around 350 kHz. The 

first region is set before the inflexion point of the partially cured plate. In this region, 

the wavenumber of both of the plates have a constant slope. The velocity of the S0 
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mode in this region is constant, similarly to the A0 mode. The sensitivity of the 

wavenumber in this region is less than 3% between both plates. Between the two 

regions, is the inflexion point itself. The inflexion point can be observed to change 

much more significantly than the first region. The sensitivity of the inflexion point is 

~34% between both plates. The second region is set after the inflexion point. In this 

region, the mode changes its shape. This happens due to a change in the velocity of the 

S0 mode. Evaluating the sensitivity of this region is not meaningful, since the mode is 

displaced in frequency and, therefore, has different shape at each frequency. However, 

despite not quantifying the sensitivity, the change is as meaningful as the inflexion point 

itself and needs to be taken into consideration. 

 

Figure 4-4: S0 mode in the partially and fully cured GFRP for 𝛥𝐸. 

The A1 mode for both plates is shown in Figure 4-5. The partially cured plate 

has a constant slope, whilst the shape of the fully cured shows a steeper slope at the 

beginning. It should be pointed out that in the case of the A1, the constant slope does 

not indicate a constant velocity. Simply relating the wavenumber and the velocity, this 

fact can be observed. The shape of the A1 mode is the same in both plates after 300 

kHz, which simplifies the calculation of the sensitivity. The sensitivity of the 

wavenumber over 300 kHz is 12%. 
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Figure 4-5: A1 mode in the partially and fully cured GFRP for 𝛥𝐸. 

Figure 4-6 shows the dispersion curves for the partially and fully cured GFRP 

plates with different Poisson’s ratio. Like in the first scenario, five modes are visible 

(A0, S0, A1, S1 and S2). All the modes behave similarly for the partially and fully 

cured plate. The S1 mode at its lowest frequency is the only one with a different shape. 

In fact, it can be observed that only the S0 mode changes significantly. Since the A0, S0 

and A1 where the most useful in the previous scenarios, these are also evaluated in this 

case.  

  

(a) (b) 

Figure 4-6: Dispersion curves for the partially (a) and fully (b) cured GFRP for 𝛥𝜈. 

The A0 modes for the partially and fully cured plates are shown in Figure 4-7. 

The A0 mode for both plates behaves very similarly. The sensitivity of the A0 mode is 

less than 5% of its value. It is important to notice that Poisson’s ratio affects acoustic 

properties in a different way from Young’s modulus, since it determines the ability of 

shear waves to propagate through the material. 
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Figure 4-7: A0 mode in the partially and fully cured GFRP for 𝛥𝜈. 

The S0 mode for the partially and fully cured plate is shown in Figure 4-8. The 

S0 mode is evaluated like in the previous scenario with two regions, separated by the 

inflexion point. The first region is up to 260 kHz. In this region, the difference between 

both plates is close to 0%, thus, the sensitivity is not estimated. Regarding the inflexion 

point, the variation is from 340 kHz at the partially cured plate whilst it’s 260 kHz at the 

fully cured. The sensitivity for this region is of 30%. With the second region the same 

happens as in the previous scenario. Thus, this is not quantified. 

 

Figure 4-8: S0 mode in the partially and fully cured GFRP for 𝛥𝜈. 

The A1 mode for both plates is shown in Figure 4-9. Similarly to the A0 mode, 

the A1 modes changes very little. The sensitivity is barely 1%. 
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Figure 4-9: A1 mode in the partially and fully cured GFRP for 𝛥𝜈. 

Observing the variation in the LLW modes for both scenarios, the following 

conclusions can be obtained: 

 The A0 mode can be used to monitor the evolution of the resin’s Young’s 

modulus. However, it cannot be used to monitor Poisson’s ratio. 

 The S0 mode can be used to monitor the evolution of the resin’s Young’s 

modulus and the Poisson’s ratio. However, not all of the regions of the S0 mode 

provide useful information. 

o At the first region, before the inflexion point, the response of the S0 

mode is independent to the resin’s properties. This means that it is 

strictly dependent on the fiber reinforcement. 

o At the inflexion point, the S0 mode changes with Young’s and Poisson’s 

ratio. The increase in Young’s modulus increases the frequency of the 

inflexion point and the decrease in Poisson’s ratio decreases the 

frequency. Since these events occur during curing, both properties may 

counteract each other. 

o The second region, which is directly affected by the inflexion point, 

behaves like the inflexion point. 

