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Abstract 

The present thesis develops an accurate sizing tool for the most relevant lithium ion battery energy 

storage system applications considering the aging and the remaining useful life. The developed tool 

involves firstly, the construction of the aging models of the lithium ion battery health indicators; 

secondly, the calculation of the end of life based on the evolution of the modelled health indicators; 

thirdly, the calculation of the levelized cost of the most relevant applications of lithium ion battery 

energy storage systems; and fourthly, the minimization of the committed error with the constructed 

aging models supported by electrode level data and prognosis algorithms. The methodology behind 

the construction and calculation of all the elements integrated on the sizing tool is described 

throughout the chapters of this thesis. 

Firstly, the end of life state of the battery is determined as a combined threshold of all the health 

indicators of interest. Its calculation requires the implementation of an electro-thermal model in a 

simulation environment defined by the end of life criteria specified by the application requirements.  

Secondly, the evolution of health indicators of interest are modelled based on the most relevant 

stress factors. The methodology to acquire the aging data and the construction of the posterior 

empirical models are presented. The validation of the constructed models based on the acquired 

data is performed based on three aspects: the accuracy describing the observed cases, the 

correctness of interpolations and the real life applicability. 

Thirdly, the simulation environments for lithium ion battery energy storage systems applied on an 

electric vehicle application and on a stationary application are developed where the levelized cost of 

different battery solution sizes is calculated. The simulation environment integrates the already 

developed electric-thermal model, end of life map and aging models. 

Fourthly, the error done by the constructed aging models is minimized by focusing on the errors done 

when extrapolating in time and when facing odd events. On one hand, electrode level data is 

analysed to generate data artificially and reduce the errors when extrapolating in time. On the other 

hand, a prognosis stochastic algorithm is selected and employed with real life data to deal with the 

effect that odd events have on the evolution of the health indicators. 

The validity of many assumptions made for the development of the end of life map, the aging models, 

the simulation environment used on the sizing tool, the artificial data generator and the real time 

prognosis tool are proved experimentally. 
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GLOSSARY 

Constant Current (CC): A charge or discharge done with a constant current all along the operation 

period. This operation mode usually is cut off when reaching a certain voltage level. 

Constant Voltage (CV): A charging or discharging mode where a voltage is fixed and the current is 

controlled to keep constant this voltage value. The limiting variable is the voltage. This operation 

mode usually is cut off when reducing the current to C/20 or C/25. 

Open Circuit Voltage (OCV): The OCV of a battery is the potential difference between the positive 

electrode and the negative electrode when no current flows and the electrode potentials are at 

equilibrium. It is measured at the terminals of the battery when the battery voltage reaches an 

electrochemical equilibrium. 

State of charge (SOC): The SOC represents the relative stored energy. This relative value is given in 

terms of the total dischargeable energy. It is usually given on percentages. The upper SOC, 100% 

SOC, is defined by the end of charge voltage and the lower SOC, 0% SOC, is defined by the end of 

discharge voltage. These voltages are defined by the safety operation window of the battery and 

changes with the battery chemistry. 

State of Health (SOH): The SOH reflect the relative general condition that a battery is on a specific 

time instant. It also represents the relative performance level compared with a fresh battery. It is 

often used as a relative value of the dischargeable capacity, where the relativity is done with the 

nominal dischargeable capacity. 

Depth of Discharge (DOD): The DOD represents the relative discharged energy on a continuous 

operation. This relative value is given in terms of the total dischargeable energy. It is usually given on 

percentages. It can be expressed as the difference of SOC between two time instants. As 

consequence, the maximum DOD would be a change of SOC from 100% to 0%, a 100% DOD. The 

DOD is 0% when the SOC is the same on the evaluated two time instants.   

Current rate (C-rate): The C-rate is the relative current measured on the battery terminals. This 

relative value is given in terms of the nominal current of the battery. The nominal current is usually 

expressed by a C and the C-rate as a multiple of it: 2C, 1C, C/20 etc. 

Remaining Useful Life (RUL): The RUL represents the required time to reach a particular future event 

or state. That future event or state used to be the End of Life. 

End of Life (EOL): The EOL can be defined as the fact of something not working, or stopping working 

as well as it should. The EOL used on this thesis is related with the second term. The EOL is the 

state of health of the system at which the application requirements cannot be fulfilled. 

Prognostics: Prognostics is the science of making predictions. 

Levelized cost: The levelized cost of a system is the total cost of that system on its entire lifespan. 
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CHAPTER 1: 

1 Introduction 
 

This chapter introduces the problematic that has motivated this thesis and gives some basic 

information about lithium ion batteries and remaining useful life prognosis. Then, the main objective 

is presented together with the followed methodology and the structure of the thesis. Finally, the 

scientific contributions are listed. 
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1.1 Background 

Two of the main concerns of today’s society are, on one hand, the protection of the environment and 

on the other hand, the search for high efficiencies mainly related with cost and energy savings [1]. 

On this social context, the main environmentally harmful systems have been gradually replaced by 

sustainable alternatives, which are more efficient and more environmentally friendly. Specially, there 

are two environmentally sustainable initiatives that are specially having and will have huge impact on 

the preservation of the environment: the electric mobility and the renewable energy generation. The 

substitution of inner combustion engines and traditional power plants with electric engines and solar, 

wind or hydroelectric power plants will suppose an approximate 40% decrease of worldwide 

greenhouse gas emissions [2]. 

Nonetheless, the sustainable alternatives on the mobility and energy generation sectors show some 

technical challenges when comparing them to the original systems that they replace. On one hand, 

there is a technical challenge balancing the energy generation with renewable energy generation 

power plants and the energy demand. The electricity is generated to cover the instantaneous energy 

demand. However, the solar and wind power plants cannot generate energy at will. The energy 

generated by these renewable energy generation plants is conditioned by the weather conditions. On 

the other hand, there is a technical challenge in the energy supply for the electric mobility. The 

mobility until now has been powered by petrol, which can be stored on a simple petrol tank. The 

electric mobility, in contrast, is powered by electricity, which requires a special “tank”. 

In this context, energy storage systems are the key technological solution to the electric mobility and 

the renewable energy power plants. Firstly, the energy storage systems are themselves the special 

tank required on the electric vehicles and secondly, they can be used to compensate the imbalance 

on the energy generation-demand by saving the energy generation surplus and using the storage 

energy to cover the energy demand that these renewable energy generation power plants cannot 

cover. In addition to this, the energy storage systems are also key technological solutions on 

maximizing the efficiency of any energy generation plant. The chance of storing energy loosens the 

restrictions on the energy generation imposed by the energy demand. The power plants can be 

exploited at their maximum efficiency on a certain period time where the energy surplus resultant 

from the imbalance between the energy generation-demand is used to charge the energy storage 

system, which afterwards can be poured to the grid at will. 

There are many kind of Energy Storage Systems available on the market but specifically, lithium ion 

battery based Energy Storage Systems are positioning first in the market [3][4]. The main reason 

behind this is that lithium ion batteries has an unrivalled performance potential comparing with the 

rest battery technologies that are nowadays available on the market, see Figure 1. A lithium ion 

battery has a high “energy-to-weight” ratio (lithium has the greatest electrochemical potential and 

provides the largest energy density per weight of all metals [5]) and low self-discharge loss; it can 

have a cycle life of around 10,000 and an efficiency of around 100%; it has no ‘memory effect’ [6]. 

 
Figure 1: Specific power and specific energy of different battery types [7]. 
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Each Energy Storage solution is designed to fulfil the requirements imposed by the application. 

These requirements are always, at least, the minimum electrical performance (the maximum power 

and energy values demanded by the application) and the time period that the application is expected 

to be functioning (the lifespan). The minimum electric performance determines the smallest size of 

the Energy Storage solution that will be able to fulfil the requirements imposed by the application. 

Then, the expected lifespan of the application is considered to determine the final size of the Energy 

Storage System. Historically, energy storage systems have been designed for lifespans much higher 

than the required ones without a real efficiency or cost evaluation. They have been continually 

oversized. The goal of old designs was the achievement of hardwearing robust systems that could 

always fulfil the requirements imposed by the application (for example, there is an operative 100 

years hydro storage system in Cuenca, Spain, which was expected to work only 20 years). 

Nowadays, the designs are based on finding the best efficiency in terms of energy, economical cost 

and environmental cost along the whole useful life of the system. However, the current designs of 

Energy Storage Systems done with wrong lifespan estimations or without any lifespan estimation are 

often leading to unexpected replacements of the energy storage system. The sustainability of those 

solutions goes drastically down when facing these kinds of unexpected events, as well as their 

economic profitability. This is why, the accurate estimation of the lifespan (prognosis) applied on the 

sizing process is essential to assure the sustainability and viability of these solutions. 

In addition to this, the accurate estimation of the lifespan of the solution is interesting for economic 

and environmental cost saving objectives. Firstly, accurate lifespan estimations enable failure 

prevention in a more controllable manner. In this way, an effective maintenance can be administered 

when it is needed in order to correct impeding faults without permanently damaging battery as 

traditional protection circuits do [8]. Secondly, accurate lifespan estimations can be used to meet the 

lifespan requirement of the solution by adjusting the stress generated by the operation conditions and 

prevent unexpected replacements. 

The improvement on the efficiency and the reduction on the cost of the whole energy storage system 

based on accurate lifespan estimation have motivated to develop this thesis titled “REMAINING 

USEFUL LIFE ESTIMATIONS APPLIED ON THE SIZING AND THE PROGNOSIS OF LITHIUM ION 

BATTERY ENERGY STORAGE SYSTEMS”. In addition to this, the generation of this thesis is also 

motivated by the high interest that actually exists around prognosis and predictive maintenance tools 

applicable to the industry. 

1.1.1 Lithium-ion battery 

A lithium battery is an electrochemical energy storage system technology. This technology has less 

than 40 years of development. Pioneer work with the lithium battery began in 1912 under G.N. Lewis 

but it was not until the early 1970s that the first non-rechargeable lithium batteries became 

commercially available [5]. Attempts to develop rechargeable lithium batteries followed in the 1980s, 

focusing on the lithium metal as the negative electrode because of high specific capacity of the metal 

[9] (see Table 1). 

In 1980s, it was found that cycling causes changes on the lithium electrode. These transformations, 

which are part of normal wear and tear (aging), reduce the thermal stability, causing potential thermal 

runaway conditions. When this occurs, the cell temperature quickly approaches the melting point of 

lithium, resulting in a violent reaction called “venting with flame” [5]. 

System Voltage Wh/kg Wh/l Company 

Li/TiS2 2.1 130 280 ’78 Exxon 

LiAl/TiS2    ’79 Hitachi 

Li/LiAlCl4-SO2/C 3.2 63 208 ‘81-85 Duracell 

Li/V2O5 1.5 10 40 ’89 Tohsiba 

Li/NbSe3 2.0 95 250 ’83-86 Bell Lab 

LiAl/Polyaniline 3.0 - 180 ’87 Bridgestone 

LiAl/Polypyrolle 3.0 - 180 ’89 Kanebo 

Li/Al/Polyacene 3.0 - - ’91 Kanebo/Seiko 

Li/MoS2 1.8 52 140 ’87 MoLi 
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Li/CDMO (LixMnO2) 3.0 - - ’89 Sanyo 

Li/Li0.3MnO2 3.0 50 140 ’89 Tadiran 

Li/VOx 3.2 200 300 ’90 HydroQuebec 

Table 1: Various developed rechargeable lithium metal battery systems [10] 

The safety issues caused the industry to concentrate on carbon and lithium intercalated electrode 

instead of using lithium metal (research shifted to non-metallic lithium battery using lithium ions) 

because carbon electrodes offer a more stable morphology than the lithium metal ones (see the first 

developed patents in the lithium ion battery field in Table 2) [11]. Although slightly lower in energy 

density than lithium metal, the lithium ion is safe (providing certain precautions) [5]. In 1991, the Sony 

Corporation commercialized the first lithium ion battery. Sony’s original version of lithium ion used 

coke, a product of coal, as the negative electrode. Since 1997, most lithium ions (including Sony’s) 

have shifted to graphite anodes [5]. 

Patents Patents No. and 
application date 

Name Company 

Transition metal 
oxides as cathode, 

LiCoO2 

US 4,302,518 
(1980/3/31) 

J.B. Goodenough United Kingdom Atomic 
Energy Authority 

Graphite/Li in 
nonaqueous solvents 

Japan 1769661 
(1981/6/18) 

H. Ikeda, K. Narukawa, H. 
Nakashima 

Sanyo 

Graphite/Li in 
nonaqueous solvents 

US 4,423,125 
(1982/9/13) 

S. Basu Bell Telephone 
Laboratories, Inc. 

Graphite/Li in molten 
salt 

US 4,304,825 
(1980/11/21) 

S. Basu Bell Telephone 
Laboratories, Inc. 

Graphitized 
mesophase carbon 

Japan 2,943,287 
(Sept. 1990) 

Kawagoe, Ogino Bridgestone 

Li-Ion battery (battery 
based on carbonaus 

material) 

Japan 1989293 
(1985/5/10) 

A. Yoshino, K. Jitsuchika, 
T. Nakajima 

Asahi Chemical Ind. 

Carbonous/Li 
nonaqueous 

US 4,959,281 
(1989/8/29) 

N. Nishi Sony Co. 

Additives for Gr 
vinylene carbonate 

Japan 3059832 
(1992/7/27) 

M. Fujimoto, M. Takahashi, 
A. Nishio 

Sanyo 

Additives for Gr 
vinylene carbonate 

US 5,626,981 (May 
6, 1997) 

A. Simon, J-P. Boeuve Saft 

Additives of propane 
sulton 

US 6,033,809 
(1997/8/22) 

S. Hamamoto, A. Hidaka, 
K. Abe 

Ube 

Table 2: Patents related lithium ion batteries [10]. 

1.1.1.1 Most Common Lithium Ion Battery Configurations 
The lithium ion cell is compound by several elements: a cathode, an anode, an electrolyte, a binder, 

a separator and two current collectors. The cell level performance is governed by secondary 

conditions and interactions between those components [12], which means that the selection of each 

element can generate huge changes on the behaviour of the lithium ion cell. 

LTO has low energy density (capacity of LTO is 170mAh/g) [12], high cycling stability (low volume 

change during cycling) and high thermal stability (stable up to 1000 °C and no restriction imposed to 

lithium ion diffusion at low temperatures); the Peukert relationship is linear [13][14]. Moreover, it is 

reported that the surface area of the anode in LTO batteries is 100 times larger than graphite, which 

results in a reduction in the internal resistance and increase of the power capabilities of the LTO 

battery (Figure 2.a) [12]. 

At lower temperatures, lithium plating is unlikely to happen due to the high lithiation voltage of LTO 

[15]. Besides, the surface layer that may exist on LTO do not seem to exhibit a distinctive 

electrochemical signature, thus not contributing to the energy barrier for lithium ion transport [12], 

which leads to a high rate charge and discharge capability [14]. 

The NMC cathode belongs to a mixed metal oxide layered oxide framework cathode. In the case of 

mixed metal oxides, there is a positive synergy between their constituting elements (combining the 
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nickel, manganese and cobalt metals enhances each other strengths [14]). NMC exhibits high 

capacity, minimal cationic disorder and extended thermal stability [12]. It has good overall 

performance and excels on specific energy. This battery is the preferred candidate for the electric 

mobility sector and has the lowest self-heating rate (Figure 2.b) [14]. 

LFP has become attractive for specific industrial and stationary applications because of its higher 

power density and long cycle and calendar live [12]. It has an excellent safety and long life span. LFP 

batteries has a higher self-discharge than other Li-ion batteries, which can cause balancing issues 

with aging [14] and a lower energy density than cobalt (operating low voltage: 3.2v.) but it can 

provide higher currents (greater power) (Figure 2.c). 

NCA delivers high stable capacity, because doping with aluminium enhances charge retention, 

facilitating maximum utilization of the active transition metal [12]. It shares similarities with NMC as 

high specific energy, high specific power and a long life span (it is widely used in the automotive 

industry) but has lower safety and higher cost (Figure 2.d). 

LMO exhibits good thermal stability and rate capability; oxygen release usually occurs at 

temperatures higher than for layered materials, indicating the robustness of spinels [12]; manganese 

is much cheaper, safer and has a higher cell voltage (its structure enables higher rate of ion 

exchange between electrodes) and lower internal impedance than cobalt but it has less energy 

density (Figure 2.e) [14]. Nonetheless, LMO has some serious concerns to be taken into account: 

electrolyte oxidation (at 4.0V), metal dissolution (due to disproportionation reactions) and Jahn-Teller 

distortion. Because of this, pure lithium manganese batteries are no longer common today [14]. 

LCO belongs to the two-dimensional layered materials family (𝐿𝑖𝑀𝑂2, 𝑀 = 𝐶𝑜, 𝑁𝑖,𝑀𝑛). It shows 

satisfactory performance at room temperature with intercalation and deintercalation of 0.5 lithium per 

unit formula; however, the use is limited to 60°C due to the structural instability in the deeply charged 

state and fragile cobalt oxygen unions (the intermediate oxidation state of cobalt in charged state 

makes the crystal susceptible to releasing oxygen due to metal dissolution in the electrolyte, in a 

process that is aggravated beyond 60°C) [12]. It has excellent specific energy but offers moderate 

specific power, safety and life span (Figure 2.f) [14]. 

 
Figure 2: Spider diagram of the characteristics of NCA cathode, NMC cathode, LMO cathode, LCO 

cathode, LTO anode and LFP cathode [11]. 
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1.1.1.2 Aging Behaviour 
Lithium ion batteries age and suffer a fade on its working performance capability. This fade of 

performance is usually related uniquely with the dischargeable capacity fade [16][17][18], but there 

are more aspects of the performance of a lithium ion battery that change due to the aging, such as 

the ohmic resistance [19][20], the faradic resistance [21], the thermal entropy [22], the mechanical 

behaviour [23][24]. Nonetheless, the main two health indicators of a lithium ion battery are the 

dischargeable capacity and the pure ohmic resistance because they are linked directly with the 

storable energy and the power at which the energy can be stored and distributed [25]. 

This aging occurs whether the battery is inactive (calendar aging) or active (cycling aging) due to 

several aging mechanisms. Those ageing processes can be defined as changes in the structure of 

the components and materials of the battery. They are affected by many different elements: the 

operation conditions, the type of active materials used in the electrodes, the manufacturing process 

of the whole battery, the load conditioning and the design of the system (cell, battery, module, pack) 

[26]. 

The aging process of a lithium ion battery (in a heuristic point of view) is expected to have a complex 

and non-linear behaviour. The aging of a lithium ion technology battery can be generated by different 

aging mechanisms that have different effects on the battery behaviour. It must be considered that the 

performance decay could come from contributions of a predominant mode accompanied with an 

array of possible subsidiary modes (one might be much less prominent or hidden) [27]. Dubarry et al. 

[28] presented all the possible degradation mechanisms reported until 2016, see Figure 3. 

 
Figure 3: Possible degradation mechanisms [28]. 

The degradation mechanisms displayed in Figure 3 can be categorized depending on the effect that 

those mechanisms has on the battery behaviour [29][28]. Firstly, there are those aging mechanisms 

that affect the thermodynamic behaviour of the battery due to a change in active material or/and 

lithium inventory. And secondly, there are those aging mechanisms that affect the kinetics of the 

reactions on the cell caused by a change in ohmic and faradic resistance. 

Thanks to this categorization of the aging mechanisms, a unified understanding of those degradation 

mechanisms of lithium ion technology batteries was achieved. All the aging mechanisms were 

catalogued in 3 unified and common used aging modes or deterioration processes: Loss of Active 

Material (LAM), Loss of Lithium Inventory (LLI) and change in ohmic and faradic resistances (kinetic 

deterioration). 
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The post-mortem analysis used in [30] indicates that the capacity fade in the tested NMC cathode 

and graphite anode cells due to the calendar aging is mostly due to LLI. Changes in porosity and 

weight of the samples reveal the evolution of deposition products in the porous structure of the 

anode, indicating electrolyte decomposition. Besides, inductively coupled plasma optical emission 

spectroscopy showed that most of the lithium lost in the cathode was deposited during aging on the 

anode. 

The post-mortem analysis made on the tested LFP batteries by Sarasketa [11] due to the cycling 

aging showed that the main cause of aging was the non-uniform decomposition of the electrolyte and 

the resulting evolution of the Solid Electrolyte Interface (SEI) layer due to the deposition of 

decomposition products over the graphite anode surface. 

 Loss of Lithium Inventory 
A lithium ion battery experiences Loss of Lithium Inventory (LLI) when the lithium ions are consumed 

by parasitic reactions or side reactions such as surface film formation (e.g. SEI growth), 

decomposition reactions, lithium plating, etc. The lithium ions are no longer available for cycling 

between the negative electrode and the positive electrode. The reduction of lithium ions is mainly 

observed as capacity fade [31]. Thus, the stoichiometric value at charged state of the negative 

electrode (anode) decreases (the anode is less charged) and the stoichiometric value at discharged 

state of the positive electrode (cathode) increases. In addition, the decrease of the stoichiometric 

value at discharged state of the positive electrode (cathode) originates from less cathode active 

material intercalated at charge state (there are not enough lithium ions available in the cell to 

intercalate the cathode fully back to the fresh state) which generates an increase of cell impedance 

[32]. 

There are different explanations of the degradation mechanism behind LLI in the literature, for 

example, Grolleau et al. [33] pointed to a cell imbalance the reason behind the LLI. This cell 

imbalance happens due to different lithium consumption rate at the negative electrode (as 

consequence of reduction of electrolyte) and lithium oxidation at the anode surface. Sarasketa [11] 

agrees with the idea of LLI being mainly arisen from the reduction of electrolyte at anode surface that 

forms the Solid Electrolyte Interphase (SEI) layer, but it also was considered the generation of LLI 

from Solid Permeable Interface (SPI) formation and from organic solvents oxidation, both happening 

on cathode surface. According to Pastor et al. [34] the aging mechanism behind LLI is indeed  

electrolyte decomposition, but also lithium plating and formation of lithium ion grains. Birkl et al. [31] 

supported the idea of the formation of lithium ion grains as a degradation mechanism that generate 

LLI because lithium ions can also be lost if they are trapped inside electrically isolated particles of the 

active materials. Schuster et al. [29] evaluate the isolation effect on active material of the passive 

layers at extreme operation conditions (high SOC or high Tº). However, Schuster et al. [29] found 

that the evolution of passive layers takes a key role on the aging of lithium ion batteries. It has been 

found that after the SEI formation, this same SEI prevents any further reduction of the electrolyte at 

the anode and that the SPI oxidizes continuously the electrolyte at the cathode due to SPI’s 

incapability of full passivation. Those discoveries lead Schuster et al. [29] to conclude that the 

thickening and reconstruction of passive layers consume active lithium, and that there is a direct 

correlation between passive layers behaviour and capacity loss. In accordance to this, Schuster et al. 

[29] also conclude that the reduction of the electrolyte is more relevant in the generation of LLI rather 

than the other causes. 

In this line, several authors such as Sarasketa [11] links the degradation of the lithium ion technology 

cells (from an heuristic point of view) with just the creation of interface layers on the surface of the 

electrodes and the LLI generated by those interface layers. 

 Loss of Active Material 
The Loss of active material (LAM) is mainly a result of structural damage and material loss related to 

dendrite formation that may increase self-discharge (short circuit risk), particle isolation, crystal 

growth (reduction of the effective area), changes on the volume of the electrodes and electrode 

delamination [11]. According to Pastor et al. [34] LAM can also be a consequence of material 
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dissolution, oxidation of the electrolyte (growth of interphase layers at the electrodes), electrode 

decomposition, intercalation gradient strains in the active particles and crystal structure disorder. 

Birkl et al. [31] added particle cracking and loss of electrical contact (or blocking of active sites by 

resistive surface layers) to the causes of generating LAM. To sum up, LAM is related to structural 

transformations in the active material and electrolyte decomposition which can generate capacity and 

power fade [31]. 

According to Dubarry et al. [35], some degree of LAM may be masked for up to 30% of capacity fade 

if the LAM occurs on the electrode which is not limiting the cell performance. This phenomenon is 

referred as hidden aging. Eventually, this degradation catches up with that of the limiting electrode 

and shifts the role in the capacity limiting mechanism over aging. ’Alawa toolbox (created by Dubarry 

et al. [27]) suggests that LFP cathode and graphite anode cells should not exhibit any initial capacity 

or power fade due to LAM of the positive electrode as well as of the negative electrode at a 

delithiation state until those LAM mechanisms reaches a massive capacity fade, see Figure 4. This 

idea is supported by the fact that LAM may follow a power-law or exponential dependency. 

 
Figure 4: Trends in the capacity fading as a function of cycle number for the five degradation modes: 

4.5% LLI, 4.5% LAM at lithiated positive electrode, 16.5% LAM at delithiated positive electrode, 27.0% 

LAM at delithiated negative electrode, and 4.0% LAM at lithiated negative electrode, respectively, as 

predicted for C/25, in comparison with test data. All simulations are based on 5% capacity fade in a 

High-Power LFP/graphite cell using the ‘Alawa model [27]. 

When the LAM controls the capacity fade, the stoichiometric value at charged state (at full lithiation) 

of the negative electrode (anode) increases [32]. In this case, LAM should lead to a less amount of 

active material involved in cycling. As a consequence, there is less amount of intercalable active 

material for the same amount of lithium ions (artificial “enrichment” of Li concentration in the 

reaction). This forces the remaining active grains to retain a higher end of charge SOC to keep the 

cell voltage in the voltage plateau [36]. Consequently, the anode is charged to higher SOC values 

[32]. 

Under severe LAM of the negative electrode, the phenomenon called lithium plating is expected. 

Lithium plating refers to the lithium ions deposit as metallic lithium on the negative electrode during 

charge [37]. The predisposition or susceptibility of a specific lithium ion cell for creating lithium 

deposition is determined by some factors that affect the anode polarization and lithium intercalation 

kinetics such as the nature of electrolyte or the capacity ration between anode and cathode. There 

are also several cell design aspects that will accentuate the propensity towards lithium plating [15]. 

The ratio of anode capacity to cathode capacity is a critical parameter. The anode is required to be 

larger in capacity and in area (larger in dimensions) in order to avoid anode’s edges reactions (the 

lithium plating is more susceptible to happen in anode’s edges). The electrolyte also plays a strong 

role in defining the interfacial conditions at the anode and in determining the SEI on the anode’s 
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surface. The nature of the electrolyte affects the intercalation kinetics, and therefore, it affects the 

plating behaviour. A good “low temperature” electrolyte should minimize or eliminate the problem of 

lithium plating even in low charging temperatures [15]. 

Among the different anode materials, it is known that graphite is prone to lithium platting due to the 

proximity of its reversible potential to that of lithium [15]. Under nominal operation conditions, there is 

no presence of metallic lithium in the cell. However, under exhausting charge conditions (high charge 

rates combined with low charge temperature); the graphite voltage may drop below 0 V vs Li. On this 

scenario, the lithium cannot be intercalated and it is plated between active material and the SEI [29]. 

This happens due to a reduction in the intercalation kinetics at the anode [29] or loss  of graphite 

active material [15]. 

The lithium plating appears as a specific voltage plateau at the beginning of the voltage profile in the 

discharge Open Circuit Voltage (OCV) curve (Figure 5). The high voltage plateau in the discharge 

OCV curve is a semi-quantitative indication of the lithium plating that would have occurred in the 

preceding charge. The width of the plateau is proportional to the amount of metallic lithium and it 

increases after successive charges at low temperatures [15]. The result obtained by Ma et al. [38] 

showed that a sharp peak is expected to appear in the Incremental Capacity of the discharge if there 

is lithium plating, which supports the existence of a high voltage plateau in the discharge OCV curve 

after lithium plating happens. 

 
Figure 5: Lithium plating evidences on the OCV profile on discharge [15]. 

Theoretically, plated lithium is removed in the subsequent discharge because lithium oxidizes at a 

lower potential than the potential of deintercalation (about 100 mV vs. Li,). Due to that, the plated 

lithium is considered largely reversible and it is assumed to oxidize at potentials about 100 mV higher 

than the lithium de-intercalation potentials as long as a conductive connection to the anode material 

exists [29]. This process of re-oxidation of the plated lithium is called stripping of plated lithium. 

However, during stripping of plated lithium, it is assumed that porous structures are formed and both, 

chemical intercalation processes and the plated lithium lose the conductive connection to the anode 

material, isolating lithium ions and generating an irreversible capacity fade [29]. In consequence, the 

lithium plating effects do not disappear entirely during subsequent discharge as theoretically 

considered [15]. Furthermore, isolated plated lithium generated by stripping of plated lithium may 

further promote SEI growth which again deteriorates the anode’s ionic kinetics. In the same time, low 

ionic kinetics promotes the occurrence of lithium plating, generating a vicious loop and multiplying the 

degradation rate [29]. 

Lithium platting may cause problems in terms of performance, reliability and safety since lithium 

plating is known to be dendritic and it often induces internal shorts [15] and due to that behaviour 
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lithium plating is considered a phenomenon that deteriorates radically cell performance [11]. Besides, 

the occurrence of aging induced lithium plating leads to the turning point from linear to nonlinear 

aging characteristics [15]. 

 Kinetics deterioration 
The primary effect of degradation on the cell’s kinetics is the increase of the internal resistance or 

impedance, also referred as polarization resistance (measured by the voltage drop in an operation 

condition or by an Electrochemical Impedance Spectroscopy (EIS) in steady state), mainly caused by 

the slowing down of the charge transfer, by the reduction of electrode contact or by the reduction of 

electrolyte conductivity [38]. The increase of the internal resistance leads to the decrease, in 

discharge, of nominal voltage at a defined SOC along the cell life [39] which also leads to reaching 

the end of discharge cut-off voltage earlier (a decrease of dischargeable capacity appears) [31]. 

In contrast to this, an improvement of electrode kinetics could also occurs during the useful life of the 

lithium ion battery. This improvement on reaction kinetics could come through electrode morphology 

changes generated in cycle aging or from an improvement on charge transfer kinetics at the 

electrode-electrolyte interface. Dubarry et al. [27] found that the charge transfer rate improves in the 

cells that show increasing capacity with discharging rates. This fact was supported with the results 

obtained in [27], which showed a reduction of the cell ohmic resistance with the progression of cycle 

aging derived from the initial internal resistance voltage drop upon polarization. This improvement in 

reaction kinetics was linked to the capacity recovery phenomena. 

1.1.2 Remaining useful life 

The Remaining Useful life (RUL) of a system is defined as the length from the current time to the end 

of the useful life [40] where the end of that useful lifetime is described as an event of interest based 

on the end of life (EOL) criteria. Prognostics deals with fault propagation (or degradation) and 

predicts how soon a system (or component) will fail or reach a level that cannot guarantee 

satisfactory performance (the RUL) [8]. 

The RUL depends on the current age of the asset, the operation environment, the observed health 

information or condition monitoring data (referred as health indicators in this thesis) [41] and the 

failure and fault information (event data) [42]. In practice there are always some faults and failures 

which are not predictable (prognostics cannot completely replace diagnostics or pattern recognition 

of fault spaces (or event data)), so event data is an important source of information (prediction based 

on both event and condition data has been considered in the literature [43]). In some cases 

nonetheless, critical assets are not allowed to run to failure and the data may be scarce, so condition 

monitoring data gets more important in those cases. Anyway, in both cases, in order to do RUL 

prognosis, knowledge (or data) on the fault propagation process and knowledge (or data) on the 

failure mechanism must be available [42]. 

In RUL prognosis of lithium ion batteries, it is difficult to predict the RUL and the degradation with 

certainty [40] firstly, because it is nearly impossible to observe the battery internal electrochemical 

process since the aging of a lithium ion battery is a non-linear and time variant system with the 

consequent non affordable computational cost in on-board applications with current technologies [44] 

and secondly, because environmental uncertainties also affect the production and the performance 

of these lithium ion batteries (dynamic environments induce changes in the physics of failure [40]). 

Based on this, it could be claimed that a reasonable and appropriate degradation model applied in a 

RUL prognosis method has to take into account uncertainty of battery behaviour and internal 

characteristics as well as safety assurance [44]. In this context, the failure event of interest can be 

seen as the result of a stochastic degradation process crossing a threshold level where the hitting 

time of the degradation is modelled as a time-dependent stochastic process [40]. However, a point 

prediction of the RUL is relatively inaccurate and may not be very useful since the variability of the 

RUL is relatively large [41]. Since RUL is a random variable, the distribution of RUL is of interest for 

full understanding of the RUL [42]. 
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In order to make the RUL estimation of lithium ion batteries, researchers have used different tools. 

Overall, those tools are divided in two main groups: methods based on mechanism analysis (models) 

and methods based on data mining or data-driven analysis (data). However, in most cases, studies 

have mixed both methods in order to strengthen each methods’ weaknesses [45][46]. 

The RUL prognosis tools have many different characteristics which makes them more appropriate or 

less appropriate to use them in a particular case, but all of them have to be done from the application 

and user point of view (customer orientation) [26]. 

1.1.2.1 Prognosis Method based on models 
Model based methods (based on mechanism analysis) uses domain expertise (specific knowledge 

and theory relevant to the monitored system [42]) to build mathematical models [47]. Among the 

available options, first principle electrochemical and equivalent circuit models are used to model 

spatial differences and temporal changes [26]. Methods of RUL estimation of lithium ion batteries 

based on spectroscopies and on human electrochemical interpretation which gives a deeper insight 

into important phenomena such as the SEI formation [48]. However, the complexity of a given 

system continues to increase together with the diversity and uncertainty of its operating 

environments, which results in extreme difficulties in constructing physical models that capture the 

system behaviour [40]. 

Another strategy found in the literature for lithium ion batteries RUL prognosis problem considers 

semi-empirical based models [49] which describe the aging evolution observed during 

experimentation. This strategy employs a simplified and generic physical model adjusted to some 

observations. This type of model is able to describe the evolution of the tracked health indicators 

under a certain operation window delimited by the gathered observations. 

1.1.2.2 Prognosis Method based on data 
The methods based purely on data (or data driven methods) are based upon statistical and learning 

techniques which come from the theory of pattern recognition. These approaches can be developed 

from multivariate statistical methods or black box methods [50]. Basically, what data driven 

techniques do is learn from historical data and then wisely suggest a decision [44]. On this process, it 

is assumed that the data condition and regime remains constant until the failure of the system. In 

other words, these methods focus on extracting effective information about the observed 

performance of the system until certain time-instant to build the degradation model and to predict the 

RUL. This way, inherent relationships and degradation trends based on data are established [51] and 

since lifetime data is usually correlated with the underlying physical degradation process, unexpected 

failures and accurate lifetime estimations of the gradually degraded system can be obtained [40]. 

Data-driven methods have become an effective avenue to evaluate reliability and estimate RUL, 

specially for vital systems with high reliability and long lifetime [40] such as the lithium ion batteries. 

Thanks to those algorithms, the behaviour of the battery is learnt based on monitored data of the 

application while those methods don’t demand battery chemical modelling or knowledge [44]. 

Besides, these algorithms are relatively easy to implement since they employ basic mathematical 

expressions [43]. However, at the same time, they show some important limitations. These 

algorithms implicitly assume that there is some underlying stability in the monitored system that may 

not exist. In addition, they rely on past patterns of degradation to project future degradation (it can 

lead to inaccurate forecasts) [43]. 

Amongst the different data driven methods available in the literature to predict the RUL of lithium ion 

batteries, there are two main generic type of methods: artificial intelligence algorithms [19][52] that 

are used to model the evolution of the health indicators as a black box; and stochastic algorithms 

[45][46][53][54] used to predict the RUL and its distribution on on-board applications (they require a 

minimum amount of observations of the evaluated use case). 

1.2 Objectives and scope 

The main objective of this thesis consists on determining accurately the most profitable size of an 

Energy Storage System based on lithium ion batteries satisfying application and lifetime 
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specifications. Specifically, the sizing exercise is focused on the two most relevant lithium ion battery 

applications: the electric vehicle and the energy balancing (stationary) application. 

The most profitable size of the battery solution is believed to come from integrating the prediction of 

the lifespan on that sizing exercise. In that context, the next four sub-objectives have been 

established in order to attain that main objective: 

- [O1] Determine the End of Life condition of the battery solution.  

- [O2] Track the aging behaviour of the battery solution. 

- [O3] Quantify the cost of the project all along the project lifespan. 

- [O4] Get reliable results by improving the accuracy of the constructed elements if necessary. 

The lifespan of a battery solution requires knowledge about the event that determines the End of Life 

itself and about the evolution of the performance until that End of Life event. These would be related 

with the first two sub-objectives. Moreover, based on the believe behind the most profitable sizing, 

the costs related to each  sizing option needs to be quantified taking into account all the costs 

generated all along the lifespan of the project (the warranty period of an Electric Vehicle or the 

exploitation period of a stationary application). This would be related with the third sub-objective. 

Furthermore, the given most profitable sizing value needs to be accurate. For that, the results given 

by all the constructed elements inside the proposal need to be accurate and reliable. This is why 

lastly, additional tools aimed at increasing the accuracy of the detected low accurate elements are 

proposed. This would be the fourth and last sub-objective. 

1.3 Methodology and structure of the thesis 

In order to meet these objectives, this thesis presents the development of all the necessary elements 

on a simulation environment where the levelized costs of a set of size values are calculated. The 

proposed methodology is shown in Figure 7. The outline of the followed structure to complete this 

methodology is shown in Figure 6. 

 
Figure 6: Structure of the thesis. 

Firstly, the End of Life state of the battery is determined (chapter 2). The End of Life is calculated as 

a combined threshold of all the health indicators of interest. Its calculation requires the 

implementation of an electro-thermal model in a simulation environment defined by the end of life 

criteria specified by the application requirements. The correctness of the proposal is validated by 

experimentally testing the application end of life criteria on batteries at different state of health 

values. In addition, it is proved that the OCV does not change significantly all along the aging, that 

the resistance is increased uniformly on the entire SOC range and that the resistance increase due 

to the temperature increase does not change the voltage response significantly. 

Secondly, the health indicators of interest are modelled based on the most relevant stress factors 

(chapter 3). The methodology to acquire the aging data and the construction of the posterior 

empirical models are presented. The validation of the constructed models based on the acquired 

data is performed based on three aspects: the accuracy describing the observed cases, the 
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correctness of interpolations and the real life applicability. In addition, it has been validated that the 

cycling aging and the calendar aging can be linearly added.   

Thirdly, the simulation environment for sizing exercises of lithium ion battery energy storage systems 

is developed (chapter 4). The simulation environment is set to a generic electric vehicle application 

and to a generic stationary application with which the levelized cost of different battery solution is 

calculated. The simulation environment integrates the developed electro-thermal model, end of life 

map and aging models. The developed simulation environment for a generic Electric Vehicle is 

applied on a High-Energy electric bus application as well as on a High-Power one. The developed 

simulation environment for a generic stationary application is applied on an Energy balancing 

application inside a Micro-grid. In addition, it is validated that the damaged generated by different 

operation modes can be added in a cumulative way (cumulative damage model). Additionally, it is 

validated that rest times below 3h do not generate any degradation, except at 100% SOC (at 100% 

SOC any rest time deteriorates the battery). 

Fourthly, the errors in the developed models are minimized (chapter 5). In this case, the critical 

elements in terms of accuracy are the constructed aging models. The error of the aging models is 

minimized by focusing on the errors made when extrapolating in time and facing odd events. On one 

hand, there are cases that the estimation error increases drastically when the generated aging 

models are extrapolated in time. Our proposal consists on lengthening the data of origin thanks to 

half-data analysis to afterwards construct again the aging model. In this way, the extrapolations in 

time turn into interpolations in time, avoiding like this the increase of the estimation error due to 

extrapolations in time. This step is considered as a pre-processing of the data on the top view 

methodology and it is not shown in Figure 7. On the other hand, a prognosis stochastic algorithm is 

selected and employed with real life data to deal with the effect that odd events have on the evolution 

of the health indicators. In this case, it is necessary to have real life data. This step is considered to 

be applied to on-board applications (cannot be integrated on the sizing exercise). 
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1.4 Scientific Contributions 

During this thesis, a simulation environment has been developed to determine the most profitable 

size option. Here, a brief overview of the proposed scientific advances as well as the conference 

contributions and journal publications are presented: 

Proposed scientific advances 

- A methodology to calculate the End of Life of a battery solution based on the application 

requirements. The quantity and entity of the applied Health Indicators on the proposed 

methodology is not restricted. The End of Life calculation can contain all the Heath 

Indicators that the user of the methodology is interested on. 

- A methodology to construct an empirical aging model that covers the aging test matrix 

design and the final validation. The modelling considerations and performance limits 

observed on the validation are reflected on the aging test matrix design. It is a closed loop 

that covers the whole aging modelling process. 

- The levelized cost quantification of the battery solution on a complex application such as the 

evaluated Micro-grid. 

- The simulation environment that integrates all the required elements to select the most 

profitable sizing option of a lithium ion battery Energy Storage System. The simulation 

environment is built firstly for a generic Electric Vehicle application and secondly to a generic 

stationary application. 

- A unified evaluation framework for prognosis algorithms. Thanks to this, further 

improvements of these algorithms can be obtained including the selection of the algorithm 

depending on the application characteristics. 

- The comparison of a certain Particle Filter configuration, a certain Gaussian Process 

configuration, the Extended Kalman Filter and the Unscented Kalman Filter with a common 

evaluation methodology. 

- An artificial data generation tool that can be used to fill uncompleted aging data sets. The 

proposal introduces a new use of half-cell data. This data is used to increase significantly 

the accuracy of empirical aging models. 

Conference contributions 

(1) M. Arrinda, M. Oyarbide, H. Macicior, and E. Muxika, “Prognosis of the remaining useful life 

of a Lithium Battery based on a data-driven method and Gaussian processes,” in Electric 

Vehicle Symposium & Exhibition 30, 2017, pp. 1–12. 

(2) M. Arrinda, M. Oyarbide, H. Macicior, and E. Muxika, “Comparison of Stochastic capacity 

estimation tools applied on remaining useful life prognosis of Lithium ion batteries,” PHM 

Soc. Eur. Conf., vol. 4, no. 1, Jul. 2018. 

(3) M. Arrinda, M. Berecibar, M. Oyarbide, H. Macicior, E. Muxika, and M. Messagie, “Using a 

Second-Life Battery to Optimize the Levelized Cost of Electricity in CO2 Neutral Microgrid,” 

in Electric Vehicle Symposium & Exhibition 32, 2019, pp. 1–14. 

(4) H. Popp, G. Glanz, R. Hamid, N. Zhang, M. Arrinda, S. Ritz, I. Cendoya, “BENCHMARK, 

AGEING AND ANTE-MORTEM OF SOTA CYLINDRICAL LITHIUM-ION CELLS” in Eco-

Mobility 2019 - 14th International A3PS Conference. 

(5) M. Arrinda, A. Bermúdez, D. Gómez, M. Oyarbide, and P. Venegas, “State of charge 

estimation of batteries using Preisach hysteresis model”, in SCEE 2020 Schedule of 

Conference Eindhoven, February 16-20, 2020. 

(6) M. Arrinda, M. Oyarbide, H. Macicior, and E. Muxika, “Improved SOC and SOH estimators 

by considering the effect of rest periods analyzed with half-cell data”, in Batterietagung 

2020. 
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Journal publications 

(1) M. Arrinda, M. Oyarbide, H. Macicior, and E. Muxika, “Unified Evaluation Framework for 

Stochastic Algorithms Applied to Remaining Useful Life Prognosis Problems” (sent to 

International Journal of Prognostics and Health Management, ISSN 2153-2648). 

(2) M. Arrinda, M. Berecibar, M. Oyarbide, H. Macicior, E. Muxika, and M. Messagie, “Levelized 

Cost of Electricity Calculation of the Energy Generation Plant of a CO2 Neutral Micro-grid” 

(sent to Energy, ISSN: 0360-5442). 