 The A1 mode can be used to monitor the evolution of the resin’s Young’s 

modulus. However, it cannot be used to monitor Poisson’s ratio. 

Taking into account these previous statements, theoretically, the most useful 

mode to monitor is the S0 mode, specifically around its inflexion point. Additionally, 

from the experimental point of view, this is also the most practical choice. Since the S0 

mode shows the same velocity up to the inflexion point, independently from the 

properties of the resin, the angle of the ACUS transducer can be fixed. This solves the 

issue of having to find the precise angle at every single measurement. Furthermore, 

since the velocity before the inflexion point is only dependent on the reinforcement, the 

volume of fiber can be estimated, without the need to measure it afterwards. Besides, 
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measuring with this velocity/angle for the S0 mode, the A1 mode can also be obtained 

simultaneously. Observing these advantages, the S0 mode and A1 modes were selected 

around the inflexion point of the S0 mode. 

4.3.2 Cure monitoring 

The dispersion curves of the LLW of the GFRP plate have been evaluated from 

the point where the resin was a viscous liquid to the end of curing, where it can be 

considered as a solid. Some snapshots of the response of the plate in the 200 to 400 kHz 

range during curing are shown in Figure 4-10. At the beginning of the curing, minute 45 

in Figure 4-10 (a), the first measurement was made. No guided wave was measured. 

However, a wave propagating in the plate was measurable with the contact and ACUS 

transducers. The velocity of the propagated wave in the three plates evaluated was 

constant at 4850 ± 40 m/s. The wave measured with the resin in viscous liquid state 

must be a longitudinal wave, since shear waves would be greatly attenuate in the 

material. 

As the properties of the resin begin to change, the first event that it is observed is 

the increase in the attenuation of the measured signal. From minute 45 on, the 

attenuation of the resin increases without changes in the velocity. The maximum in 

attenuation is reached at 2:00 h (Figure 4-10 (b)). At this point in time, the longitudinal 

wave was hardly observable with the ACUS transducer, although it was always 

measured with the PZT. 

After the maximum attenuation point is crossed, a change in the dispersion 

curves of the plate is observable. Measured velocity decreased from 4850 ± 40 m/s to 

4450 ± 55 m/s, which represents a 10% reduction. This variation indicates a change in 

the velocity of the measured longitudinal wave or that guided waves start to be 

propagated. If LLW were propagated in the plate, since it is in the earliest curing stages, 

the measured mode might be the A1 or a higher mode. This would be a consequence of 

the reduced stiffness. However, due to the limited frequency range inspected, it is not 

possible to observe the inflexion point of the S0 mode. Additionally, there are too many 

unknowns and limited information, the plate’s properties cannot be calculated yet. 

At 2:45 h, LLW can finally be measured inside the inspection range. As it can be 

observed in Figure 4-10 (c), the inflexion point of the S0 mode is at 240 kHz. At that 

point in the frequency, the S0 mode changes its velocity and is no longer excited by the 

transducer. On the other hand, the velocity of the A1 mode is close to the S0 mode 

before the inflexion point and, therefore, has an similar excitation angle (around 1º or 2º 

less compared to the S0 mode). Therefore, from 200 kHz to 240 kHz the S0 and from 

240 kHz to 360 kHz the A1 modes can be measured. From the 2:45 h measurement 

onwards, Figure 4-10 (c) to Figure 4-10 (f), the evolution of the inflexion point and the 

S0 mode and A1 mode can be observed. The inflexion point shows the most significant 

variation from 240 kHz at 2:45 h to 300 kHz at 5:00 h. The A1 mode also changes, 

although it is not as easily observable at plain sight. With the evolution of the dispersion 
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curves, the properties of the resin during curing and the volume of fiber can be 

calculated. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4-10: Frequency response change of the GFRP measured with the ACUS during 

the cure: (a) 0:45 h, (b) 2:00 h, (c) 2:45 h, (d) 3:30 h, (e) 4:15 h and (f) 5:00 h. 