(3) M. Oyarbide, D. Sanchez, M. Arrinda, H. Macicior, O. Miguel, “Capacity and impedance 

estimation by analysing and modelling in real time incremental capacity curves” (sent to 

Journal of Energy Storage, ISSN: 2352-152X). 

(4) P. Venegas, M. Arrinda, A. Bermúdez, D. Gómez, M. Oyarbide, “Kalman filter and classical 

Preisach hysteresis model applied to the state of charge battery estimation” (On prcess, it 

will be sent to Journal of Power sources, ISSN: 0378-7753). 
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CHAPTER 2: 

2 End of Life Calculation 

Framework 
 

This chapter responds to the objective of finding the life state condition of the chosen energy storage 

system where the defined End of Life (EOL) criterion is reached. For that, a methodology that 

determines how to calculate the EOL threshold is presented. Here, it is hypothesized that the EOL is 

application dependent and not a fixed threshold value. In order to validate this hypothesis, the 

methodology is tested and validated under two lithium ion battery use cases: a High-Energy 

application and a High-Power application. The contribution of this chapter consist on firstly, the 

proposed methodology itself; and secondly, the validation of the proposed methodology with real 

data. 
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2.1 Introduction 

In global terms, the End of Life (EOL) aspect is related to the concept of failure, which can be defined 

as the fact of something not working, or stopping working as well as it should. The concept of failure 

can be judged by criteria such as performance (performing at unsatisfactory level), functionality 

(incapable of conducting specific function) and availability (machine breaks down) [8]. 

Generally, lithium ion batteries are considered to reach their EOL when their dischargeable capacity 

fades to 80% of its initial value [11] [48] independent to their function. This threshold is a good 

enough criterion to observe which design performs better from an electrochemical design point of 

view, but from the application point of view, a more complex criterion is needed. According to Wenzl 

et al. [26], combining all effects of the life time prediction into one figure of merit (the EOL) is a must 

when facing lithium ion batteries EOL estimation. For this purpose, it was proposed to establish clear 

and unambiguous quantitative definitions for EOL while considering that the EOL depends on the 

nature of application and design parameters of the battery. In this line, Yingzhi et al. [55] defined the 

EOL of a lithium ion battery as the time point when the selected lithium ion batteries can no longer 

provide enough power or energy to accomplish its intended function. Yingzhi et al. [55] estimated the 

EOL by employing as EOL criterion the incapability of fulfilling a 30% Depth of Discharge (DOD) 

without reaching the End of Discharge Voltage of the battery. They displayed the End of Discharge 

Voltage vs cycle trend evolution of (1) full cycles and of (2) 30% DOD cycles so as to calculate the 

cross point between both lines, defining the cross point as the EOL. However, the proposed EOL 

estimation approach only addresses an application under specific use conditions (30% DOD at a 

certain current and at a certain temperature). It still remains notoriously difficult to accurately predict 

the EOL under environmental and load conditions different from the training data set [56]. 

In a global sense, it can be defined that assets fail when their level of degradation or condition 

variable
 
reach a specified failure threshold (the functionality requirement is no longer fulfilled) [50]. 

Methods depending on setting a critical level (a threshold called “X”) for the condition variable show 

two difficulties: firstly, relating the unobserved condition to the Condition Monitoring variables; and 

secondly, estimating the X when the selected condition variable is unobservable [41]. 

In addition, according to Gorjian et al. [50], even the raw concepts of what threshold should be and 

how it should be specified are not clear. The fact is that lithium ion batteries are complex 

electrochemical systems with nonlinear degradation behaviours, which depend on various intrinsic 

features and external conditions, making the EOL estimation a challenge [20]. In this scenario, this 

chapter proposes a methodology that defines a functional mapping of the EOL threshold that 

approximates the simulation to the EOL for given input conditions [57]. Firstly, the methodology of 

estimating the EOL threshold is presented. Secondly, the typical unobserved condition variables 

(health indicators) are introduced. Here, the link between Health Indicators and Condition Monitoring 

variables (behavioural variables) are correlated. Thirdly, possible application requirements are 

treated. Two examples of use are introduced (a High-Energy application and a High-Power 

application). Fourthly, the simulation environment is introduced where EOL threshold is mapped by 

simulating the battery performance on a range of operation conditions. Fifthly, the results of the 

proposed two examples of use are presented. Sixthly, some hypotheses done on this approach as 

well as the verification of the obtained results in one of the proposed examples of use are validated. 

Finally, the discussion of the obtained results and the conclusions are presented. 

2.2 Methodology 

The proposed approach focuses on an “M” dimensional EOL threshold mapping, where M represents 

the chosen amount of Health Indicators. For that, an algorithm that searches the combinational value 

of the selected Health Indicators at which the battery stops fulfilling the requirements defined by the 

application is done. For that, the proposed approach is divided in five different steps: 

1. Select the Health Indicators of interest. 

2. Detect the behavioural variable (electric, thermal, physical, etc.) where the effects of the 

chosen Health Indicators can be appreciated. 
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3. Define the EOL criteria by addressing the link between the effect of each of the Health 

Indicators of interest on the behavioural variables and all the application requirements: 

generate the Testing Inputs. 

4. Define the value vector of the chosen Health Indicators that will be evaluated except for one. 

Generate the evaluation grid composed with the combination of those vectors. 

5. Find the combinational value of the Health Indicators where the battery stops fulfilling the 

EOL criteria using the last Health Indicator under evaluation as a free variable. 

The first two steps consist on the use Health Indicators. There are many different Health Indicators 

and depending on the aim and resources of the study, it will be more interesting to use one or 

another. It is also important to detect properly the measurable variables that have an effect on each 

Health Indicator. Once those variables are detected, the link of the Health Indicators with the 

restrictions imposed by the application on the battery performance will be allowed.  

The third and fourth steps consist on merging the chosen Health Indicators on the application 

environment in order to generate the Testing Inputs and to delimit the simulation grid. These Testing 

Inputs will feed up the battery model which is set up to map the EOL thresholds. Firstly, the 

application requirements are translated into battery performance restrictions related to the detected 

behavioural variables on the step two (the ones where the effects of the selected Health Indicators 

can be appreciated). In this way, the EOL criteria and the Health Indicators are mixed. Next, the 

Testing Inputs that respond to each EOL criteria are defined. These Testing Inputs are composed by 

the initialization parameters and the operation of the battery. The operation can be a current profile 

that describes the application or a functional procedure that defines a range of operations. Once this 

is done, the case study is properly delimited to allow the posterior simulations. For this, 𝑴− 𝟏 

numbers of vectors are determined. Each vector has the values that each Health Indicator but one 

will take on the simulations. Then the evaluation grid is generated based on the combinations of 

those vectors. The procedure of deducting each value vectors but one is the same in all the cases: 

- Define the limits of interest of the HIs under study. For that, find the increase or decrease of 

each of those Health Indicators that leads to the non-fulfilment of the application 

requirements at the Beginning of Life. 

- Define the intercalation between the limits by considering the balance between accuracy 

level and computational resources. 

This is done with all the Health Indicators except one. The last health indicator of interest is used to 

find the exact conditions where the battery stops fulfilling the application requirements on the 

simulations. For that, the electric-thermal behaviour of the battery with the chosen Health Indicators 

as input is simulated. Thanks to this, an 𝑴 dimensional EOL threshold map that takes into account 𝑴 

Health Indicators of interest is calculated. The development of the algorithm that introduces the 

threshold mapping is the fifth step (Algorithm 1) 

{𝑬𝒐𝑳𝑻𝑯
(𝒊)
}
𝒊=𝟏

𝝆
= 𝑬𝑶𝑳𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝑴𝒂𝒑𝒑𝒊𝒏𝒈 ({𝑯𝑰

(𝒋)}
𝒋=𝟏

𝑴
, {𝑬𝑶𝑳𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂

(𝒖)
, 𝑻𝑰(𝒖)}

𝒖=𝟏

𝑳
)  

1:   {𝝑𝑬
(𝒊)
}
𝒊=𝟏

𝝆
= 𝐆𝐑𝐈𝐃(𝑯𝑰(𝟏), ⋯ ,𝑯𝑰(𝑴−𝟏)) 

2:   for 𝒊 = 𝟏 to 𝝆 do 

3:       for u= 𝟏 to 𝑳 do 

4:            𝑬𝒐𝑳𝑻𝑯_𝒕𝒆𝒎𝒑
(𝒋)

= 𝑩𝑨𝑻𝑻_𝑴𝑶𝑫𝑬𝑳(𝑬𝑶𝑳𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂
(𝒖)

, 𝝑𝑬
(𝒊)
, 𝑯𝑰(𝑴), 𝑻𝑰(𝒖)) 

5:       end for 

6:       𝑬𝒐𝑳𝑻𝑯
(𝒋)
= 𝑴𝑰𝑵(𝑬𝒐𝑳𝑻𝑯_𝒕𝒆𝒎𝒑) 

7:   end for 
Where 

𝝆 = The number of threshold points or evaluation points on the EOL map. 

𝝑𝑬
(𝒊)

 = (𝒊) evaluation point or combination of the Health Indicator values under evaluation. 

𝑬𝒐𝑳𝑻𝑯
(𝒊)

 = The End of Life threshold value at (𝒊) evaluation point. 

𝑯𝑰(𝒋) = Value vector of (𝒋) Health Indicator. 

𝑮𝑹𝑰𝑫 = Generator of the evaluated numerical grid. 

𝑩𝑨𝑻𝑻_𝑴𝑶𝑫𝑬𝑳 = Battery electric-thermal model adapted to the EOL criteria and the Health Indicators. 
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𝑬𝑶𝑳𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂
(𝒖)

 = The (𝒖) End of Life criterion imposed by the application requirements. 

𝐌 = Amount of Health Indicators. 

𝑳 = Amount of End of Life criteria. 

𝑻𝑰 = The test input of the model that allows the test of each EOL criterion. 

Algorithm 1: Top view algorithm of the proposed EOL mapping approach. 

2.3 Health Indicators 

In a first instance, the Health Indicators that fit our interest need to be selected. The Health Indicators 

represent in a resumed way the State of Health (SOH) of a battery. Each of the Health Indicators has 

its own characteristics. The most common health indicators are the next ones: 

- The decrease rate on the dischargeable capacity (relative value to the dischargeable 

capacity measured at the Beginning of Life of the battery in study). 

- The increase rate on the pure ohmic resistance response of the battery (relative value to the 

pure ohmic resistance measured at the Beginning of Life of the battery in study). 

The relative value of the dischargeable capacity of the battery is often used as the main Health 

Indicator and labelled as the SOH itself. It is a direct representation of the energy the battery is able 

to dispose. A decrease of the dischargeable capacity leads to faster voltage evolution of the battery 

under the same current profile. Because of this, the battery reaches faster the End of Discharge 

voltage which can mean the end of the fulfilment of a requirement of the application under study. 

The relative value of the inner pure ohmic resistance of the battery appears in many studies since it 

limits the applicable power at certain voltage levels, which conditions highly the charging time of fast 

charging and slightly the dischargeable capacity. The increase of the pure resistive value of the 

battery leads to a higher reduction of the voltage and due to this, there could be cases where the End 

of Discharge voltage limit is reached. 

These two health indicators are relatively easy to measure, and the effects these two health 

indicators show on the performance decrease of the battery can be linearly addressed to application 

requirements (the increase of the pure ohmic resistance as well as the decrease of the dischargeable 

capacity affects the voltage response of the battery). Nonetheless, these two Health Indicators are 

not the only ones that can be used to determine the SOH of the battery. There are some other Health 

Indicators that can be added on the proposed EOL mapping such as: 

- Decrease on the End of Discharge voltage on repetitive operation conditions [55]. 

- The drift of the Open Circuit Voltage (OCV) of the electrodes [55]. 

- The increase of the time constant of the transitory response of the battery [26]. 

- The decrease on the thermal conductivity of the inner components of the battery [26]. 

- The increase of the effect of the reversible part on the whole thermal heat generation [26]. 

- The Loss of Lithium Ion Inventory (LLI) [27]. 

- The Loss of Active Material (LAM) on the electrodes [27]. 

- The organic reduction on the electrolyte or the pressure inside the battery [26]. 

However, it is not common to find them in other works. Some of them represent variables with low 

observability (LLI, LAM or the organic concentration of the electrolyte cannot be measured, need to 

be guessed under several assumptions), some other represent variables with no records on typical 

Aging Check-up Tests (thermal performance variations are typically dismissed), and a few represent 

variables with a lower study interest level respect to the commonly used Health Indicators (for 

example, since the increase of the pure ohmic resistance is the most representative element on the 

increase of the impedance of the battery on the aging process, the rest components of the 

impedance, such as the transitory time constant, are often dismissed). 

Based on this, the proposed approach focuses on the two most common Health Indicators: the 

decrease rate on the dischargeable capacity and the increase rate on the pure ohmic resistance 

response of the battery. 
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2.4 Application requirements 

The proposed EOL mapping is application directed. This means that the application becomes the 

main element on the EOL definition criterion. Among the typical applications (low power electronic 

devices, stationary energy storage systems, electric vehicles), these are the most common restricting 

requirements: 

- A minimum time of operation. 

- A maximum charging time. 

- A maximum heat generation. 

- An assurance of a catastrophic event not happening (safety margin). 

In this study, two applications are evaluated in an electric mobility scenario. Firstly, an application 

with a high-energy requirement is evaluated; and secondly with an application with a high-power 

requirement. 

2.4.1 High-Energy application 

The high-energy application consists on a battery integrated on an electric public bus with the next 

restrictions: 

1. The Battery Energy Storage System (BESS) integrated on the full electric bus has to supply 

the energy to be working 17 hours non-stop (a minimum autonomy restriction). 

2. The rest time of the bus at night of 7 hours is employed to do the charging of the BESS (a 

charging time restriction). 

For that, a High-Energy NMC-C pouch battery has been chosen. The battery characteristics are 

shown in Table 3. 

Item Specification 

Nominal Capacity 54 [Ah] 

Maximum voltage 4.2 [V] 

Minimum voltage 2.5 [V] 

Standard charge current 54 [A] 

Standard discharge current 54 [A] 

Maximum temperature 45 [ºC] 

Table 3: High-Energy battery specifications 

The Test Input that fits the charge time restriction is a Constant Current-Constant Voltage (CC-CV) 

standard charge at 1C. In this case, the charge time of 7h is assumed to be long enough to charge 

the battery to the desired SOC (100% in this case) in any SOH. Therefore, this EOL criterion is 

ignored on the EOL mapping. 

The Test Input that fits the minimum autonomy restriction consists on the operation profile of the 

application (starting from a 100% SOC). This profile has been generated in terms of the orography of 

a selected route (the generation of the current use profile is out of the scope of this study) and tested 

on the battery level in a climatic chamber at 25ºC at CIDETEC (see voltage response and SOC 

evolution in Figure 8). 

 
Figure 8: Application profile: voltage response and the SOC evolution of the battery. 
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According to the observed response of the battery under the operation conditions, the vector with the 

capacity decrease values that will be studied is defined. The range of that vector is selected based 

on the reached SOC value at the end of the discharge at Figure 8. The SOC value at the end of the 

discharge is 12.17% if the battery starts the discharge at a fully charged state, at least at the 

Beginning of Life. Taking this into account, the range of the capacity decrease has been limited from 

0% to 20%. The jump between points is decided in terms of the desired accuracy level and 

computational resources. In this case, a jump of 0.1% has been chosen. 

Once the values that the first health indicator on the study will take are defined, the following next 

health indicators need to be deducted until reaching the last one. In this case, the next health 

indicator is the last one, so there is no need to define more vectors for the mapping of the EOL.  

2.4.2 High-Power application 

The high-power application consists on a battery integrated on an electric public bus with the next 

restrictions: 

- The BESS integrated on the full electric bus has to supply enough energy to do at least once 

the predefined route after each fast charging stops (a minimum autonomy restriction). 

- The bus will be resting 7 minutes at both ends of the route, where a fast charging will be 

applied (a fast charging time restriction). 

- The bus needs to be working 16 hours without any charge out of the schedule (a second 

autonomy restriction). 

- The rest time of the bus at night of 8 hours is employed to do a slow charging of the BESS 

(a second charging time restriction). 

For that, a High-Power NMC-LTO prismatic battery has been selected. The battery characteristics 

are shown in Table 4. 

Item Specification 

Nominal Capacity 23 [Ah] 

Maximum voltage 2.7 [V] 

Minimum voltage 1.5 [V] 

Fast charge current 115 [A] 

Fast discharge current 115 [A] 

Maximum temperature 55 [ºC] 

Table 4: High-Power battery specifications 

The Testing Input that fits the second charge time restriction is a CC-CV standard charge at 1C. In 

this case, the charge time of 8h is assumed to be long enough to charge the battery to the desired 

SOC (100% in this case) in any SOH. Therefore, this EOL criterion is ignored on the EOL mapping. 

The Testing Input that fits the first minimum autonomy restriction consists on the operation profile of 

the application. This profile has been generated in terms of the orography of a selected route (the 

generation of the current use profile is out of the scope of this study) and tested on battery level on a 

climatic chamber at 25ºC at CIDETEC (see voltage response and SOC evolution in Figure 9). This 

EOL criterion checks only the fulfilment of the use profile on idle condition (initial SOC set to 100%). 

 
Figure 9: Voltage and SOC response of the battery under the first Testing Input. 
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The Testing Input that fits the first charge time restriction is a CC fast charge of 7 min at 4C that 

could change to a CC-CV depending on the initial SOC and the resistance of the battery. In this 

case, firstly the fulfilment of a fast charge plus a use case discharge would be evaluated after the first 

use case discharge, however, the fulfilment of the second minimum autonomy restriction implies that 

this first charge time restriction is fulfilled. This Testing Input is not tested; instead, the tested one is 

the Testing Input that fits the second minimum autonomy restriction. 

The second minimum autonomy restriction consists on the repetition of the first charge time 

restriction and the first minimum autonomy restriction along the 16 hours of working, which leads to 

the repetition of both Testing Inputs along the working period of the bus. This Testing Input has been 

tested on the battery level in a climatic chamber at 25ºC at CIDETEC (see voltage response and 

SOC evolution in Figure 10). 

 
Figure 10: Voltage and SOC response of the battery under the second Testing Input. 

According to the observed response of the battery under the firstly defined Testing Input, the vector 

with the capacity decrease values that will be studied is defined. The range of that vector is selected 

based on the reached SOC value at the end of the discharge at the Testing Input more restrictive, in 

this case the second Testing Input, see Figure 10. The minimum SOC value that the battery reaches 

among all the discharges is 39.79% if the battery starts the first discharge at a fully charged state, at 

least at the Beginning of Life. Taking this into account, the range of the capacity decrease has been 

limited from 0% to 45%. The jump between points is decided in terms of the desired accuracy level 

and computational resources. In this case, a jump of 0.1% has been chosen. 

Again in this case, once the values that the first health indicator on the study will take are defined, the 

following Health Indicators need to be deducted until reaching the last one. In this case, the next 

health indicator is the last one, so there is no need to define more vectors for the mapping of the 

EOL. 

2.5 Simulation 

Once defined all the variables on the EOL mapping approach are properly defined, the actual EOL 

values need to be calculated. For that, the electric and thermal behaviour of the selected battery is 

modelled where the Health Indicators are defined as free variables (variables that can be modified 

from the outside). With this, the EOL mapping algorithm is applied and the EOL “M” dimensional 

threshold is calculated. 

2.5.1 Battery model 

The applied battery model describes the electric and thermal behaviour of the chosen battery. It is 

assumed that the scale up from the battery level to the BESS is trivial and that the interactions 

between batteries are negligible. The developed electric model [58] and thermal model [59] are 

shown in Figure 11. The knowledge behind these models are based on the theses of M. Oyarbide 

[58]  and G. Vertiz [59]. 
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Figure 11: a) Equivalent electric model; b) Equivalent thermal model. 

The proposed electric model is a first order RC equivalent electric circuit that employs the 

thermodynamically stable open circuit voltage as the OCV, the ohmic resistance of the battery as the 

𝑅 and the polarization of the battery caused by transfer, diffusion and other factors as the 𝑅𝑝𝐶𝑝 

network, see Eq. (1) and (2) [60]. 

𝐼(𝑡𝑘) = 𝐶𝑝
𝑑𝑈𝑝(𝑡𝑘)

𝑑𝑡
+
𝑈𝑝(𝑡𝑘)

𝑅𝑝
 (1) 

𝑈(𝑡𝑘) = 𝑂𝐶𝑉(𝑡𝑘) − 𝐼(𝑡𝑘)𝑅 − 𝑈𝑝(𝑡𝑘) (2) 

Parameter Description 

𝐼 The current delivered by the battery. 

𝑈𝑡 , 𝑈𝑝 The terminal voltage and the voltage across the 𝑅𝑝𝐶𝑝 respectively. 

𝑂𝐶𝑉 The Open Circuit Voltage. 

Table 5: The first order RC equivalent circuit model [60] 

This electric circuit is one of the most common equivalent circuit models applied on battery modelling 

[61], which includes an OCV, a resistor and a RC network in series to forecast battery response at a 

particular SOC [62]. However, since in real applications (in Lithium ion battery applications) all 

parameters vary as functions of working conditions (temperature, current rate) and battery usage 

history (degradation) [62], multi-value parameters are usually applied such as in this case. For that, 

an array of the values of the parameters at different conditions are saved allowing a posterior look up 

from a table, finding the appropriate value for each parameter interpolating them at different 

conditions. For the parametrization of the resistor and the RC network, a pulse characterization test 

is performed at six different current rates (2C, 1C and 0.5C at charge and discharge) as well as at 

three different temperatures (10ºC, 25ºC and 45ºC), see Table 6. The OCV values were also taken at 

those three different temperatures profiting the rest times between different pulses of the applied 

pulse characterization test. 

Step Action 1 Mode Conditions Comments Current Temp. 

1 Rest - 1h   

T 

2 Charge CC-CV Vmax@0.05C  C-rate 

3 Rest - 1h   

4 Discharge CC-CV Vmin@0.05C Capacity measurement
1
 C-rate 

5 Rest - 1h   

6 Start cycle   Pulse test, charge, start  

7 Rest - 1h Take OCV
2
  

8 Charge - 60s@not 100% SoC Charge Pulse
4
 C-rate 

9 Rest - 10min   

10 Charge - 10%SOC Set SOC: 10,20,…,80,90  

11 End cycle     

12 Charge CC-CV Vmax@0.05C  C-rate 

13 Start cycle   Pulse test, discharge, start  

14 Rest - 1h Take OCV
2
  

15 Discharge - 60s@not 0% SOC Discharge Pulse
3
 C-rate 

16 Rest - 10min   

17 Discharge - 10%SOC Set SOC: 90,80,…,20,10  

18 End cycle     



25 

19 Discharge CC-CV Vmin@0.05C  C-rate 

20 Rest - 1h   

21 Charge - 30%SOC Charge to 30% C-rate 

Table 6: Pulse characterization test used on the parametrization of the equivalent electric circuit 

The proposed thermal model is a 1D RCR equivalent thermal circuit that employs the thermal 

behaviour of the battery as a first order impedance (𝑅𝑡ℎ_𝑏𝑎𝑡 , 𝐶𝑡ℎ_𝑏𝑎𝑡) [63] and the cooling as a thermal 

resistance (𝑅𝑡ℎ_𝑐𝑜𝑜𝑙) (Eq. (3), Eq. (4) and Eq. (5)). Inside the thermal behaviour of the battery, the 

capacitive response (𝐶𝑡ℎ_𝑏𝑎𝑡) is linked to the specific heat generation of the battery and the resistive 

response (𝑅𝑡ℎ_𝑏𝑎𝑡) is linked to the inner thermal conductivity of the battery. This model is built under 

next assumptions: 

- The heat is generated in just one point (1D). 

- The thermal properties of the battery are completely homogeneous all along the battery. 

- The thermal system of the battery is isotherm. 

- The physical properties of the battery are independent to the temperature. 

- The battery experiences only a convection cooling. 

𝑄𝑐𝑜𝑜𝑙(𝑡𝑘) =
𝑇𝑏𝑎𝑡(𝑡𝑘−1) − 𝑇𝑎𝑚𝑏(𝑡𝑘)

𝑅𝑡ℎ_𝑏𝑎𝑡 + 𝑅𝑡ℎ_𝑐𝑜𝑜𝑙
 (3) 

𝑄𝑏𝑎𝑡(𝑡𝑘) =  𝐼(𝑡𝑘)
2 · 𝑅 + 𝐼(𝑡𝑘) ∙ 𝑇𝑏𝑎𝑡(𝑡𝑘−1) ∙

𝑑𝑂𝐶𝑉

𝑑𝑇
 (4) 

𝑇𝑏𝑎𝑡(𝑡𝑘) = 𝑇𝑏𝑎𝑡(𝑡𝑘−1) + ∆𝑡 ∙
𝑄𝑏𝑎𝑡(𝑡𝑘) − 𝑄𝑐𝑜𝑜𝑙(𝑡𝑘)

𝐶𝑡ℎ_𝑏𝑎𝑡
 (5) 

𝐶𝑡ℎ_𝑏𝑎𝑡 =
𝑄

𝑚 ∙
𝑑𝑇
𝑑𝑡

 (6) 

Parameter Description 

𝑄𝑐𝑜𝑜𝑙 The heat exchange from the battery to the exterior. 

𝑇𝑏𝑎𝑡(𝑡𝑘) The battery inner temperature at the time instant 𝑡𝑘. 

𝑇𝑎𝑚𝑏 The room temperature. 

𝑄𝑏𝑎𝑡 The heat generation of the battery. 
𝑑𝑂𝐶𝑉

𝑑𝑇
 

The entropic factor of the battery. 

𝑄 The applied heat [W]. 

𝑚 Mass of the element [Kg]. 
𝑑𝑇

𝑑𝑡
 

The temperature variation rate [ºK/s]. 

Table 7: The second order RC equivalent circuit model [59] 

The parameters of the model are calculated by applying three specific thermal tests. Firstly, the 

specific heat capacity is calculated using the energy conservation Eq. (6) on the THT heat capacity 

protocol defined in Table 8. Then, the entropic factor of the battery, which represents the evolution of 

the OCV at different temperatures considering different SOC, is modelled with the test described in 

Table 9. Finally, the remaining thermal variables of the equivalent thermal circuit are obtained by 

fitting the equivalent thermal circuit equations on any performance test. In this case, the first part of 

the Hybrid Peak Pulse Characterization test is taken: the 1C charge discharge. 

Step Comments 

1 Calibration of the ARC calorimeter according to mass and battery volume 

2 Joint assembly of sandwich type analysis (battery-thermal blanket-battery) 

3 Heat generation according to THT (5-10mW/gr and 7.75W/m2 max.) 

4 Adiabatic environment generation (Heaters ARC) 

5 Measuring dT / dt stable area (30ºC and 50ºC) 

Table 8: Specific heat capacity test 
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Step Action Value End Condtions Comments 

1 Discharge 1C Vmin 

[*initial 24h pause at 0% 
and 100% SOC. The rest 

SOC rest 2h] 

2 Charge 1C % SOC desired 

3 Pause - *24/2 hours 

4 Set Temp -20ºC - 

5 Pause - 2 hours 

6 Set Temp -10ºC - 

7 Pause - 2 hours 

8 Set Temp 0ºC - 

9 Pause - 2 hours 

10 Set Temp 10ºC - 

11 Pause - 2 hours 

12 Set Temp 20ºC - 

13 Pause - 2 hours 

14 Set Temp 30ºC - 

15 Pause - 2 hours 

16 Set Temp 40ºC - 

17 Pause - 2 hours 

18 Set Temp 50ºC - 

19 Pause - 2 hours 

20 Set Temp 60ºC - 

21 Pause - 2 hours 

Table 9: Entropic factor tests 

2.5.2 End of Life mapping algorithm 

The proposed EOL mapping algorithm is presented in Algorithm 1. It consists on searching the 

values of each of the selected Health Indicator at which the EOL criteria is fulfilled. For that, the 

described electric thermal model is simulated under certain use conditions related to the EOL criteria 

(under certain Testing Input). 

2.5.2.1 High-Energy application 
The EOL criterion on this case is composed by only one criterion, a minimum autonomy restriction 

where the current input profile needs to be fulfilled without crossing the minimum voltage threshold. 

The two Health Indicators under evaluation are the dischargeable capacity decrease and the pure 

ohmic resistance increase. The capacity decrease has been already defined (a vector value from 0 to 

20 with a step of 0.1). The algorithm performs the evaluation loop 𝑵 times. 𝑵 is the length of the 

capacity decrease value vector (𝑵 = 𝟐𝟎𝟎). Next, the value of the second and last Health Indicator is 

calculated (the resistance increase). This Health Indicator is taken as a free parameter which can 

take any value. So as to simplify the problem, some assumptions are taken: 

- The polarization voltage and OCV do not change with the increase of the pure ohmic 

resistance. 

- The resistance is increased uniformly at the whole SOC range. 

-  The change on the heating of the cell due to the resistance increase doesn’t affect the 

voltage response of the cell. 

Considering these three assumptions, the required resistance increase (∆𝑅) that leads to overcome 

the minimum voltage threshold (𝑈𝐸𝑂𝐷) is calculated at each loop iteration, see Eq. (7). 

∆𝑅 = 𝑚𝑖𝑛 (
𝑈𝑡 − 𝑈𝐸𝑂𝐷

𝐼𝑅
) ∗ 100, ∆𝑅 ∃ ℝ+ (7) 

Parameter Description 

∆𝑅 The resistance increase. 

𝑈𝑡 The simulated battery voltage response. 

𝑈𝐸𝑂𝐷 The safety end of discharge voltage. 

𝐼 The current. 

𝑅 The pure ohmic resistance. 

Table 10: The calculation of the EOL threshold pure ohmic resistance increase 



27 

Since there is only one EOL criterion, the obtained values at this loop are the final values of the EOL 

threshold map. 

2.5.2.2 High-Power application 
The EOL criterion on this case is composed by two criteria: two minimum autonomy restrictions 

where the current input profile needs to be fulfilled without crossing the minimum voltage threshold. 

The first criterion is defined by the operation of the system while the second is composed by the 

repetition of the operation described on the first criterion along with fast charges. 

In both criteria, the two Health Indicators under evaluation are the dischargeable capacity decrease 

and the pure ohmic resistance increase. The capacity decrease has been already defined (a vector 

value between 0 and 60 with a step of 1) which takes into account both criteria EOL. The algorithm 

performs the evaluation loop 𝑵 times. 𝑵 is the length of the capacity decrease value vector (𝑵 =

𝟔𝟎𝟎). Next, the value of the second and last Health Indicator is calculated (the resistance increase). 

This Health Indicator is taken as a free parameter which can take any value. So as to simplify the 

problem, some assumptions are taken: 

- The polarization voltage and OCV do not change with the increase of the pure ohmic 

resistance. 

- The resistance is increased uniformly at the whole SOC range. 

-  The change on the heating of the cell due to the resistance increase doesn’t affect the 

voltage response of the cell. 

Considering these three assumptions, the required resistance increase (∆𝑅) that leads to overcome 

the minimum voltage threshold (𝑈𝐸𝑂𝐷) is calculated at each loop iteration, see Eq. (7). 

The obtained value defines the minimum resistance increase with which the battery stops fulfilling the 

discharge requirements. For the first criterion, where there are only regenerative charges, the 

obtained value is enough to have a relative accurate EOL threshold (as accurate as the model itself). 

However, the use profile on the second EOL criterion considers fast charges. It cannot be assumed 

that the resistance increase of the battery does not affect the response of the battery on those fast 

charges. In this scenario, firstly, a Constant Voltage (CV) charge need to be simulated, and secondly, 

a way of finding iteratively the real EOL threshold need to be generated when integrating those fast 

charges. 

For the first issue, a Proportional Integral (PI) controller that simulates the charge at CV is 

implemented, see Algorithm 2. The PI controller’s parameters are adjusted manually, where the 

integral controller’s parameter is left dependent to the resistance increase (𝑲𝒑𝒆 = 20,𝑲𝒊𝒆 = 500 ∆𝑅⁄ ). 

The previous integral value (𝐼𝐶0) on the first iteration is made equal to Eq. (8). 

𝐼𝐶0 = −
𝐼𝐶𝐻𝐴 − (𝑒𝑟𝑟𝑜𝑟 ∙ 𝐾𝑝𝑒)

𝑘𝑖𝑒
 (8) 

Parameter Description 

𝐼𝐶0 The initial current integration before applying the PI controller. 

𝐼𝐶𝐻𝐴 The current consign. 

𝑒𝑟𝑟𝑜𝑟 The difference in voltage between the measurement and the end of charge voltage. 

𝐾𝑝𝑒  The proportional gain on the PI controller. 

𝑘𝑖𝑒  The integral gain on the PI controller. 

Table 11: The initialization of the CV controller 

𝑰𝑪𝑯𝑨 = 𝑪𝑽𝒄𝒐𝒏𝒕𝒓𝒐𝒍𝒍𝒆𝒓(𝑰𝑪𝟎, 𝑰𝑪𝑯𝑨_𝑵, 𝑼𝑬𝑶𝑪, 𝑼𝒆𝒔𝒕, 𝑲𝒊𝒆, 𝑲𝒑𝒆)  

1:   𝒆𝒓𝒓𝒐𝒓 = 𝑼𝑬𝑶𝑪 −𝑼𝒆𝒔𝒕 
2:   𝑰𝑪 = 𝑰𝑪𝟎 + 𝒆𝒓𝒓𝒐𝒓 

3:   𝑰𝑪𝑯𝑨 = −((𝒆𝒓𝒓𝒐𝒓 ∙ 𝑲𝒑𝒆) + (𝑰𝑪 ∙ 𝑲𝒊𝒆)) 

4:   if 𝑰𝑪𝑯𝑨 < 𝑰𝑪𝑯𝑨_𝑵 

5:       𝑰𝑪𝑯𝑨 = 𝑰𝑪𝑯𝑨_𝑵 
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6:   else if 𝑰𝑪𝑯𝑨 > 𝟎 

7:       𝑰𝑪𝑯𝑨 = 𝟎 
8:   end if 
Where 

𝑰𝑪𝑯𝑨_𝑵 = The charge current at Constant Current (CC) phase. 

𝑼𝑬𝑶𝑪 = The end of charge voltage, which is also the consign voltage. 

𝑼𝒆𝒔𝒕 = The estimated voltage with the model. 

𝑲𝒊𝒆 = Integral controller’s gain. 

𝑲𝒑𝒆 = Proportional controller’s gain. 

𝑰𝑪𝑯𝑨 = Charging current consign. 

𝒆𝒓𝒓𝒐𝒓 = The voltage difference between the estimated and the consign voltages. 

Algorithm 2: PI controller algorithm used to control the CV phase on the fast charging process. 

For the second issue, a bisection method is applied with a limit of iterations (𝑁𝐵𝑀 = 𝟓), see Algorithm 

3. It is assumed that the real resistance increase (∆𝑅) is below the first calculated resistance 

increase (∆𝑹𝟎). As a result, the limit value that makes overcome the EOL criterion is achieved. 

∆𝑹 = 𝑩𝒊𝒔𝒆𝒄𝒕𝒊𝒐𝒏𝑴𝒆𝒕𝒉𝒐𝒅(∆𝑹𝟎, 𝑰, 𝑲𝒊𝒆, 𝑲𝒑𝒆)  

1:   𝑺𝒕𝒖𝒅𝒚𝒓𝒂𝒏𝒈𝒆 = [
∆𝑹

𝟐
, ∆𝑹] 

2:   for 𝒊 = 𝟏 to 𝑵𝑩𝑴 do 

3:       ∆𝑹𝒕𝒆𝒔𝒕 = 𝒎𝒆𝒂𝒏(𝑺𝒕𝒖𝒅𝒚𝒓𝒂𝒏𝒈𝒆) 

4:       𝑺𝑶𝑪𝒕𝒆𝒔𝒕 = 𝑩𝑨𝑻𝑻_𝑴𝑶𝑫𝑬𝑳_𝑷𝑰(∆𝑹𝒕𝒆𝒔𝒕, 𝑰, 𝑲𝒊𝒆, 𝑲𝒑𝒆) 

5:       if 𝑺𝑶𝑪𝒕𝒆𝒔𝒕 < 𝟎 

6:            𝑺𝒕𝒖𝒅𝒚𝒓𝒂𝒏𝒈𝒆 = [
∆𝑹

𝟐
, ∆𝑹𝒕𝒆𝒔𝒕] 

7:       else 

8:           𝑺𝒕𝒖𝒅𝒚𝒓𝒂𝒏𝒈𝒆 = [∆𝑹𝒕𝒆𝒔𝒕, ∆𝑹] 

9:       end if 
11: end for 

12: ∆𝑹 = 𝑺𝒕𝒖𝒅𝒚𝒓𝒂𝒏𝒈𝒆(𝟏) 

Where 

𝑵𝑩𝑴 = The number of iterations on the bisection method. 

∆𝑹𝒕𝒆𝒔𝒕 = The resistance increase value under study. 
𝑺𝑶𝑪𝒕𝒆𝒔𝒕 = The obtained SOC response of the battery under the I current profile. 

Algorithm 3: Bisection method used on the Resistance increase calculation with fast charges. 

Finally, the obtained thresholds on both criteria are compared and the more restrictive threshold is 

selected as the real one. 

2.6 Results 

The EOL mapping algorithm has been applied to both examples of use. The EOL map for the 

application with a high-energy requirement is displayed in Figure 12 and the EOL map for the 

application with a high-power requirement is displayed in Figure 13. 
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Figure 12: The obtained EOL map in terms of the resistance increase and the capacity decrease on the 

High-Energy example of use. 

 
Figure 13: The obtained EOL map in terms of the resistance increase and the capacity decrease on the 

High-Power example of use. 

2.7 Validation 

The obtained results have been obtained under certain hypothesis, which are analysed and validated 

here. The first hypothesis states that the polarization voltage and OCV do not change with the 

increase of the pure ohmic resistance. To validate this: 

- Firstly, the OCV of a fresh and aged cell has been compared (Figure 14). It can be seen how 

the aged and fresh cell have practically an identical OCV profile. 

- Secondly, the RC parameters have been displayed (Figure 15). It can be seen that the fresh 

and aged RC parameters have values on the same order. 
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- Thirdly, the correctness of the proposed model representing the behaviour of an aged 

battery is tested, see Figure 16. The proposed model represents with similar accuracy both 

batteries, the fresh one and the aged one, so it can be said that this hypothesis is correct. 

This hypothesis has been validated only with the data of the High-Energy battery because there is 

not data of deeply degraded High-Power batteries, therefore, it cannot be validated on those 

batteries. 

 
Figure 14: The OCV values at fresh state and aged state of the High-Energy battery. 

 
Figure 15: Charge transfer impedance at fresh state and aged state of the High-Energy battery. 
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Figure 16: Difference between the estimated voltage and the measured one at fresh state and aged state 

of the High-Energy battery. 

The second hypothesis states that the resistance is increased uniformly at the whole SOC range. 

This hypothesis is done to simplify the mapping and the simulation. The obtained impedance 

increase is the required minimum increase to overcome the EOL criteria at the most critical SOC. In 

this hypothesis, the difference between the increase on the most critical SOC values (below 20% 

SOC) and the SOC at where the actual resistance is calculated (50% SOC) is evaluated. The results 

of 4 tested batteries on the proposed aging test matrix on the High-Energy application are shown in 

Table 12. It can be highlighted three aspects of the results: 

- The decrease of the resistance due to the aging (the negative values on cell nº 16). 

- A maximum difference on the pure ohmic resistance increase of 15.55% at the cell nº 54 

(the one with higher degradation) given between the resistance increase values at 5% SOC 

and at 50% SOC. 

- A common behaviour of increasing the resistive behaviour when the degradation increases. 

The decrease of the impedance at a 4% SOH decrease and the difference on the resistive behaviour 

increase on different SOC can be given by the fact of estimating the pure resistive behaviour of the 

battery by fitting a 60s current pulse profile with a simplified equivalent electric circuit. The estimation 

method introduces an error that should be added to the estimated values, which has not been done. 

In addition to this, the physic behind the estimated parameter itself tells us that the resistive 

behaviour of the battery is not a stable parameter. The pure ohmic resistive behaviour of a lithium ion 

battery is composed by many different components inside the battery (the dissolved lithium rate on 

the electrolyte, the organic rate on the electrolyte, the thickness of the Solid Electrolyte Interphase 

(SEI) layer, etc.) which depend on many other aspects (temperature, current rate on the active 

material, etc.). This is why the uncertain margin should be even greater than the one gotten by the 

estimation method. However, a common trend on the whole SOC range can be seen, at least on the 

most degraded cells, which support partly this second hypothesis. We propose to tackle this 

uncertainty by adding a confidence range of 20% to the estimated EOL resistance increase. 
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Cell ΔSOH ΔR at 5% SOC ΔR at 10% SOC ΔR at 20% SOC ΔR at 50% SOC 

Nº 16 4 % 0.94 % -8.34 % -4.54 % -0.18 % 

Nº 48 18 % 22.34 % 25.63 % 30.25 % 33.49 % 

Nº 54 21 % 24.48 % 25.81 % 33.17 % 40.03 % 

Nº 55 11 % 18.38 % 7.74 % 11.47 % 15.84 % 

Table 12: Pure ohmic resistance homogeneity at different SOH of the High-Energy battery 

The third hypothesis states that the change on the heating of the cell due to the increase of the 

resistance increase doesn’t affect the voltage response of the cell. This hypothesis is tested by 

repeating the simulations with the obtained resistance increase, see Figure 17. It is validated that 

even though the temperature increases due to the increase on the resistance almost 5ºC, the voltage 

response of the battery remains practically the same. The results show that this hypothesis is correct 

since there is only a maximum drift of 52mV between them. 

 
Figure 17: Temperature profile with initial resistance and with the resistance of EOL applied on the 

electric model set up with the resistance of EOL of the proposed High-Energy application. 

After proving that the simulation environment has solid hypothesis behind it, the results of the 

simulation themselves (the EOL threshold maps) are validated. For that, the use profile defined by 

the application has been applied to batteries with different capacity decrease and resistance increase 

levels in a laboratory environment. The fulfilment of the application is represented in the EOL 

threshold map of the High-Energy application, see Figure 18. In addition, a 20% margin on the 

resistance increase has been added due to the partial fulfilment of the second hypothesis. In this 

case, only data of the High-Energy application is available due to the long time required to reach the 

EOL on the High-Power application (the battery chosen for the High-Power application has been 

tested at accelerated aging conditions for more than 2 years but there is only a 5% performance 

decrease on the worst case, which is far from being enough). 
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Figure 18: Validation of the EOL mapping of the High-Energy application. The blue circles represent 

the batteries that have fulfilled the operation profile and the red x symbols are the ones that have not 

fulfilled the operation profile. 

2.8 Conclusions 

This chapter has proposed the methodology to design an algorithm that searches the combinational 

value of some Health Indicators (in this case dischargeable capacity decrease and pure resistance 

increase) at which the battery stops fulfilling the requirements defined by the application. The 

methodology has been tested on a High-Power and on a High-energy application. The taken 

hypotheses along the methodology and the results on the High-Energy application have been 

validated. 

The calculated EOL maps show that the EOL is fully dependent to the battery characteristics as well 

as to the application requirements. The ranges of resistance increase and capacity decrease that 

leads to the EOL varies greatly between applications. 

We have seen that the hypothesis made along the chapter were correct except for one. The 

polarization voltage and OCV do not practically experience any change with the increase of the pure 

ohmic resistance; and that the effect on the voltage response due to the change on the heating with 

the increase of the resistance increase is negligible. In contrast, the resistance is not increased 

completely uniformly at the whole SOC range. The resistance on the whole SOC range does 

increase with the aging but not with the same rate. Due to this, we have considered necessary to add 

a margin of a 20% of the resistance increase to the EOL map, which will be validated on future 

works. 

Finally, the results obtained on the High-Energy application have been cross-checked in real cases. 

The application use profile has been applied to batteries with different SOH.  It can be seen that the 

batteries that cannot meet the application requirements and those that do meet them are separated 

by the calculated EOL threshold. 