Between Figure 4-10 (c) and (f), more measurements were carried out. However, 

for cleanliness, only four images have been shown. For all the measurements carried 

out, the properties of the resin were be obtained. At 2:45 hours, the fiber volume 

content, density, as well as the properties of the resin were fitted with the dispersion 

curves, for the three plates. The fiber volume content is the most critical parameter for 

the S0 mode, especially before the inflexion point. When the theoretically obtained 

LLW where fitted with the results, the fiber volume and density were estimated, since 

they are interrelated. The fiber volume content and density obtained for the GFRP was 

40 ± 1% and 1716 ± 14 kg/m
3
 respectively. The fiber volume content measured with the 

ASTM D3171-09 was 40.1 ± 1%. The density measured with the ASTM D792-08 was 

1693 ± 30 kg/m
3
. The difference between the ACUS and ASTM tests was around 1%, 

which shows that LLW are efficient to measure the fiber volume content and density. 
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The similarity in fiber volume content and density in the three plates indicates that the 

manufacturing process was consistent. With the fiber volume content estimated, the 

evolution of the properties of the resin was evaluated. 

Figure 4-11 shows the evolution of VE resin’s Young’s modulus. At the 

beginning of the measurement period, a fast increase in Young’s modulus can be 

observed, whilst once the 5 h mark is reached, it is stabilized. The measured Young’s 

modulus at the end of the curing process is 2.65 GPa, which is lower than the nominal 

value (3.3 GPa). This difference is due to the fact that the DoC at room temperature is 

far from 100% (Figure 4-13). Comparing the results from the ACUS and PZT for each 

of the measurements, the consistency is high with a mean difference of less than 3% 

between contact and non-contact measurements. Comparing the results of the different 

plates, the mean difference is less than 10%, but at some points, it rises up to 15%. 

These differences are caused by the changes of the room temperature in the different 

test.  

  

Figure 4-11: Evolution of the Young’s modulus of the VE. 

The evolution of the VE resin’s Poisson’s ratio is shown in Figure 4-12. The 

evolution of Poisson’s ratio is measurable from 0.432 to 0.367. The mean error in 

Poisson’s ratio between the three plates is less than 3%, whilst the error between the 

ACUS and PZT is around 1% only. These differences are smaller than those for 

Young’s modulus and are related to the smaller ratio of change of Poisson’s ratio. 

During curing, it can be observed that Poisson’s ratio changes in a fast and sharp way. 

At the lowest curing degrees, where the S0 and A1 modes are the closest, Poisson’s 

ratio is the highest. Nevertheless, the fast separation of the modes shows a fast variation 

of the properties. 
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Figure 4-12: Evolution of Poisson’s ratio of the VE. 

The evolution of the VE’s Young’s modulus (Figure 4-11) and Poisson’s ratio 

(Figure 4-12) has also been evaluated with respect to the DoC of the sample measured 

with the DSC (Figure 4-13 and Figure 4-14). Figure 4-13 shows the evolution of the 

DoC and Young’s modulus during curing time and Figure 4-14 shows the evolution of 

Young’s modulus with respect to the DoC. The curing process begins at around 30 

minutes and reaches a DoC of 55% after 5 hours. 50% of the DoC is done in the first 

2:45 hours, whilst the other 5% is done in over 2 hours. The point of 50% DoC is also 

the approximate moment at which LLW are finally measurable. Young’s modulus is 

observed to change from 1 GPa to 2.6 GPa in a range of 5% DoC. It must be pointed out 

that the evolution of the elastic properties and the DoC are out-of-phase. This behavior 

is similar to what other researchers have observed [Ruiz 2005] and is clearly observed 

in both figures. 

  

(a) (b) 

Figure 4-13: Evolution of (a) Young’s modulus and (b) Poisson’s ratio compared with 

the DoC. 
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Figure 4-14: Evolution of Young’s modulus and Poisson’s ratio with the DoC. 