The batteries used on this validation have resistance increases lower than 100%. The EOL threshold 

for the chosen batteries for this High-Energy application can be done discarding the Health Indicator 
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of the resistance increase and leaving only the capacity decrease value. Nonetheless, thanks to the 

fact that we know the resistance needed to go from meeting the application requirements to not 

meeting them, we could add the resistance in between the energy consumer and the energy supplier 

(wires, connections, transformers, etc.) into the EOL determination, which is of great interest on the 

design step of the application. 
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CHAPTER 3: 

3 Aging: Testing and Modelling 
 

This chapter responds to the objective of finding the aging path of lithium ion batteries under 

restricted operation profiles.  For that, two key concepts are studied: the generation of the aging data 

itself and the posterior extraction of the aging trends. Firstly, a methodology to design the tests 

required to generate the aging data is elaborated. Then, the aging models composed by the aging 

trends that are underneath the obtained data are developed. For that, simple empirical aging models 

are applied in a quadratic optimization environment. Thanks to this, the stress factors, the resting 

time, the discharged energy and the observed health indicators are linked. Finally, the proposed 

methodology and the main hypotheses done along the chapter are validated. The contribution of this 

chapter consists on firstly, the testing methodology; secondly, the aging model development 

methodology; thirdly, the actual implementation of the defined aging modelling methodology in two 

real cases; and fourthly, the validation of the main assumptions done on the construction of the aging 

model. 
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3.1 Introduction 

The degradation of the lithium ion batteries is caused by several deterioration processes or aging 

mechanisms that takes place on the normal working state of the battery [26]. The working state of the 

battery used to be divided in two: firstly, on the resting period that generates the so-called calendar 

aging; and secondly, on the charging and discharging process that generates the so-called cycling 

aging. 

Calendar aging comprises all aging processes that lead to a degradation of a battery cell 

independent of charge-discharge cycling. It is an important factor in many applications of lithium ion 

batteries where the operation periods are substantially shorter than the idle intervals, such as in 

electric vehicles [64] or in stationary (they may operate 2 times per year). 

Aging during storage is widely caused by interactions between electrolyte and active materials 

interface (side reactions) [11], which affect to the available lithium inventory [30]. This means that a 

Loss of Lithium Inventory (LLI) is expected [11]. However, if there is a previously generated 

inhomogeneity of the lithium distribution in the electrodes, the energy content during storage periods 

could increase instead of decrease (a capacity recovery phenomena); there might be cases that 

there isn’t any aging-related side reaction or LLI in calendar life [64]. 

Cycling usually causes capacity loss at a greater rate than storage as the aging processes are 

modified upon cycling on complex operation conditions. At cycle life, the active material changes 

near the surface of the (both) electrodes [16] and as consequence the initial stoichiometric values for 

the anode and the cathode (𝑥𝑜,𝑖 , 𝑥𝑖) change [32]. In addition to this, in the case of the positive 

electrode (the cathode), the microstructure of its active material is expected to get damaged by 

runtime operations [16]. 

After prolonged cycling, Dubarry et al. [27] found that a nonlinear characteristic could appear which 

increase drastically the capacity fade (LFP cathode and graphite anode cells were used on the tests). 

In this last stage, lithium ions transport process is apparently blocked in the middle area of the 

electrode of the tested cells (it can be explained as a rise of the resistance on that middle area, so 

the lithium ions evade that area). This results in a reduction of lithium intercalation kinetics at the 

anode (polarization resistance increase) which can provoke irreversible metallic lithium deposition 

(lithium plating) with additional LLI and Loss of Active Material (LAM) (due to isolated electrode 

surface). This phenomenon supports the often-made assumption that the sudden acceleration on the 

capacity fade comes from kinetic degradation accompanied with LAM [35]. 

With fundamental understanding of failure mechanisms and knowledge of sources of variability, it is 

possible to develop models that describe the aging behaviour of a lithium ion battery based on 

physical principles [65]. However, there is not enough physical knowledge to describe accurately the 

aging behaviour of a lithium ion battery yet. This is why, the most used models in lithium ion battery 

applications nowadays are empirical or semi-empirical aging models; models that rely on data. 

Lithium ion battery data-based aging models describe the selected lithium ion battery behaviour 

based on mathematical expressions and data. The data from some tested samples is used to adapt 

generic mathematical expressions to the case under evaluation. As a result, it is possible to build a 

model that describes the behaviour of the selected system on the observed operation conditions on 

the tested samples. These models cover the lack of knowledge on the physical behaviour of the 

lithium ion battery under evaluation. However, it shows some limitations: 

- The accuracy on describing the system’s behaviour under the observed operation conditions 

is dependent to the quality and amount of the obtained data. 

- The fitting of generic mathematical expressions with data can lead to an overfitting issue and 

low accurate interpolations. 

- The accuracy of the model under extrapolated operation conditions is likely to be low. These 

models cannot foresee upcoming new aging trends such as sudden increases of 

degradation.  
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In this scenario, firstly, this chapter proposes on section 2 an aging testing methodology that will 

provide the guidance in the data acquisition and test matrix design process. The proper definition of 

the testing cases and testing methodology will lead to high quality data that will cover enough cases 

to avoid extrapolations and obtain accurate interpolations. Secondly, this chapter proposes on 

section 3 a modelling methodology. The proper selection of the generic mathematical expressions 

will increase the accuracy on interpolations. Then, on section 4, validation of the proposed 

methodologies and the main hypotheses done along these methodologies are validated. Here, an 

aging test matrix has been designed from which data that supports the validation of those main 

hypotheses has been generated. Finally, on section 5, the conclusions are drawn. 

3.2 Aging Testing Methodology 

Aging evaluation takes too much time, so accelerated aging test are generally conducted. 

Accelerated aging method is a set of techniques, procedures or conditions designed in order to 

deteriorate a battery or a cell by enhancing the rate of degradation processes compared to normal 

operation conditions [66]. The typical accelerated aging test (AAT) in the literature consists on storing 

cells at different detrimental conditions (calendar ageing) or using different loads in cycling operation 

mode (cycling ageing) [11].  

The accelerated ageing method includes the characterization of the performance level of the cell at 

different aged states (at different State of Health (SOH)) [66], also called Aging Characterization 

Tests (ACT). The AATs are not supposed to give significant data (their only aim is to accelerate the 

deterioration), this is why the ACTs are required to get this significant data of the SOH of the cell [65]. 

Nonetheless, before an accelerated aging test (AAT) can be performed, the experts on the 

application field (the engineers) need to know the number of items to test, the sample time and the 

values of the accelerating factors. The proper selection of these mentioned characteristics will 

provide estimations with high precision [67]. 

We propose a methodology that assists researchers on designing the AAT matrix as well as the 

ACT. The proposed methodology is applied on two real application cases.  

3.2.1 Accelerated Aging Tests 

Accelerate aging tests (AAT) contain a series of steps to accelerate the ageing of a system by 

applying ageing stressors [66]. In other words, the aim of the AATs is making “time” (on whatever 

scale is used to measure device or component life) go more quickly, so that reliability information can 

be obtained more rapidly. There are different methods of accelerating a reliability test. An option is to 

increase the use rate of the product (appropriate for products that are ordinarily not in continuous 

use), a second option is to increase the intensity of the exposure to radiation (various types of 

radiation can lead to material degradation and product failure), and a third option is to increase the 

aging rate of the product or the level of stress (amplitude in temperature cycling, voltage or pressure) 

under which test units operate [65]. 

In addition to this, there are some key aspects to be considered: testing time, testing cost and 

modelling accuracy. Firstly, a reasonable accelerated testing time need to be agreed in order to 

avoid too lengthy experiments [66]. Secondly, the quantity of tests need to be delimited since the fact 

is that the AATs are costly approaches [50]. Thirdly, the tests are done at accelerated conditions, but 

estimates are needed at use conditions; all AATs needs to extrapolate outside the range of available 

data and such extrapolation requires strong model assumptions [65]. A proper choice of the battery 

stress factors and stress levels is crucial; the generation of additional aging phenomena that are not 

present in real operating conditions must be avoided [68] (AATs must generate the same failure 

mode occurring in the field). Based on these key aspects, AATs are designed. 

AATs are designed mainly to minimize the testing cost and time. To do that (the design of the aging 

test matrix), the balance between the stress factor level, the amount of different operation conditions 

that are aimed to described by the AAT (quantity of AAT), the duration of each of those AAT and the 

goal of the AAT matrix (application dependent) is evaluated by optimization methods [69]. 
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3.2.1.1 Accelerating aging tests 
The acceleration of the aging tests of lithium ion batteries is done considering that the minimum level 

of stress still represents an accelerated condition [66] and that the maximum level of stress still 

causes the same failure mode occurring in the field [65]. In the same way, due to the fact that the 

stress factor levels have a nonlinear effect on the lifetime of the lithium ion batteries, a minimum of 

three stress levels for each evaluated stress factor is mandatory in order to be able to obtain the 

lifetime of the cell for the normal operating stress [68]. 

The hypothetical influence of the stress factors (in lithium ion applications) is showed in [68] (Figure 

19). Among these stress factors, the time-temperature superposition is a well-established method for 

accelerated testing [16]. If a higher temperature accelerates, but does not alter degradation 

mechanisms, then the test time can be reduced by testing at higher temperatures. Another 

commonly used accelerating factor is the increase of voltage stress [65]. Schuster et al. [29] added 

two load profiles with supplementary constant-voltage (CV) phase in the charging process to provoke 

an early turning point from linear to nonlinear aging characteristics. In this way, longer periods at high 

state of charge (SOC) (more time on CV means more time at high SOC) and deeper cycles were 

achieved. The results showed that the turning point of the test case with constant current and 

constant voltage (CC-CV) discharging appeared about 34% or 51% earlier referred to the test case 

with only CC-CV charging or no CV phases at all. 

 
Figure 19: Different stress factors and their hypothetical influence (blue mesh) on lithium ion batteries’ 

aging [68]. 

Once identified the stress factors, the way of control them need to be evaluated; the way on how 

these stress factors are reflected on the observable and/or controllable variables need to be 

addressed: 

- The operating temperature is dependent to the room temperature and the heat generation of 

the battery. It is observed directly from the measurement of the battery temperature. The 

commonly controllable variable is the room temperature, which is directly given by the 

thermal management system of the room. The heat generation can be controlled by 

controlling the current and the SOC, but it is rare to control it based on these variables. 

Rather, the heat is counteracted with a cooling system to avoid temperature increases. 

- The SOC is related to the storage energy and the dischargeable energy of the battery. It 

cannot be directly observed. The SOC can be tracked with an Ah counting method or it can 

be estimated with the estimated Open Circuit Voltage (OCV) from the voltage measurement. 

The controllable variables are the current and the time, which affects directly the storage 

energy and the voltage. 
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- The C-rate (the current rate relative to the nominal capacity) is observed directly from the 

current measurement. It is as itself a controllable variable. Its sign represents the charge or 

discharge state of the battery. 

- The Depth of Discharge (DOD) is related to the discharged energy and the actual 

dischargeable energy of the battery. It cannot be directly observed. The DOD can be 

estimated with the estimated SOC evolution. The controllable variables are the current and 

the time, from which the discharged energy and the voltage are controlled. 

- The previous usage is composed by all the operations done by a battery from its Beginning 

of Life (BOL) to the present day. This stress factor is a key aspect on applications with 

changeable operation patterns or on “second life” applications. The controllable variables 

are the current, the room temperature and the time. 

In addition to this, increasing the use rate (or frequency) can be an effective method of acceleration 

in some applications. However, the increased of cycling rate could also generate a heat up or 

another effect which also affect the degradation [65]. This may not be interesting. 

There are also cases where an alteration of a stress factor level is applied dynamically in order to 

increase the degradation rate. An example is the standard load profile called Dynamic Stress test 

specified by the United Sates Advanced Battery Consortium [70]. On the other hand, Sarasketa [11] 

found just the opposite; she found that the observed cell degradation was lessened under dynamic 

Depth of Discharge (DOD) conditions (taken the rest stress factors as constant). 

Combinations of stress factors to increase the aging rate are also employed. Variables like SOC and 

temperature can both increase the rate of an electrochemical reaction (thus accelerating the aging 

rate) and increase stress [65]. The problem of combining stress factors to accelerate even more the 

test comes from the incapacity of dividing the level of incidence of each stress factor on the 

deterioration (problems on properly modelling each stress factor). 

In resume, the main controllable variables are the current and the room temperature or a derivative 

of them such as the power. The main observable variables are the current, the voltage and the cell 

temperature. The combination of these variables leads to generate the AATs that exploit the 

introduced stress factors. 

3.2.1.2 Optimizing AAT matrix 
Optimal designs of the AAT matrix reduce the costs of experimentation by allowing statistical models 

to be estimated with fewer experimental runs [65]. One of the merits of optimizing the AAT program 

is that optimal designs can accommodate multiple types of factors, such as process, mixture, and 

discrete factors. Besides, if statistical models are applied, optimal designs allow parameters to be 

estimated without bias and with minimum variance [65]. 

One of the optimization methods commonly used is based on constraining the design-space [68]. 

This consists on reducing the amount of stress factors and limiting their levels of interest. For that, 

firstly, an evaluation that integrates the knowledge of the product and its environment (the application 

field details), and the chemical and mechanical aspects of the deterioration is done [65]. Remark that 

each stress factor might affect differently the lifetime of the considered Lithium ion battery depending 

of the lithium ion chemistry [68]. 

Once reducing the design-space based on the product and the application, statistical aspects of the 

design and analysis of reliability experiments used to be considered. For that, a statistical 

optimization method can be applied such as Taguchi’s method. Taguchi’s method is based on 

statistical and sensitivity analysis for determining the optimal setting of parameters to achieve robust 

performance. Taguchi method is also based on the fractional factorial experiment (see Figure 20), 

where the independent variables are divided into controllable factors (those factors that can be used 

to maintain a desired value) and noise factors (those factors that may not be controlled) [71]. 
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Figure 20: Methods of statistical design of experiments (DOE)[72]. 

Taguchi’s method involves finding correlation between variables. It uses orthogonal arrays, with the 

inner array consisting of the mentioned control factors and the outer array consisting of the noise 

factors. Each inner array is to be run with each outer array. 

The steps and procedures of design of experiment using the Taguchi method are identifying the 

objectives, determining the quality characteristic, selecting the controllable factors and noise factors, 

selecting an orthogonal array (Orthogonal Arrays are extensively used in parameter design for 

fractional factorials) and concluding the experiment and analysis. By successfully applying this 

concept to experimentation, it is possible to achieve the minimum error on the target while minimizing 

the effect of the chosen noise parameter [71]. 

3.2.1.3 Proposal of AAT 
The proposed AAT design methodology consists on reducing gradually an initial test matrix that can 

isolate and track the effect of each stress factor except for one on any lithium ion battery chemistry: 

cycle depth or DOD, SOC level, Operating temperature and current rate or C-rate. The previous 

usage is discarded as stress factor because it doesn’t have any sense on fresh batteries (there is no 

previous usage on fresh batteries; this is why they are fresh batteries). 

The initial test matrix gathers every possible value each stress factor can take on a lithium ion battery 

context in CIDETEC’s facilities. The test cases only consider static tests where the stress factors are 

maintained constant. The defined values for the stress factors have been set by experimental and 

modelling experience as well as resolution limits on the testing bench. As a result, an initial matrix 

that contains more than 400 billion tests has been built. This initial test matrix has not been 

displayed; instead, Table 13 shows the maximum value, the minimum value and the minimum step 

value of the selected stress factors. 

Stress factor Operating temperature Current SOC DOD 

Maximum value 60ºC 250A 100% 100% 

Minimum value -20ºC -250A 0% 0% 

Minimum step 1ºC 0.001A 1% 1% 

Table 13: Testing cases possibilities on the initial test matrix 

Then, this initial test matrix is reduced by constraining and eliminating testing cases based on the 

application characteristics and testing resources while maintaining a minimum of testing cases 

required by the aging model. 
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Firstly, the stress factors are delimited considering the limitations imposed by the safety operation 

window of the selected lithium ion battery (application dependent). The limitations are given by the 

datasheet, which are different from battery to battery. This delimitation cannot be violated since it 

could bring risks to the testing laboratory. 

Secondly, the test matrix is reduced considering the application requirements. Here, the proper 

understanding of the application is a must as well as comprehending the generic effect of the stress 

factors on the aging trend, see Table 14. 

Stress factor Generic effect on the aging trend 

SOC High SOC used to increase the deterioration. 
SOC under or near 0 used to increase the deterioration. 

DOD A 100% DOD used to be the most detrimental DOD range. 
The higher the DOD, the higher the deterioration. 

Current Current at operation limits used to increase the deterioration. 

Operating 
temperature 

The least detrimental condition used to be between 15ºC and 25ºC. 
The aging used to increase exponentially when increasing or decreasing the least 
detrimental temperature. 
A sudden deterioration increase used to appear at temperatures below 0ºC. 

Table 14: Comprehending the generic effect of the stress factors on the aging trend 

The criterion of eliminating testing cases on this second stage should not be very restrictive. It is 

recommended to leave a margin for error on the definition of the operation conditions since it is not 

frequent to have a proper definition of the application before the aging testing activity. This is why it is 

advisable to consider some more possible operation conditions with a higher operational stress and 

some others with a lower operational stress than the defined ones with the application requirements. 

Then, these additional cases should be given a probability value, which would be used as the 

representative testing cases. 

In the same way, it is proposed a colour system that ranks the testing cases in terms of importance. 

This system allows the proper identification of the fundamental testing cases from those that are not 

in a user-friendly way. It also determines the level of interest on performing the testing cases that are 

not fundamental. 

- Red: The testing cases linked with the application requirements. From all the possible cases 

linked directly with the application requirements, only three cases per stress factor will be 

chosen as red cases: the most stressful case, the least stressful case and the most likely 

case. If there is not a most likely case, the middle between the most stressful and the least 

stressful cases will be chosen. 

- Orange: The fundamental testing cases that are not red and the testing cases that 

represents the operation conditions that are very likely to appear (a probability of occurrence 

of 60% to 90%). 

- Yellow: The testing cases that represents the operation conditions that are likely to appear 

(a probability of occurrence of 30% to 59%). 

- White: The testing cases that represents the operation conditions that are not likely to 

appear (a probability of occurrence lower than 29%). 

In case there are few stress factors and testing cases, this could be done in a unique table. However, 

this is not the case here and an alternative  

Thirdly, the remaining testing matrix could be further reduced based on statistical optimization 

methods. However, these methods can lead to delimiting the posterior applicable aging model. By 

default, statistical optimization methods design the testing matrix for models with just one free 

variable per control factor. This is not usually the case on lithium ion batteries [71]. Because of this, 

advanced knowledge of statistical optimization tools is fundamental, as well as knowing beforehand 

the mathematical expression that matches the effect of each stress factors on the aging behaviour. 

The fact is that first, the mathematical expression that matches the effect of each stress factor on 

each battery chemistry is not completely known until the tests are completed; and second, the 
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development of new statistical optimization methods is out of the scope of this thesis. Because of 

this, the statistical optimization methods are discarded on this aging matrix design proposal. 

Fourthly, the reduced test matrix on the second stage is further reduced based on the available 

testing lab resources. The lab will define some limitations to the possible cases that will be tested 

due to limit resources. This restrictions change on each project since the availability of a lab is not a 

fixed aspect. In this stage, the cost of testing the batteries is introduced on the testing considerations 

(cost of samples and cost of occupying the lab resources a specific period of time); this delimitation 

stage will be the most restrictive one. 

The criterion of eliminating testing cases on this fourth stage is focused on at least maintaining the 

red cases. If it is possible, more cases will be added in terms of the probability of occurrence of the 

operation condition behind those testing cases. Particular needs or interests will take part as well in 

the selection of these testing cases such as interest on specific thermal behaviour analysis. 

Nonetheless, there are times where all the defined red cases will be just too much. If it is not possible 

to perform all the red cases, firstly, all the orange, yellow and white cases will be discarded and 

secondly, among the red cases, the cases that have less importance on the description of the 

application requirements will be nominated to be eliminated. The reduction of red cases will lead to 

the reduction of the possible mathematical expressions that can be applied on the posterior aging 

modelling as well as an important increase on the uncertainty on the accuracy of interpolations 

(interpolations are done with two points instead of three). This is why the final decision of eliminating 

the nominated cases is done based on the aging modelling experience. 

As an advice, when following this process, it would be interesting to generate the red testing case 

matrix and present it to the lab team before going further. It is very likely to have created too many 

tests, which means that the orange, yellow and white testing case matrixes are of no use (the time 

spent doing this can be saved). 

Finally, in case there is a customer behind the project, the proposed aging matrix needs to be 

accepted by this customer before starting running the test matrix. The built aging matrix and the 

operation cases that the aging model will cover and those which will not are presented to the 

customer. The aging matrix often suffers modifications due to application definition changes or 

customer interests. Once discussed the aging matrix and the possible operation cases that the aging 

model will cover, the aging matrix is presented once again to the lab. If the lab see viable the 

proposal, the design process of the aging test matrix can be taken as finished. If not, a further 

discussion with the customer and then with the lab is required until the discussed test matrix agreed 

by the customer is accepted by the lab. 

3.2.2 Aging Characterization Tests 

The characterization tests in an accelerated aging method include the measurement of specific 

metric(s) or Health Indicators to determine the effect of aging (to define the different aged states) 

[66]. At least, a characterization of the cell is carried out at the beginning and at the end of the whole 

aging testing process, also called Aging Check-up Test (ACT). An ACT after each periodical AAT 

(calendar and/or cycling ageing constrained for a defined time or capacity throughout) is usually done 

[11]. 

Several techniques are commonly applied and reported within the literature to build the ACT 

[73][74][75]. These techniques are often classified into in-situ and ex-situ techniques. In-situ methods 

are not invasive characterisation techniques. Ex-situ methods consist on applying physicochemical 

and electrochemical invasive techniques to study the cells internally. The ex-situ methods are 

commonly categorised as post mortem analysis. Since the ex-situ requires the destruction of the cell 

and the end of the AAT, these techniques cannot be applied in between periodical AATs but only at 

the end. 
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There are also techniques that assist the better interpretation of the aging behaviour, such as the 

Incremental Capacity analysis and the Differential Voltage analysis [36]. For that, specific 

characterization tests are required. 

3.2.2.1 Aging metrics 
All aging mechanisms depend on the cell potential (the equilibrium OCV) [29]. The changes on the 

OCV curves represent the changes in the thermodynamic behaviour. Therefore, tracking the OCV of 

the positive and negative electrode facilitates to identify the prevalent degradation mechanisms 

acting on each electrode as well as the degradation path of the whole system (the battery) [31]. For 

example, Keil et al. [64] derived  the characteristics of anodic and cathodic side reactions from the 

varying end of discharge point slippage for different storage SOCs and temperatures. However, OCV 

curves tend to be flat with small changes all along its operative life. The changes on OCV values 

need some interpretation techniques. For that, techniques such as the Incremental Capacity Analysis 

or the Differential Voltage Analysis are used. These two techniques maximize the slight changes that 

appear on the OCV profile due to the deterioration of the cell. 

Even though being the OCV so relevant on the aging behaviour, the metrics most widely used on 

lithium ion battery aging analysis are the rate of the capacity fade (decrease on the storable energy)  

and the increase of the polarization resistance (pure ohmic resistance) [11]. On one hand, the 

capacity fade defines the reduction of storable energy respect to the beginning of life. On the other 

hand, the polarization resistance defines the limits of the maximum current rate that the battery can 

deliver or receive at each SOC. Both metrics can be related directly with safety and operation 

requirements, which is why they are both the most popular metrics. 

Apart from these three metrics, there are some other aging metrics that can be observed from the 

sub-tests developed on an ACTs: 

- The increase of the time constant of the transitory response of the battery [26]. 

- The increase of entropic heat generation [76]. 

- The increase of the passive layer and charge transfer resistance (thought to be suitable to 

predict the appearance of nonlinear aging characteristics upon prolonged cycling) [77]. 

3.2.2.2 Not invasive characterisation techniques 
The common in-situ test used in the aging characterization tests are the capacity characterization, 

the OCV characterization and the Resistance characterization tests. For example, Sarasketa [11] 

proposed an ACT composed by the capacity measurement, close to equilibrium OCV measurement, 

internal resistance measurement by Hybrid Pulse Peak Characterization (HPPC) and impedance 

change evaluation by Electrochemical Impedance Spectroscopy (EIS). Wang et al. [49] proposed 

quite similar ACT but instead of calculating the OCV from close to equilibrium OCV measurements, 

they used the relaxation test. 

 Capacity characterization test 
Thanks to this Characterization test, the analysis of several aspects of the lithium ion batteries can 

be observed:  

- Voltage profiles of charge and discharge. 

- Energy (Ah and Wh) used in charge and discharge. 

- Discharged energy round trip efficiency at each full cycle. 

- Coulombic efficiency. 

- Constant Voltage (CV) charging Time. 

The capacity could be calculated by the ratio of the accumulated charge to the SOC variation within a 

period. Selecting two moments with large SOC difference, the capacity is calculated according to the 

Eq. (9) and the SOH estimation can be successfully accomplish [60]. 
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𝐶𝛼,𝛽 =
Δ𝐴ℎ

Δ𝑆𝑂𝐶
=

∫ 𝐼𝑐𝑒𝑙𝑙(𝑡)𝑑𝑡
𝑡𝛽
𝑡𝛼

𝑆𝑂𝐶(𝑡𝛼) − 𝑆𝑂𝐶(𝑡𝛽)
 (9) 

Parameters Description 

𝐶𝛼,𝛽 The dischargeable capacity between the chosen two time instants 𝑡𝛼 and 𝑡𝛽. 

Δ𝐴ℎ The discharged capacity between time instants 𝑡𝛼 and 𝑡𝛽 represented in Ah. 

Δ𝑆𝑂𝐶 The difference of SOC on the discharged capacity represented in units [0-1 range]. 

𝐼𝑐𝑒𝑙𝑙(𝑡) The current measured on the battery terminals. 

𝑆𝑂𝐶(𝑡) The State of Charge at time instant 𝑡 [0-1 tange] 

𝑡𝛼 , 𝑡𝛽 The time instants that define the operation window used to calculate the capacity. 

Table 15: Dischargeable capacity calculation [11] 

For capacity characterization, Sarasketa [11] proposed 3 full charge and discharge cycles at the 

nominal C-rate with 30 min rest period in between charge and discharge, where the average value of 

the total capacity (in Ah) discharged in the last 2 cycles is considered as the actual nominal capacity. 

These cycles are run with Constant Current-Constant Voltage (CC-CV) until 0.05 times of the 

nominal C-rate was reached, see Figure 21.  

A) 

 

B) 

 
Figure 21: Capacity characterization test applied on a SAMSUNG INR 21700 48G lithium ion cell. A) 

Voltage profile and B) Current profile. 

It should be pointed that the CV phase in the discharging process served to eliminate the influence of 

impedance in the CC phase by a continuous depletion of polarization. Thanks to this, a better 

inference of the active lithium in the cell is possible [29]. 

 OCV characterization test 
A battery undergoing charge or discharge experiences kinetic effects such as mass transport [78], an 

effect that impedes the measurement of the OCV. Furthermore, the battery needs to be disconnected 

from any load enough time to reach the so call internal equilibrium [79]. In this context, OCV 

measurement requires measuring the voltage after a long relaxation period at SOC levels that span 

the entire range (relaxation test). The OCV is also commonly calculated by fully charging or 

discharging the battery at low rate (close to equilibrium OCV measurement). 

For the relaxation test, a fully charged cell is discharged for a period (for example for 24min) at 

certain current C-rate (for example at C/2) followed by a 2h rest period before the subsequent 

discharge. The test is complete when the discharge voltage reached the end of charge cut-off 

voltage value [49], see Figure 22. 



45 

A)

 

B)

 
Figure 22: A relaxation test applied on an A123 SYSTEMS APR 18650 M1 lithium ion cell. A) Voltage 

profile and B) Current profile. 

In close to equilibrium OCV measurement test, the measured voltage doing a full cycle at low C-rates 

is taken as the OCV. It is assumed that the voltage drop on the polarization impedance is negligible 

due to the low currents. Dubarry et al. [36] claimed that testing at a C-rate of C/25 is the best 

comprise between time and accuracy in order to measure close to equilibrium OCV. This 

compromise helps to derive the SOC versus Ah relationship with minimal polarization effects (see 

Figure 23). 

A)

 

B) 

 
Figure 23: Open Circuit Voltage characterization test at a continuous low current applied on a 

SAMSUNG ICR 18650 26F lithium ion cell. A) Voltage profile and B) Current profile. 

Thanks to these two tests the OCV of most of lithium ion cells can be characterized. However, there 

are some specific battery chemistries that experience a difference on the OCV; there are batteries 

that have a hysteresis effect.  

The hysteresis can be described by the internal impedance in an Equivalent electric circuit model 

plus the OCV value. However, the huge hysteresis effect that the OCV suffers in some battery 

chemistries cannot be explained by RC equivalent circuits and it must be taken into account 

separately (Figure 24) [80]. On those cases, a hysteresis characterization test is added to the OCV 

characterization test. It consists on doing the relaxation test in short SOC ranges (also called minor 

loops) that can characterize the whole OCV evolution under real cycle profiles; under changes on 

charge-discharge stages. Figure 24 shows an example with the following minor loops: 

- Discharge from 100% SOC to 10% SOC; charge to 40% SOC; and discharge to 10% SOC. 

- Discharge from 100% SOC to 20% SOC; charge to 50% SOC; and discharge to 20% SOC. 

- Discharge from 100% SOC to 30% SOC; charge to 60% SOC; and discharge to 30% SOC. 

- Discharge from 100% SOC to 40% SOC; charge to 70% SOC; and discharge to 40% SOC. 

- Discharge from 100% SOC to 50% SOC; charge to 80% SOC; and discharge to 50% SOC. 

- Discharge from 100% SOC to 60% SOC; charge to 90% SOC; and discharge to 60% SOC. 

- Discharge from 100% SOC to 10% SOC; charge to 20% SOC; and discharge to 10% SOC. 

- Discharge from 100% SOC to 20% SOC; charge to 30% SOC; and discharge to 20% SOC. 

- Discharge from 100% SOC to 30% SOC; charge to 40% SOC; and discharge to 30% SOC. 

- Discharge from 100% SOC to 40% SOC; charge to 50% SOC; and discharge to 40% SOC. 
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- Discharge from 100% SOC to 50% SOC; charge to 60% SOC; and discharge to 50% SOC. 

- Discharge from 100% SOC to 60% SOC; charge to 70% SOC; and discharge to 60% SOC. 

A)

 

B)

 
Figure 24: A hysteresis characterization test applied on an A123 SYSTEMS APR 18650 M1 lithium ion 

cell. A) Voltage profile and B) Current profile. 

 Impedance characterization test 
The most common test on the impedance characterization is the current pulse method. The current 

pulse method consists on applying current pulses to the cell so as to measure the resulting voltage 

drop (see Figure 25). 

A)

 

B)

 
Figure 25: Pulse current test applied on an A123 SYSTEMS APR 18650 M1 lithium ion cell. A) Voltage 

profile and B) Current profile. 

The observed voltage drop can be divided by the current in order to calculate the pure ohmic 

resistance of the battery. Another way of calculating this resistance comes from the fitting of a pre-

defined equivalent circuit with the data gathered from the pulse test. This second calculation method 

allows us to estimate at the same time the additional impedance values defined on the pre-defined 

equivalent circuit model. 

The duration of the current pulse must be selected differently for different batteries and different 

battery conditions (temperature, aging state) while considering the frequency behaviour of the battery 

[21]. We have seen that a 60s pulse with a rest time of 10min is enough to get accurate values of the 

impedance of the cell at each SOC, see Figure 25. 

Another most common test on the impedance characterization is the Electrochemical Impedance 

Spectroscopy (EIS). The EIS is based on generating and imposing small sinusoidal current signal at 

a given frequency to the tested lithium ion battery [21]. The voltage response measured at the battery 

is an approximately sinusoidal signal as well. The magnitude and phase of the impedance for each 

frequency is calculated considering the relation between voltage and current waveforms The whole 

impedance spectrum of the battery is obtained by performing the measurement described above for 

many frequencies in a given frequency range. This data is usually represented by a Nyquist plot, 

where the imaginary and the real part of the impedance are plotted on the ordinate (y axis) and 

abscissa (x axis), respectively [34] (Figure 26). 
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Figure 26: Electrochemical Impedance Spectroscopy applied on a SAMSUNG ICR 18650 26F lithium 

ion cell. 

The imposed sinusoidal current signal amplitude has been experimentally tested on a SAMSUNG 

ICR 18650 26F lithium ion cell with 2600mAh of nominal capacity. It has been seen that a C/10 and a 

C/100 sinusoidal gives very similar results and that the higher the current is the smaller the noise is, 

see Figure 27. 

 

Figure 27: EIS test run with different sinusoidal currents. 

Furthermore, the representative Nyquist plot of EIS data (Figure 28) divides the scanned battery into 

migration, charge transfer and diffusion depending on the frequency of the imposed small sinusoidal 

current signal. Migration derived at high frequency (on the left of Figure 28) provides resistive 

characteristics of a battery; the charge transfer (in the middle of Figure 28) forms a semi-circle that 

represents the kinetics of the battery; and the low frequency part (on the right of Figure 28) 

represents diffusion [14]. 

 
Figure 28: The Nyquist plot is divided into high, mid and low frequency sections [14]. 

Among all the available data points in the Nyquist plot, there are three points with relevance 

significance. Firstly, the value of the impedance at the point where Im{𝑧̅(𝑓)} = 0 is considered the 

ohmic resistance of the battery. However, the ohmic resistance measured by the EIS is not exactly 
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the same as the ohmic resistance measured by the current pulse. The battery has entirely capacitive 

or inductive behaviour at different frequencies. As a result, the impedance spectrum crosses the x-

axis at the frequency at which the inductive behaviour of some battery parts is completely 

compensated by the capacitive behaviour of the other parts. As a result, the value of the battery 

impedance at this point is a pure ohmic resistance with some additional resistances [21]. 

Secondly, the frequency at which the negative imaginary part of the impedance spectrum reaches its 

local maximum, or the corresponding time constant, defines the dynamic of the battery voltage 

response by current changes. The lower this frequency is (or the higher the time constant), the 

slower the voltage change at fast current changes is [21]. 

Generally, the impedance spectra of new and aged cells remain its basic form at all conditions. 

However, especially for aged cells at lower temperatures (Figure 29), an additional high frequency 

semicircle can be distinguished while the other semicircle (related to the charge transfer) increases 

and shifts towards lower frequencies. This shift correlates to an increasing time constant (τ) over time 

due to aging and to the third point of relevance on the Nyquist plot. In addition, the SEI growth due to 

aging causes an increase of the second semicircle. Both effects result in this change of the form of 

the impedance spectrum [21]. 

A) 

 

B) 

 
Figure 29: Impedance spectra at 0°C at different SOC of A) a new cell and B) an aged cell [21]. 

Wang et al. [49] performed the EIS at 40% SOC which was defined as 72min of discharge at C/2 rate 

of a fully charged cell. The EIS measurement was carried out in a frequency range between 0.01 and 

100 kHz and AC amplitude of 5mV. A period of 4h rest was allowed prior to performing each EIS test. 

This rest period avoided changes in the internal impedance after exciting the cells. It is also worth 

mentioning the importance of proper connection of the cells to the EIS test system as inaccurate EIS 

measurements can easily result from poor connections, especially for frequency ranges above 10Khz 

[34]. 

The third most common impedance characterization test is the Hybrid Pulse Power Characterization 

test (HPPC). HPPC is based on pulse trains of charge and discharge intercalating rest period at the 

end of each cycle. Basically, it is a combination of current pulses defined by a standard (Figure 30). 

The charge and discharge pulses are set one after the other, where the charge pulse needs to be 

0.75 times the discharge pulse. A defined DOD is applied between the cycle and the rest time. 

Thanks to the HPPC, the analysis of several aspects of the lithium ion batteries can be observed 

[11]: 

- Voltage profiles as a function of open circuit voltage (OCV) and SOC. 

- Electrical performance as a function of OCV and SOC. 

- Charge and discharge internal resistance. 

- Discharge power density. 

- Peak charge power capability. 

- The operation window. 
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B)

 
Figure 30: A Hybrid Peak Pulse Characterization test applied on a certain lithium ion cell. A) Voltage 

profile and B) Current profile. 

3.2.2.3 Proposal of ACT 
The proposed ACT has two different tests. Firstly, a long ACT for the Beginning of Life (BOL) and 

End of Life (EOL) is set. The long ACT gathers information for the aging modelling and for the 

validation of the assumed hypothesis. Secondly, a short ACT is set that focuses uniquely on 

gathering information for the aging modelling while affecting the minimum the aging itself. 

The short ACT focuses on measuring the selected Health Indicators of interest on each SOH on 

between the AATs while reducing the testing time to the minimum. The proposal is design selecting 

the most common used health indicators: the dischargeable capacity decrease and the pure ohmic 

resistance increase. For that, the dischargeable capacity is measured with the “Capacity 

Characterization Test” (see Table 6) and the pure ohmic resistance is measured with an “Impedance 

Characterization Test”, in concrete with a discharge pulse test at 50% SOC and at nominal current 

rate (see Table 17). 

Step Action 1 Mode Conditions Comments Current Temp. 

1 Rest - 1h   

T 

2 Charge CC-CV Vmax@0.05C  C-rate 

3 Rest - 1h   

4 Discharge CC-CV Vmin@0.05C Capacity measurement. C-rate 

5 Rest - 1h   

6 Charge CC-CV Vmax@0.05C  C-rate 

7 Rest - 1h   

8 Discharge CC-CV Vmin@0.05C Capacity measurement. C-rate 

9 Rest - 1h   

10 Charge CC-CV Vmax@0.05C  C-rate 

11 Rest - 1h   

12 Discharge CC-CV Vmin@0.05C Capacity measurement. 
Save it as Cnom. 

C-rate 

13 Rest - 1h   

Table 16: Proposed Capacity characterization test 

Step Action 1 Mode Conditions Comments Current Temp. 

1 Rest - 1h   

T 

2 Charge CC 50% SOC SOC relative to the 
capacity measurement 

Cnom 

C-rate 

3 Rest - 1h   

4 Discharge CC 60s Impedance measurement. C-rate 

5 Rest - 1h   

6 Charge CC 60s Impedance measurement. C-rate 

7 Rest - 1h   

Table 17: Proposed Impedance characterization test 

The short ACT should be reduced or increased in terms of the selected Health Indicators. However, 

the proposed short ACT fits the requirements of most of the aging behaviour studies and modelling 

works available on the literature [11][30][33] [81][82][83]. Besides, thanks to the simplicity of the 
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designed ACT and the low testing time (below 24h), the effect of the ACT on the deterioration of the 

battery has been reduced to its minimum. 

On the other hand, the long ACT focuses on retrieving as much information as needed, without 

worrying on the testing time. The long ACT used to be designed based on the required tests for 

modelling the electro-thermal behaviour of the cell. In this context, the long ACT changes according 

to the electro-thermal model complexity and accuracy. As a generic electro-thermal modelling activity 

in CIDETEC, the long ACT should contain the following tests: 

- A Capacity characterization test at different temperatures. 

- An OCV characterization test based on continuous low current (C/20) at different 

temperatures. 

- A hysteresis test at the reference temperature if there is a hysteresis effect (not common). 

- A full Impedance characterization test (the impedance is tested at the whole operation SOC 

range) at different C-rates and at different temperatures. 

However, the fact is that these tests used to be only run at the reference temperature (it is usually 

25ºC). Even though the time is not a concern at BOL and EOL, the lab resources are limited. The lab 

can be overloaded depending on the number of tested cells, so only particular cases are tested at 

temperatures higher or lower than the reference one. As results, a generic long ACT can be 

obtained, see Table 18. The given generic proposal does not contain the hysteresis characterization 

test since it is believed to be unusual in lithium-ion cells [84]. 

Step Action 1 Mode Conditions Comments Current Temp. 

START Capacity Characterization test 

1 Rest - 1h   

T 

2 Charge CC-CV Vmax@0.05C  C-rate 

3 Rest - 1h   

4 Discharge CC-CV Vmin@0.05C Capacity measurement C-rate 

5 Rest - 1h   

6 Charge CC-CV Vmax@0.05C  C-rate 

7 Rest - 1h   

8 Discharge CC-CV Vmin@0.05C Capacity measurement. C-rate 

9 Rest - 1h   

10 Charge CC-CV Vmax@0.05C  C-rate 

11 Rest - 1h   

12 Discharge CC-CV Vmin@0.05C Capacity measurement. C-rate 

13 Rest - 1h   

END Capacity Characterization test // START OCV Characterization test 

14 Charge CC Vmax  C-rate 

T 
15 Rest - 1h   

16 Discharge CC Vmin Capacity measurement. C-rate 

17 Rest - 1h   

END OCV Characterization test // START Impedance Characterization test 

18 Start cycle   Pulse test, charge, start  

T 

19 Rest - 1h Take OCV  

20 Charge - 60s@not 100% 
SOC 

Charge Pulse C-rate 

21 Rest - 10min   

22 Charge - 10%SOC Set SOC: 10,20,…,80,90  

23 End cycle     

24 Charge CC-CV Vmax@0.05C  C-rate 

25 Start cycle   Pulse test, discharge, 
start 

 

26 Rest - 1h Take OCV  

27 Discharge - 60s@not 0% SOC Discharge Pulse C-rate 

28 Rest - 10min   

29 Discharge - 10%SOC Set SOC: 90,80,…,20,10  

30 End cycle     

END Impedance Characterization test 

Table 18: Proposed long Aging Check-up Test 
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3.3 Aging model 

The aging models describe the behaviour of the health indicators along the lifespan. The evolutions 

of these health indicators or aging metrics are observed on the ACTs of the aging testing process.  

Generally, information of tests at high levels of one or more accelerating variables (use rate, 

temperature, voltage) from that aging testing process is extrapolated, through a physically 

reasonable statistical model, to obtain estimates of life or long-term performance at lower, normal 

levels of the accelerating variable(s) [65]. With fundamental understanding of failure mechanisms 

and knowledge of sources of variability, it is possible to develop failure time distributions and electro-

chemical aging models. However, there may not be enough physical knowledge to provide an 

adequate electro-chemical model for acceleration test data (and its extrapolation) when the effect of 

an accelerating variable is complex [65], such as the effect that have the stress factors on the aging 

of lithium-ion batteries. 

In lithium-ion battery applications, the aging trends are evaluated and general laws for an operation 

window are built on a modelling environment. The empirical or semi-empirical aging models are the 

most used aging models on the literature [85] due to the complexity of the aging mechanisms. 

Besides, it is quite typical to divide the calendar aging effects and the cycling aging effects in two 

independent aging models in order to simply even more the modelling exercise [11] . 

The semi-empirical aging models are designed based on physical laws that describe the aging 

behaviour generated by a physic phenomenon. The most typical variable used on these cases is the 

temperature. The operation temperature of an electrochemical energy storage system can be linked 

to an exponential deterioration process expressed by the Arrhenius or the Eyring theory. Then, the 

general expression of this exponential deterioration process is adapted to the system under 

evaluation thanks to the observed health indicators (thanks to the data). 

The empirical aging models are designed purely on the data and mathematical expressions. The 

degradation behaviour lacks on physical knowledge and the aging model is built on the mathematical 

expression that fits the best the observed trends of the health indicators under specific operation 

conditions. 

A sub-objective of the thesis is to generate a universal aging model that can be used on any lithium 

ion battery. However, any change on each element of the lithium ion battery can generate huge 

changes on the behaviour of the lithium ion battery. In consequence, the physic or electrochemical 

models that are built with specific features for each battery element composition are discarded as an 

option to generate the desired universal aging model. Besides, there is another research team that is 

working on this kind of models in CIDETEC. Therefore, the efforts are directed on more generic 

aging models: empirical and semi-empirical aging models. 