To observe the differences that the variation in the resin properties causes in the 

composite material, the properties of the composite at three points are shown in Table 

4-2. The three points are: at the first measurement of LLW, at the end of the curing at 

room temperature and after the post-curing. The matrix coefficients that are least 

dependent to curing process are the 𝐶11, 𝐶12 and 𝐶23. The rate of change for the 𝐶11 is 

the lowest, with just less than a 10%. As it would be expected, the properties in the 

direction of the fiber are more dependent on the fiber than on the resin. A variation in 

the fiber volume content, on the other hand, would affect this property the most, due to 

the aforementioned dependency. The 𝐶12 is also amongst the least dependent on curing, 

with a change of under 40%. The variation is four times that of 𝐶11 since the 

components of the 𝐶12 are the fiber direction and the thickness or lateral side. As the 

fibers are unidirectionally oriented, properties in directions 2 and 3 are equal. The 𝐶23 

also changes very little, despite being almost completely dependent on the resin 

properties. The increase in the Young’s modulus is counteracted by the reduction in 

Poisson’s ratio. At the postcure, however, since there is no change in Poisson’s ratio, 

𝐶23 changes a 32%. The rest of the properties, 𝐶22, 𝐶44 and 𝐶55, are more dependent on 

this change. The 𝐶22, which is the property that depends almost entirely on the resin, is 

the one that changes the most in absolute numbers. A change of 4 GPa is translated into 

a change of 66% in its stiffness, since the fiber does almost no work in this direction. 

The greatest relative change, yet, is observed in 𝐶44 and 𝐶55. The 𝐶44 and 𝐶55  are 

strictly related to the shear properties of the composite material in the directions in 

which they act, unlike the 𝐶11, 𝐶12, … , 𝐶33 coefficients, which are interrelated as 

observed in Eq. (4-12) to (4-20). The rate of change of 𝐶44 and 𝐶55 are 130% and 138% 

respectively. This is due to the fact that in these directions the contribution of the fibers 

to the properties of the composite is the highest. However, all the changes calculated 

above are below the rate of change of the VE’s Young’s modulus, which changes up to 

260%.  
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A clear conclusion can be obtained from the data in Table 4-2. In composite 

material, the fiber is usually the most important part of the material, since it gives the 

stiffness to the composite. However, in order to evaluate the composite as a whole, it is 

necessary to focus on those directional properties where the fiber has the least effect. 

This means that monitoring the 𝐶44 and 𝐶55 coefficients is the most efficient procedure 

to obtain the right properties of the composite. 

Table 4-2: Properties of the GFRP. 

Time 
C11   

(GPa) 

C22  

(GPa) 

C12  

(GPa) 

C23  

(GPa) 

C44  

(GPa) 

C55  

(GPa) 

2:45 

hours 

30.79 ± 

0.18 

6.44 ± 

0.12 

3.53 ± 

0.07 

4.38 ± 

0.08 

1.06 ± 

0.03 

1.14 ± 

0.02 

5:00 

hours 

31.35 ± 

0.1 

8.06 ± 

0.08 

3.67 ± 

0.05 

4.31 ± 

0.06 

1.87 ± 

0.02 

2.04 ± 

0.02 

Post cure 
32.68 ± 

0.11 

10.73 ± 

0.1 

4.89 ± 

0.08 

5.72 ± 

0.06 
2.5 ± 0.03 

2.72 ± 

0.02 

 

4.4 Conclusions 

In this chapter, ACUS LLW have been used to monitor the thermal curing of a 

GFRP. This technique has proved to be useful to monitor the evolution of the properties 

of the resin and the whole composite with the use a micromechanics model without the 

need of contact between the part and the transducers. The selection of the modes to 

excite was critical in order to have enough signal to noise ratio, where the modes most 

dependent on the fibers probed to be the most viable. 

It has been observed that Lamb waves were not measurable until high degrees of 

conversion were reached. Once this point was reached, however, significant changes in 

the properties were measurable, in a more sensitive way than the DSC technique.  

Comparing the hybrid and fully ACUS inspection method, the same results were 

obtained. The hybrid method did not provide any advantage besides an increased signal 

level when the attenuation was at its highest point. The fully ACUS method allows 

focusing in a single area of the measurement zone due to the angle selection. With the 

measurement of multiple modes with the ACUS, the VE’s properties can be directly 

measured. 