Nevertheless, even though many of the underlying physical model assumptions, concepts and 

practices are the same for the different type of responses achieved to build these data based aging 

models, the actual models fitted to the data and methods of analysis differ because of the different 

types of responses of each battery chemistry [65]. In this scenario, rather than a universal model 

(which is thought as not viable), a common methodology to construct the aging model is introduced. 

But before that, the semi-empirical and empirical aging models available on the literature are studied. 

3.3.1 Study of the State of the Art 

The modelling of the aging behaviour of lithium ion batteries is trendy nowadays society and a proper 

look onto the already available knowledge is fundamental in order to propose any kind of aging 

modelling solution. In this scenario, a state of the art of the available aging models is done as well as 

its critical evaluation. 

3.3.1.1 State of the Art 
According to Sarasketa [11], the damage of cycle and calendar aging may all be superimposed. The 

model developed by Sarasketa [11] (Eq. (10)) uses stress factors in time-domain (calendar aging 

model, Eq. (11)) and in Ah-throughput domain (cycle aging model, Eq. (13)). The effect of SOC and 
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temperature is assumed to be the same during storage and operation, so it is taken into account in 

the calendar ageing model. This way, cycle ageing can be also predicted under different temperature 

and SOC conditions. As the model was parametrized by the results obtained on static cycle 

continuous tests, an adjustment coefficient 𝑘 was added to the proposed cycling aging model when 

both models (the cycling and calendar aging models) were tested together [11]. 

𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 + 𝐴𝑐𝑦𝑐𝑙𝑖𝑛𝑔 (10) 

𝐴𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝑓(𝑆𝑜𝐶, 𝑇º, 𝑡) (11) 

𝑄𝑙𝑜𝑠𝑠_𝑐𝑎𝑙[%] = 𝛼1𝑒𝑥𝑝
(𝛽1𝑇

−1)𝛼2𝑒𝑥𝑝
(𝛽2𝑆𝑂𝐶)𝑡0.5 (12) 

𝐴𝑐𝑦𝑐𝑙𝑖𝑛𝑔 = 𝑓(𝐷𝑜𝐷, 𝐶 𝑟𝑎𝑡𝑒, 𝐴ℎ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) (13) 

𝑄𝑙𝑜𝑠𝑠_𝑐𝑦𝑐[%] = (𝛾1𝐷𝑂𝐷
2 + 𝛾2𝐷𝑂𝐷 + 𝛾3)𝑘𝐴ℎ

0.87 (14) 

𝑄𝑙𝑜𝑠𝑠_𝑐𝑦𝑐[%] = (𝛼3𝑒𝑥𝑝
(𝛽3𝐷𝑂𝐷) + 𝛼4𝑒𝑥𝑝

(𝛽4𝐷𝑂𝐷))𝑘𝐴ℎ0.87 (15) 

Parameters Description 

𝑄𝑙𝑜𝑠𝑠_𝑐𝑦𝑐[%] The relative capacity loss due to cycling aging respect to the BOL capacity. 

𝑄𝑙𝑜𝑠𝑠_𝑐𝑎𝑙[%] The relative capacity loss due to calendar aging respect to the BOL capacity. 

𝐷𝑂𝐷 The Depth of Discharge. 

𝛾1, 𝛾2, 𝛾3 Constants relative to the 10%-50% DOD range. 

𝑘 The adjustment coefficient of dynamic operation conditions. 

𝐴ℎ The charged and discharged capacity along the lifetime in Ah. 

𝛼3, 𝛼4 Pre-exponential constant relative to the 0%-10% and 50%-100% DOD range. 

𝛽3, 𝛽4 Exponential constant relative to the 0%-10% and 50%-100% DOD range. 

Table 19: The parameters of the aging model proposed by Sarasketa [11] 

Xu [83] proposed an aging model  derived from crack propagation theory and Arrhenius relationship, 

where Millner’s crack propagation aging model was taken as reference [86]. Xu [83] made 3 

important modifications on Millner’s model: firstly, a Rainflow cycle counting algorithm is introduced 

for the counting of cycles, secondly, calendar aging and cycle aging are decoupled to model 

separately (Eq. (16)) and thirdly, a two exponential degradation model is introduced to model SEI film 

formation’s impact on degradation rate so as to reflect the strong nonlinearity in the early cycles (Eq. 

(23)). 

It was taken some assumptions: 

(1) The normal degradation rate is proportional to the lithium ion left in active form. Developing 

this idea, Xu [83] reach to the Eq. (17) that describes the battery aging life over the entire 

operation period. 

(2) A certain portion of battery’s lithium (Eq. (18)) is consumed in the non-steady stage of SEI 

film formation. The formation rate is inversely proportional to the SEI film already formed and 

stops when a stable SEI is formed (Eq. (19)). Developing this idea, Xu [83] modelled the 

degradation as the sum of two exponential function (Eq. (20)). 

(3) The ratio between the linearized SEI degradation rate and the linearized normal degradation 

rate is a fixed (Eq. (21)). Xu [83] reach to the Eq. (22) introducing the SEI degradation 

constant ration in the Eq. (20). 

Once the assumptions were made, the degradation was written as a functional equation (𝑦 = 𝑓(𝑥), 

Eq. (23)). Then, Xu [83] made a linearization of the obtained functional equation (Eq. (24)) using a 

degradation rate (𝑑) (Eq. (25)) which allows to divide the effect of the cycling aging and the calendar 

aging (Eq. (16)). 

The model developed by Xu [83] has some limitations. The model cannot describe the nonlinearity 

and sudden increase of capacity fade (the model doesn’t take into account lithium plating). 
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𝑓𝑑(𝐷𝑂𝐷, 𝑆𝑂𝐶, 𝐶, 𝑇, 𝑛, 𝑁, 𝑡) = 𝑓𝑐𝑦𝑐(𝐷𝑂𝐷, 𝑆𝑂𝐶, 𝐶, 𝑇, 𝑛, 𝑁) + 𝑓𝑐𝑎𝑙(𝑡, 𝑆𝑂𝐶𝑎𝑣𝑔, 𝑇𝑎𝑣𝑔) (16) 

𝐿 = 1 − 𝑒−𝑓𝑐𝑦𝑐𝑙𝑒(𝑆𝑂𝐶,𝐷𝑂𝐷,𝑇.𝑡𝑐𝑦𝑐𝑙𝑒)𝑁 (17) 

𝑝𝑆𝐸𝐼 =
𝑄𝑆𝐸𝐼

𝑄𝑛
 (18) 

𝑄𝑛 = 𝑄𝑆𝐸𝐼 + 𝑄𝑛𝑜𝑟𝑚𝑎𝑙 (19) 

𝐿 = 1 − (𝑝𝑆𝐸𝐼𝑒
−𝑓𝑑,𝑆𝐸𝐼 + (1 − 𝑝𝑆𝐸𝐼)𝑒

−𝑓𝑑) (20) 

𝑟𝑆𝐸𝐼 =
𝑓𝑑,𝑆𝐸𝐼

𝑓𝑑
 (21) 

𝐿 = 1 − (𝑝𝑆𝐸𝐼𝑒
−𝑟𝑆𝐸𝐼𝑓𝑑 + (1 − 𝑝𝑆𝐸𝐼)𝑒

−𝑓𝑑) (22) 

𝑦 = 1 − 𝐿, 𝑎 = 𝑝𝑆𝐸𝐼 , 𝑐 = 1 − 𝑝𝑆𝐸𝐼 
𝑦 = 𝑎𝑒−𝑏𝑥 + 𝑐𝑒−𝑑𝑥 

(23) 

𝑦′ = 𝑑𝑥 (24) 

𝑑 = 𝑓𝑑(𝐷𝑂𝐷, 𝑆𝑂𝐶, 𝐶, 𝑇, 𝑛, 𝑁, 𝑡) (25) 

Parameters Description 

𝐿 Battery aging life indicator, where 0 correspond to a new battery. 

𝑓𝑐𝑦𝑐𝑙𝑒 The increment of capacity aging life over one cycle. 

𝑁 Cycle number. 

𝑡𝑐𝑦𝑐𝑙𝑒 The time period of one cycle. 

𝑄𝑛 The nominal capacity of the battery. 

𝑄𝑆𝐸𝐼 The part of battery’s lithium that is consumed in SEI formation. 

𝑄𝑛𝑜𝑟𝑚𝑎𝑙 The rest of lithium that fades with normal aging rate. 

𝑝𝑆𝐸𝐼 The portion of lithium consumed in SEI formation. 

𝑓𝑑 The linearized degradation function due to normal operation. 

𝑓𝑑,𝑆𝐸𝐼 The linearized degradation function due to SEI film formation. 

𝑟𝑆𝐸𝐼 The constant SEI degradation ratio. 

𝑦 The remaining capacity. 

𝑎, 𝑏, 𝑐, 𝑑 Fitting coefficients. 

𝑑 Linearized degradation rate per cycle. 

Table 20: The parameters of the aging model proposed by Xu [83] 

The aging in storage operation conditions of several lithium ion cells have been described and 

quantified by many authors in the literature using different types of models. 

Sarasketa [11] proposed a stress factor based model for calendar aging, Eq. (26). The proposed 

method is an accumulative aging method where the residual capacity is used as reference point for 

further predictions. It considers the effect of State of Charge (SOC) and temperature on the capacity 

fade during calendar aging, Eq. (27). 

𝐴𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝑓(𝑆𝑜𝐶, 𝑇º, 𝑡) (26) 

𝑄𝑙𝑜𝑠𝑠[%] = 𝛼1𝑒𝑥𝑝
(𝛽1𝑇

−1)𝛼2𝑒𝑥𝑝
(𝛽2𝑆𝑂𝐶)𝑡0.5 (27) 

Parameters Description 

𝑄𝑙𝑜𝑠𝑠[%] The relative capacity loss respect of the Beginning of Life (BOL) capacity in %. 

𝛼1, 𝛼2 Pre-exponential constants. 

𝛽1 , 𝛽2 Exponential constants. 

𝑇 The absolute temperature. 

𝑆𝑂𝐶 The storage SOC in % 

𝑡 The storage time. 

Table 21: The parameters if the calendar aging model proposed by Sarasketa [11] 

Wang et al. [87] proposed a semi-empirical aging model based on the assumption that calendar life 

performance is a direct representation of irreversible self-discharge capacity loss, which is mainly 
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generated by Loss of Lithium Inventory (LLI) during Solid Electrolyte Interphase (SEI) formation at 

the graphite negative electrode. Wang et al. [87] assumed that the SEI growth is a diffusion limited 

process with a time
1/2

 relationship and that is a thermally activated process that can be simulated 

with an Arrhenius law temperature dependence, Eq. (28). 

𝑄𝑙𝑜𝑠𝑠,% = 𝐴𝑒𝑥𝑝
(−
𝐸𝑎

𝑅𝑇⁄ )𝑡0.5 (28) 

Parameters Description 

𝐴 The pre-exponential factor. 

𝐸𝑎 The activation energy in J mol
-1

. 

𝑅 The gas constant in J mol
-1

K
-1

. 

𝑇 The absolute temperature in K. 

𝑡 The life time in days. 

Table 22: The parameters of the calendar aging model proposed by Wang et al. [87] 

Grolleau et al. [33] proposed a simple empirical expression for predicting capacity fade for the tested 

LFP cathode and graphite cells at temperatures above 0°C (Eq. (30)) based on firstly, the kinetic 

dependence of the capacity fade evolution with temperature and SOC (Eq. (29).[1]), secondly, the 

diffusion limitation of solvent molecule inside the SEI layer (Eq. (29).[2]) and thirdly, the Arrhenius 

equation (Eq. (29).[3]). 

The values of the relation rate between aging time and LLI at a given temperature (𝛼(𝑇)) were 

estimated using robust non-linear regression of aging data. Once 𝛼(𝑇) defined for each storage 

temperature, the kinetic dependence of the capacity fade evolution with temperature and SOC is 

estimated. According to the results in [33], capacity fade evolution follows a linear dependence with 

SOC (Eq. (31)) whereas it increases exponentially with temperature (Arrhenius law, Eq. (32)). 

[1]     𝑘(𝑇, 𝑆𝑂𝐶), [2]   (1 +
𝑄𝑙𝑜𝑠𝑠(𝑡)

𝐶𝑛𝑜𝑚
)

−𝛼(𝑇)

, [3]     𝑘𝑒(−
𝐸0
𝑅𝑇
)
 (29) 

𝑑𝑄𝑙𝑜𝑠𝑠

𝑑𝑡
= 𝑘(𝑇, 𝑆𝑂𝐶) (1 +

𝑄𝑙𝑜𝑠𝑠(𝑡)

𝐶𝑛𝑜𝑚
)

−𝛼(𝑇)

 (30) 

𝑘(𝑇, 𝑆𝑂𝐶) = 𝐴(𝑇)𝑆𝑂𝐶 + 𝐵(𝑇) (31) 

𝐴(𝑇) = 𝑘𝐴𝑒
{−
𝐸0𝐴
𝑅
(
1
𝑇
−

1
𝑇𝑟𝑒𝑓

)}
, 𝐵(𝑇) = 𝑘𝐵𝑒

{−
𝐸0𝐵
𝑅
(
1
𝑇
−

1
𝑇𝑟𝑒𝑓

)}
 

(32) 

Parameters Description 
𝑑𝑄𝑙𝑜𝑠𝑠
𝑑𝑡

 
The fractional capacity loss at aging time t. 

𝑘(𝑇, 𝑆𝑂𝐶) the kinetic dependence of the capacity fade evolution with temperature and SOC. 

𝛼(𝑇) The relation rate between aging time and LLI at a given temperature. 

𝐶𝑛𝑜𝑚 The nominal current value (1C).   

𝐴(𝑇) The incremental factor of the kinetic dependence of the capacity fade evolution with SOC. 

𝐵(𝑇) The kinetic dependence of the capacity fade evolution with temperature. 

𝑘𝐴, 𝑘𝐵 Pre-exponential coefficients. 

𝐸0𝐴, 𝐸0𝐵 Activation energy. 

𝑅 The gas constant. 

𝑇 The temperature in kelvin. 

𝑇𝑟𝑒𝑓 A temperature reference (fixed to 298 K in [33]). 

Table 23: Parameters of the calendar aging model proposed by Grolleau et al. [33] 

Xu [83] proposed a linearized degradation calendar model based on the effect of stress factors on 

calendar life (SOC, temperature and time, Eq. (33)). The proposal is composed by a linearized 

degradation model (Eq. (33)) and two nonlinear stress models (Eq. (36) and (37)). The linearized 

degradation rate (𝑑) is obtained as a function of SOC and temperature. The stress model for 

temperature is derived from Arrhenius equation (Eq. (36)) and the stress model for SOC is derived 

from the Tafel relationship (Eq. (37)). The time stress coefficient (Eq. (40)) is calculated once the 

other 2 stress factors (Eq. (38) and (39)) are calculated. 
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This model describes the calendar aging just with one parameter (𝑑), but it has some limitations. 

Firstly, the proposed temperature stress model is recommended to cover only cases above 15°C and 

secondly, the inducing effect of low SOC is not modelled [83]. 

𝑦′ = 𝑑𝑥, 𝑦′ = 𝑓𝑐𝑎𝑙(𝑆𝑂𝐶, 𝑇, 𝑡) (33) 

𝑑 = 𝑘𝑡𝑓𝑆𝑂𝐶(𝑆𝑂𝐶)𝑓𝑇(𝑇) (34) 

𝑥 = 𝑡 (35) 

𝑓𝑇(𝑇) = 𝑒
𝑘𝑇(𝑇−𝑇𝑟𝑒𝑓)

𝑇𝑟𝑒𝑓
𝑇  (36) 

𝑓𝑆𝑂𝐶(𝑆𝑂𝐶) = 𝑒𝑘𝑆𝑂𝐶(𝑆𝑂𝐶−𝑆𝑂𝐶𝑟𝑒𝑓) (37) 

𝑘𝑇 =
∑ 𝑘𝑇

𝑇𝑖𝑁𝑇
𝑖=1

𝑁𝑇
, 𝑘𝑇

𝑇𝑖 =
𝑇𝑖

𝑇𝑟𝑒𝑓(𝑇𝑖 − 𝑇𝑟𝑒𝑓)
ln (

𝑑𝑇𝑖

𝑑𝑇𝑟𝑒𝑓
) (38) 

𝑘𝑆𝑂𝐶 =
∑ ∑ 𝑘𝑆𝑂𝐶

𝑖,𝑗𝑁𝑆𝑂𝐶𝑖
𝑖=1

𝑁𝑆𝑂𝐶𝑗
𝑗=1

𝑁𝑆𝑂𝐶
, 𝑘𝑆𝑂𝐶

𝑖,𝑗
=

ln (
𝑑𝑆𝑂𝐶𝑖

𝑑𝑆𝑂𝐶𝑗
)

(𝑆𝑂𝐶𝑖 − 𝑆𝑂𝐶𝑗)
 (39) 

𝑘𝑡 =
∑ ∑ 𝑘𝑡

𝑆𝑂𝐶𝑖,𝑇𝑗𝑁𝑆𝑂𝐶𝑖
𝑖=1

𝑁𝑇𝑗
𝑗=1

𝑁𝑡
, 𝑘𝑡

𝑆𝑂𝐶𝑖,𝑇𝑗 =
𝑑𝑆𝑂𝐶𝑖,𝑇𝑗

𝑓𝑆𝑂𝐶(𝑆𝑂𝐶𝑖)𝑓𝑇(𝑇𝑗)
 (40) 

Parameters Description 

𝑦′ The capacity fade rate in calendar aging. 

𝑑 The linearized degradation per time. 

𝑥 The time (𝑡) in a chosen unit of time. 

𝑘𝑡 The time stress coefficient for a certain time scale. 

𝑓𝑆𝑂𝐶(𝑆𝑂𝐶) The linearized aging model of the SOC stress factor at a given SOC. 

𝑓𝑇(𝑇) The linearized aging model of the temperature stress factor at a given temperature. 

𝑇𝑟𝑒𝑓 , 𝑆𝑂𝐶𝑟𝑒𝑓 The reference parameters (SOC [50%] and temperature [293 k (25°C)]). 

𝑇𝑖 , 𝑆𝑂𝐶𝑖 , 𝑆𝑂𝐶𝑗 The value of the stress factors at a specific moment. 

𝑑𝑇𝑖 , 𝑑𝑆𝑂𝐶𝑖 , 𝑑𝑆𝑂𝐶𝑖,𝑇𝑗 The linearized degradation value extracted from the empirical data. 

𝑁𝑇 , 𝑁𝑆𝑂𝐶 , 𝑁𝑡 The amount of data points on the test data array of each stress factor. 

𝑘𝑆𝑂𝐶
𝑖,𝑗

 The SOC stress coefficient calculated from 2 SOC data points. 

𝑘𝑇
𝑇𝑖  The temperature stress coefficient at a given temperature (𝑇𝑖). 

𝑘𝑡
𝑆𝑂𝐶𝑖,𝑇𝑗  The time stress coefficient at a given SOC (𝑆𝑂𝐶𝑖) and temperature (𝑇𝑗). 

Table 24: Parameters of the calendar aging model proposed by Xu [83] 

In cycle aging models there are much more stress factors than in calendar aging models. Due to the 

complexity of the aging mechanisms, typical proposed cycling aging models are empirical models, 

which are supported only by experimental data. 

Wang et al. [87] proposed a cycle life model for NMC cathode and graphite anode cell taking into 

account cycling at a constant 50% Depth of Discharge (DOD) (Eq. (41)). The effect of the 

temperature is used on the fitting of pre-exponential (𝐵1) and exponential (𝐵2) factors on the Eq. (43). 

The equation is updated using the trend showed at the fitting of those factors (Eq. (42)). 

𝐴𝑐𝑦𝑐𝑙𝑖𝑛𝑔 = 𝑓(𝐷𝑜𝐷, 𝐶 𝑟𝑎𝑡𝑒, 𝐴ℎ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡) (41) 

𝑄𝑙𝑜𝑠𝑠,% = 𝐵1𝑒𝑥𝑝
(𝐵2𝐶𝑟𝑎𝑡𝑒)𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (42) 

𝑄𝑙𝑜𝑠𝑠,% = (𝑎𝑇
2 + 𝑏𝑇 + 𝑐)𝑒𝑥𝑝[(𝑑𝑇+𝑒)𝐶𝑟𝑎𝑡𝑒]𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (43) 

Parameters Description 

𝑄𝑙𝑜𝑠𝑠,% The relative capacity loss respect of the BOL capacity in %. 

𝑎, 𝑏, 𝑐 Pre-exponential constant. 

𝑑, 𝑒 Exponential constants. 

𝑇 The temperature absolute in °K. 
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𝐶𝑟𝑎𝑡𝑒 The C-rate. 

𝐴ℎ𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 The charged and discharged capacity along the lifetime in Ah. 

Table 25: The parameters of the cycling aging model proposed by Wang et al. [87] 

Sarasketa [11] looked into the influence of DOD, C-rate and Ah-throughput in cycle aging (at both 

static and dynamic operation schemes). The cycling model is restricted to normal operation 

conditions of C-rates defined by the manufacturer of the cell. At the same time, the proposed model 

uses the Ah-throughput instead of time as a parameter of cycle life modelling. The model was 

proposed in two DOD ranges: the first DOD range was defined between 10%-50% DOD (Eq. (44)) 

and the second DOD range was defined between 0%-10% and 50%-100% DOD (Eq. (45)). 

𝑄𝑙𝑜𝑠𝑠_𝑐𝑦𝑐[%] = (𝛾1𝐷𝑂𝐷
2 + 𝛾2𝐷𝑂𝐷 + 𝛾3)𝐴ℎ

0.87 (44) 

𝑄𝑙𝑜𝑠𝑠_𝑐𝑦𝑐[%] = (𝛼3𝑒𝑥𝑝
(𝛽3𝐷𝑂𝐷) + 𝛼4𝑒𝑥𝑝

(𝛽4𝐷𝑂𝐷))𝐴ℎ0.87 (45) 

Parameters Description 

𝑄𝑙𝑜𝑠𝑠_𝑐𝑦𝑐[%] The relative capacity loss respect of the BOL capacity in %. 

𝐷𝑂𝐷 The DOD in %. 