The DoC obtained at room temperature was only of 55%, but it was enough to 

measure the variation in the properties of the composite.  
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However, the method has certain limitations. First, the attenuation was not taken 

into account in the model, which may affect both the acoustic and the mechanical 

properties. Second, the hypothesis of the micromechanics model for the composite 

material is used. Whereas for the high degrees of conversion this principle is fulfilled, at 

lower ones the model may not be usable. Due to the great attenuation of the resin and 

lack of shear strength, no guided wave can be propagated during the lowest curing 

states. A micromechanical model of propagation which considers the resin as a highly 

viscous fluid could solve this. 
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Chapter 5 

Summary and conclusions 

We conclude this thesis by stating the conclusions and the main contributions 

obtained from the whole research carried out during this doctoral thesis. Finally, a set of 

tasks that would complement and enhance the work done in this doctoral thesis are 

proposed. 

5.1 Conclusions 

This thesis evaluates the evolution of elastic properties of composite materials 

with non-contact techniques, focusing in ACUS. Inspection techniques nowadays are 

not able to give insight on the material properties without contact. Moreover, obtaining 

these properties during the cure process can further improve the manufacturing in the 

future. 

In the first part of this thesis an air-coupled ultrasonic technique to monitor the 

evolution of the viscoelastic properties of a resin during the ultraviolet curing process 

was developed. It was observed that this technique worked for fast processes and was 

able to provide information on longitudinal and shear properties. Limits were also found 

since this technique can only measure shear properties at high curing degrees. It was 

also noted that resonant air-coupled ultrasonics can only be used with non-hollow 

materials and require access through both sides of the part. 

In the second part, the elastic properties of composite materials with leaky lamb 

waves were evaluated. It has been observed that generating and measuring multiple 

modes with air-coupled ultrasonics, whether for straight or curved parts, it is not viable 

with the efficiency that transducers have nowadays. However, using laser ultrasonics it 

was possible to measure them, which indicates that it is a matter of transmission losses. 

It was also observed that plane transducers were more efficient than focused ones, 

which provided no advantage. Straight and curved parts also presented equal 

propagation properties for Lamb waves for large radii parts. 

When the curing of composite materials was evaluated, for glass fiber reinforced 

polymers, the selection of the modes to evaluate was observed to be critical. The modes 

dependence on the resin properties would be the most interesting to evaluate it, but the 

high attenuation limits this possibility. Evaluating the properties of the resin through the 

effect of the resin in the section of the guided waves that are mostly dependent on the 

fiber showed good results. The properties were efficiently measured and validated with 

a contact sensor. 
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Air-coupled ultrasonics proved to be efficient to measure the mechanical 

properties with the techniques developed. The choice between which technique to use 

would depend upon the requirements of the process to evaluate. 

5.2 Suggestions for Further Research 

Many issues described in this PhD dissertation can be addressed in the future as 

improvements and extensions of the current work. These are some of the suggestions 

for further research: 

 Testing the techniques developed for different materials such as carbon fiber 

reinforced polymers, resins with particles, adhesives, and so on. 

 Evaluating the effect of the temperature over different degrees of curing could 

give more insight over the behavior of the material during the bending process 

for 3D ultraviolet pultrusion. In the case of application of theses technique in 

molded processes this information could be used or to ensure correct demolding. 

 Measurements in the real 3D ultraviolet curing process would be necessary to 

solve other problems that can arise from industrialization of these techniques. 

 More automatized measurement systems are required to apply techniques such 

as leaky Lamb wave monitoring to faster curing processes. 

 The future development of ultrasonic arrays or the use of laser ultrasonic to 

measure would further improve measurement speed and provide more 

information. 

 Different geometries, with sharper curves and even edges need to be evaluated. 

Other propagation techniques different from the transfer matrix or stable transfer 

matrix may be required to model. Techniques like semi-analytic finite elements 

could be used. 

 Air-coupled ultrasonic inspection cannot only be used to evaluate properties but 

also for defects. Delamination, voids or uncured areas could be tackled with the 

application of various techniques that are usually applied in contact US. 
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