𝛾1, 𝛾2, 𝛾3 Constants relative to the 10%-50% DOD range. 

𝐴ℎ The charged and discharged capacity along the lifetime in Ah. 

𝛼3, 𝛼4 Pre-exponential constant relative to the 0%-10% and 50%-100% DOD range. 

𝛽3, 𝛽4 Exponential constant relative to the 0%-10% and 50%-100% DOD range. 

Table 26: The parameters of the cycling aging model proposed by Sarasketa [11] 

Käbitz et al. [30] proposed an approach of the voltage dependency through complex operation 

conditions by a weighted average SOC cycle life model, Eq. (46). The model gets an average cycling 

SOC which correspond to the SOC of a calendar life test at constant voltage (CV), taking into 

account the same grade of aging (the aging rate of calendar and cycling aging are considered equal). 

This approximation is not supposed to take into account the effect of capacity increase at low SOC 

so the multiplying factor 𝑎(𝑆𝑂𝐶) is set to one from 20% SOC to 50% SOC. 

𝑆𝑂𝐶𝑎𝑣𝑓,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
∑ 𝑎(𝑆𝑂𝐶)𝑆𝑂𝐶𝑖𝑡𝑖𝑖

∑ 𝑎(𝑆𝑂𝐶)𝑡𝑖𝑖

 (46) 

Parameters Description 

𝑆𝑂𝐶𝑎𝑣𝑓,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 The average cycling SOC which correspond to the SOC of a calendar life test. 

𝑎(𝑆𝑂𝐶) Taking as reference the capacity fade from 50% SOC and 40°C, the multiplying factor 
at the given 𝑆𝑂𝐶𝑖 and temperature. 

𝑆𝑂𝐶𝑖 The mean SOC at cycling aging. 

𝑡𝑖 The period of time at 𝑆𝑂𝐶𝑖. 

Table 27: The parameters of the cycling aging model proposed by Käbitz et al. [30] 

Wang et al. [49] proposed a cycle life model for LFP cathode and graphite anode cell, establishing a 

mathematical relationship between capacity loss, discharge C-rate, temperature and charge 

throughput. The relationship is limited to a defined temperature range (from 15°C to 60°C) and DOD 

range (from 0% to 90%) for C-rates up to 10C. The capacity fade model is based on the Arrhenius 

equation and a power law trend, Eq. (47). 

The results obtained in [49] showed that a general trend for the pre-exponent factor B exists. B 

decreases with increasing C-rate. However, it is difficult to quantitatively describe this relationship by 

using a simple mathematical correlation. Instead, B was found for each C-rate. At the same time, it 

was found that the C-rate affects the activation energy (Eq. (48)) so the effect of the C-rate has been 

quantified on the capacity fade model parametrization (similar to the Eyring model, Eq. (49)). 

𝑄𝑙𝑜𝑠𝑠 = 𝐵𝑒𝑥𝑝
[−
𝐸𝑎
𝑅𝑇
]𝐴ℎ𝑧 (47) 

𝐸𝑎 = 𝐷 − 𝐹𝐶𝑟𝑎𝑡𝑒 (48) 
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𝑄𝑙𝑜𝑠𝑠 = 𝐵𝑒𝑥𝑝
[
−𝐷+𝐹𝐶𝑟𝑎𝑡𝑒

𝑅𝑇
]𝐴ℎ𝑧 (49) 

Parameters Description 

𝑄𝑙𝑜𝑠𝑠 The percentage of capacity loss respect to the capacity at BOL. 

𝐵 The pre-exponential factor. 

𝐷, 𝐹 Fitting coefficients of the relationship of the activation energy and the C-rate. 

𝐸𝑎 The activation energy in J mol
-1

. 

𝑇 The absolute temperature. 

𝑅 The gas constant. 

𝐴ℎ The charge and discharged capacity in Ah. 

𝑧 The power law factor. 

𝐶𝑟𝑎𝑡𝑒 The C-rate. 

Table 28: The parameters of the cycling aging model proposed by Wang et al. [49] 

Xu [83] proposed a linearized degradation cycling model based on the effect of stress factors on 

cycling life (DOD, SOC, temperature, time and C-rate), where the cycling stress given by the SOC, 

temperature and time is introduced as calendar stress and thus, considered only on the calendar 

aging model. The stress model for DOD is derived from gathered supplier’s data on cycling life (Eq. 

(50)) and the stress model for C-rate is designed using the exponential stress model (Eq. (51)). The 

coefficient of the C-rate stress model (Eq. (52)) is calculated in the same way as the coefficient of the 

SOC stress factor (Eq. (39)). The coefficient of the DOD is calculated by a fitting process of the data. 

𝑓𝐷𝑂𝐷(𝐷𝑂𝐷) =
1

𝑘𝐷𝑂𝐷1𝐷𝑂𝐷
𝑘𝐷𝑂𝐷2 + 𝑘𝐷𝑂𝐷3

 (50) 

𝑓𝐶(𝐶) = 𝑒𝑘𝑐(𝐶−𝐶𝑟𝑒𝑓) (51) 

𝑘𝐶 =
∑ ∑ 𝑘𝐶

𝑖,𝑗𝑁𝐶𝑖
𝑖=1

𝑁𝐶𝑗
𝑗=1

𝑁𝐶
, 𝑘𝐶

𝑖,𝑗
=
ln (

𝑑𝐶𝑖

𝑑𝐶𝑗
)

(𝐶𝑖 − 𝐶𝑗)
 (52) 

𝑁𝐸𝑂𝐿(𝐷𝑂𝐷) =
𝐿𝐸𝑂𝐿

𝑓𝐷𝑂𝐷(𝐷𝑂𝐷)
 (53) 

Parameters Description 

𝑓𝐷𝑂𝐷(𝐷𝑂𝐷) The linearized aging model of the DOD stress factor at a given DOD. 

𝑘𝐷𝑂𝐷1, 𝑘𝐷𝑂𝐷2, 𝑘𝐷𝑂𝐷3 The average DOD stress coefficients. 

𝑁𝐸𝑂𝐿(𝐷𝑂𝐷) The number of cycles that can be operated before reaching EOL. 

𝐿𝐸𝑂𝐿 The EOL criteria. 

𝑓𝐶(𝐶) The linearized aging model of the C-rate stress factor at a given C-rate. 

𝑘𝐶  The average C-rate stress coefficient. 

𝐶𝑖 , 𝐶𝑗 , 𝐷𝑂𝐷 The value of the stress factor (C-rate and DOD). 

𝐶𝑟𝑒𝑓 The reference parameter of C-rate. 

𝑘𝐶
𝑖,𝑗

 The C-rate stress coefficient calculated from 2 C-rate data points. 

𝑁𝐶  The amount of data points on the test data array of C-rate stress factor. 

𝑑𝐶𝑖 , 𝑑𝐶𝑗  The linearized degradation value extracted from the empirical data. 

Table 29: The parameters of the cycling aging model proposed by Xu [83] 

3.3.1.2 Critical evaluation 
The review on the aging models available on the literature shows that there is not only one way of 

describing the aging behaviour of a lithium-ion battery and that there is not a clear reference for this 

aim yet. It is true that the exponential model introduced by the Arrhenius model or the Eyring model 

is quite common [88]. These two models describe the effect of the temperature on a generic electro-

chemical system, such as the lithium-ion batteries. Moreover, in the case of the Eyring model, the 

effect of the temperature is linked with the current in a double exponential mathematical expression 

(it explains two stress factors with a physical understanding of the aging behaviour of the system). 

Nevertheless, the rest of the stress factors, the SOC and the DOD, are not completely linked with a 

specific phenomenon. There are many studies reported on the literature that try to capture the effect 

of these stress factors with randomly optimized mathematical expressions. Sarasketa [11] uses a 

second order polynomial and an exponential to describe the effect of the DOD depending on the 

cycled DOD; Xu [83] proposes an exponential mathematical expression to describe the effect of the 
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SOC; Käbitz et al. [30] develops a linear model in terms of the mean SOC to describe the effect of 

the SOC. All these authors propose a mathematical expression that is able to describe the effect of 

the stress factor of interest without any justification on why they use the model they are using and not 

some other model. It can be understood that they have tried several different mathematical 

expressions and they are presenting the one that has shown the best performance rates. There is 

not any generic model to describe the aging of lithium ion battery, and therefore, this thesis focuses 

on defining a common methodology to find the best aging model. 

3.3.2 Proposal of Modelling Methodology 

The proposal modelling methodology defines the steps to develop an empirical aging model on any 

lithium ion battery chemistry. The proposed methodology has two main phases where firstly, the 

main trend of the selected health indicator is captured and secondly, the effect of the stress factors 

have on that captured main trend of the selected health indicator is modelled. As a result, a 

combined model that is able to describe the selected health indicator evolution in terms of the stress 

factors (operation conditions) is obtained. But for that, the proposal takes some important 

assumptions: 

- The calendar aging and the cycling aging are independent. 

- The calendar and cycling aging can be added linearly to express the cumulative aging. 

- There is no capacity recovery effect (the aging trends are monotonic). 

- The mean value of a stress factor of a real life cycle profile generates the same deterioration 

as the deterioration generated with that mean stress factor value at static operation 

conditions. 

- The effect of each stress factor is independent to the other. 

- The tested cells experience the same aging mechanisms. 

On the first phase, the mathematical expression that fits the best the trends of the observed health 

indicators is selected. Here, the behaviour of the health indicator itself is modelled. The literature is 

an interesting support in this task. It can be found a mathematical expression for almost any battery 

chemistry available on the market, see Table 30. 

Chemistry Linear Exponential Logarithmical Power type Polynomial 

LCO-C    [89] [90] 

LMO-C  [91]    

NCA-C  [92] [93]    

LFP-C    [94][88]  

NMC-C  [95] [96] [73]  

NMC-LTO [97] [95]    

Table 30: Mathematical expressions for different lithium ion chemistries reported on the literature 

In case a new chemistry is evaluated or a mayor doubt about the correctness of the mathematical 

expression reported on the literature is presented, the mathematical expression selection process 

would be like this: 

1- Fit the equations and the data with a quadratic optimization tool such as the “lsqcurvefit” 

function of MATLAB software. 

2- Calculate the root mean square error on each testing case and with each mathematical 

expression. 

3- Select the mathematical expression that has the minimum root mean square error values. 

If there is no a clear difference on the calculated root mean square error values, the use of the 

simplest mathematical expression of the candidates is recommended. 

On the second phase, the variables of the chosen mathematical expression on the first phase are 

expressed in function of the stress factors. Here, the effect of the stress factors on the health 

indicator behaviour is modelled. The effect of each stress factor is considered independent and 

therefore, the mathematical expressions of each stress factor are added linearly (Eq. (54)). 
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𝑣𝑎𝑟𝑖 = 𝑓1 + 𝑓2 +⋯+ 𝑓𝑁 (54) 

Parameters Description 

𝑣𝑎𝑟𝑖 The variable 𝑖th of the mathematical expression defined on the first phase. 

𝑓𝑗 The mathematical expression that represent the effect of the stress factor 𝑗. 

Table 31: The parameters that gather the effect of all the stress factors 

The available mathematical expressions for this second phase would be the same as in the first 

phase (Table 30). However, in this case, the literature will not be of any help. There is not knowledge 

about how the stress factors affect the mathematical expressions that can describe the trend of the 

selected health indicator. Therefore, we shouldn't discard any mathematical expression; they all 

should be tested and evaluated. 

Evaluating each mathematical expression that could fit the data leads to a huge testing and 

evaluation matrix, but in reality, the amount of tested levels of each stress factor will delimit the 

possible applicable mathematical expressions: 

- The tested levels of each stress factor delimits the complexity of the model that can be used 

on describing the effect that that stress factor has on the evaluated health indicator trend (if 

it has been tested 2 levels, the options are those with as maximum 2 variables to be fitted). 

Similarly, there is an aspect of the fitting that we need to be aware of: the relation between the 

number of variables to be fitted and the length of the output. MATLAB’s “lsqcurvefit” function will 

require that the number of available data points must be greater than the number of variables to find. 

If the obtained variables on the first phase are used as outputs, reduced aging test matrixes delimit 

greatly the applicable mathematical expression combinations. This issue can be overcome by joining 

both phases in one: the variables of the equations that describe the effect of each stress factors has 

on the trend of the selected health indicator are fitted using the whole data from the observed trends 

of that same health indicator as output (the second phase is fitted with the data from the first). In this 

way, the output length is increased as many times as the length of the smaller output vector of the 

first phase. 

The mathematical expression selection process would be same as in the first phase but more 

complex. Firstly, there are not just 5 mathematical expressions, but the combination of them 

(exponential increase of possibilities). Secondly, there is not clear knowledge about which 

mathematical expression should be the selected one and which shouldn’t (uncertainty on the 

performance of the models outside the tested cases). In this scenario, a logic based discrimination 

process is proposed as an additional aid when a mayor doubt is generated or when clear difference 

on the values doesn’t appear. 

The logical discrimination process consists on these two states: 

- The simplest mathematical expression is always the best. 

- The increase of the effect of the stress factor will always increase the deterioration rate of 

the health indicator. 

Once fulfilled these two modelling phases, the aging model would be completed, see Eq. (55). 

𝐻𝐼𝑡𝑟𝑒𝑛𝑑 = 𝑓𝑐𝑎𝑙(𝑓(𝑆𝐹𝑐𝑎𝑙 1), … , 𝑓(𝑆𝐹𝑐𝑎𝑙 𝑀)) + 𝑓𝑐𝑦𝑐 (𝑓(𝑆𝐹𝑐𝑦𝑐 1), … , 𝑓(𝑆𝐹𝑐𝑦𝑐 𝑁)) (55) 

Parameters Description 

𝐻𝐼𝑡𝑟𝑒𝑛𝑑 The degradation trend of the selected Health Indicator. 

𝑓𝑐𝑎𝑙 The mathematical expression of the calendar aging. 

𝑓𝑐𝑦𝑐 The mathematical expression of the cycling aging. 

𝑓(𝑆𝐹𝑐𝑎𝑙 𝑖) The mathematical expression of the effect of the 𝑖th stress factor on calendar aging. 

𝑓(𝑆𝐹𝑐𝑦𝑐 𝑖) The mathematical expression of the effect of the 𝑖th stress factor on cycling aging. 

𝑁,𝑀 The amount of evaluated stress factors on cycling and calendar aging respectively. 

Table 32: The parameters that describes the evolution of a selected health indicator 
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3.4 Validation 

The proposed aging testing and modelling methodology are put into practice with two different 

common applications which use battery based energy storage systems: a High-Energy type 

application and a High-Power type application. The defined requirements are divided on 

requirements relative to rest periods (calendar aging) and to operating periods (cycling aging). In 

each application a specific battery is used that matches the application requirements. After a proper 

evaluation of the application requirements, an aging test matrix for each application has been 

generated. After that, the test matrix has been implemented on CIDETEC’s lab. With the obtained 

data, an aging model for each application has been built. At the end, the constructed aging model is 

evaluated in terms of the fitting accuracy of the available data, the interpolation potential and the real 

life applicability on a validation context. In addition to this, two relevant hypotheses done along the 

proposed methodologies are analysed and discussed. 

3.4.1 Methodology validation on a High-Energy Application 

The high-energy application consists on a battery integrated on an electric public bus. For that, a 

High-Energy NMC-C pouch battery has been chosen. The battery characteristics are shown in Table 

3. 

Item Specification 

Nominal Capacity 54 [Ah] 

Standard charge current 54 [A] 

Standard discharge current 54 [A] 

Maximum temperature 45 [ºC] 

Minimum temperature -20 [ºC] 

Table 33: High-Energy battery specifications 

3.4.1.1 Aging Testing Definition 
Following the aging testing methodology, firstly the possible testing cases are reduced based on the 

delimitation imposed by the battery, see Table 34. 

Stress factor Operating temperature Current SOC DOD 

Maximum value 45[ºC] 54[A] 100[%] 100[%] 

Minimum value -20[ºC] -54[A] 0[%] 0[%] 

Minimum step 1[ºC] 0.001[A] 1[%] 1[%] 

Table 34: Testing cases possibilities on the first stage of the aging test matrix design on a High-Energy 

application 

Secondly, the obtained aging test matrix is further reduced based on the application characteristics. 

The application consists on a bus that makes a daily route 320 days of a year. The daily tour consists 

on 17h of work (the bus is moving) with 7 hours of charging at a constant current rate with a constant 

voltage stage when the end of charge voltage is reached. The 17h route is translated to a mean use 

profile of the battery (it is out of the scope of this thesis the way of getting this current profile). The 

mean current profile and the resultant energy evolution of the battery are shown in Figure 31. 

 

Figure 31: The current profile and the SOC evolution of the battery at BOL. The positive current values 

represent the discharge while the negative values represent the charge. 
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After a proper evaluation, several key aspects about the mean application have been resumed: 

- The battery will be on cycling mode 320 days per year (mostly, the aging will come from 

cycling aging). 

- The mean discharge current is below 0.1C. 

- There are many excursions to peak currents above C/2. 

- The use profile reduces the energy of the battery  88% of the nominal one (the DOD of the 

application is almost 90%). 

- The possible initial SOC value before initiating the route goes from 100% to 88%. 

- The possible SOC after finishing the route goes from 12% to 0%. 

- The temperature of operation will be 25±10ºC. 

- The charge current is 1C. 

- The batteries will be at a rest mode 45 days per year. 

- The rest period can be done at end of charge or end of discharge condition (at SOC values 

from 100% to 88% and values from 12% to 0%), but the most probable scenario is leaving 

the bus charged at constant current before the beginning of this rest period (around 95%). 

- The temperature on rest periods is the temperature at the garage, which is not controlled at 

holidays. The limit is placed on the temperature limits defined by the weather of the place of 

the application at the rest period season (summer): 35±10ºC. 

Alternatives to the defined most probable operation condition would be: 

- The current profile is reduced by increasing the number of batteries on the application. This 

is unlikely based on application expertise (probability below 29%). It is placed the limit to a 

mean current of 0.05C with a DOD of 70%. This affects the rest time period conditions: SOC 

values from 100% to 70% and values from 30% to 0%. 

- The current profile is increased by reducing the number of batteries on the application. This 

is not recommendable because it will increase the DOD (probability between 30% and 59%). 

The current is increased to C/5 with a DOD of 100%. 

- The operation temperature range can be increased by simplifying the thermal management 

system. This is likely to happen (probability between 30% and 59%). The limit is placed on 

the temperature limits defined by the weather of the place of the application: 25
+20

-25ºC. 

- The charge current is decreased to C/2. It is very likely (probability between 60% and 90%). 

- The charge current is reduced to C/3. It is very likely to happen (probability between 60% 

and 90%). 

- The amount of days on operation is likely to change. It doesn’t affect the aging test matrix. 

Operation mode Operation 
temperature 

Charge 
current 

Discharge 
current 

DOD SOC range Average 
SOC 

Resting MIN 25[ºC]     0[%] 

MAX 45[ºC] 100[%] 

STEP 1[ºC] 1[%] 

Cycling MIN 0[ºC] -54[A] 0[A] 70[%] 70[%]-0[%] /…/ 
100[%]-30[%] 

 

MAX 45[ºC] 0[A] 54[A] 100[%] 100[%]-0[%] 

STEP 1[ºC] 0.001[A] 0.001[A] 1[%] 1[%] 

Table 35: Stress factors of calendar and cycling aging 

Once the application characteristics are properly evaluated, the possible testing cases that fits the 

application requirements are generated, see Table 35. For that, firstly, the testing cases are divided 

in the operation modes that appear on the application: cycling and resting (this makes reference to 

the cycling aging and calendar aging respectively). Then, the stress factors of interest on each 

operation mode are redefined. In this application, there are two changes from the defined generic 

stress factors: the current and the SOC. The effect of the current is divided in terms of the sign of the 

current and the effect of the SOC is presented as an average value or as a range of values. The 

current is divided in two in order to properly define the effect of negative currents on one hand (the 

charging process) and the positive current on the other hand (the discharging process). The SOC is 
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presented in average value for resting periods, since there is no SOC change in this operation mode. 

Nonetheless, the cycling operation mode generates a change on the SOC; this is why the range of 

SOC values is presented instead of the average used on the resting period. 

Before the last stage of restraining the aging test matrix, the importance of the testing cases needs to 

be expressed in a user-friendly way. In this context, the concept of the proposed colour system is 

applied. Firstly, a matrix containing the red testing cases has been built, see Table 36. Here, the 

condition that describes better the application requirements is highlighted (the levels of the stress 

factors that describe this operation condition are turned red). In total, we get 9 testing cases to 

describe the calendar aging behaviour and 189 testing cases to describe the cycling aging 

behaviour. 

Operation 
mode 

Level Operation 
temperature 

Charge 
current 

Discharge 
current 

DOD SOC range Average 
SOC 

Resting 1 25[ºC]     0[%] 

2 35[ºC] 95[%] 

3 45[ºC] 100[%] 

Cycling 1 15[ºC] -54[A] 54[A] 100[%] 100[%]-0[%]  

2.1 25[ºC] -40[A] 30[A] 90[%] 100[%]-10[%] 

2.2 95[%]-5[%] 

2.3 90[%]-0[%] 

3.1 35[ºC] -27[A] 5.4[A] 80[%] 100[%]-20[%] 

3.2 90[%]-10[%] 

3.3 80[%]-0[%] 

Table 36: The Red testing cases. The levels of the stress factors that are in red describe the most 

probable operation condition defined on the application requirements 

Following the advice done at the end of the methodology, the generated test matrix is presented to 

CIDETEC’s lab. First of all, the viability of testing the proposed operations conditions is evaluated. 

The actual lab availability has forced the following changes on the stress factor levels: 

- The absolute value of the current must be above 14A (C/3) since it supposes to occupy the 

lab resources more than the acceptable project time. 

- The temperatures available on cycling operation mode are 10ºC, 25ºC and 45ºC. 

Operation 
mode 

Level Operation 
temperature 

Charge 
current 

Discharge 
current 

DOD SOC range Average 
SOC 

Resting 1 25[ºC]     0[%] 

2 35[ºC] 95[%] 

3 45[ºC] 100[%] 

Cycling 1 10[ºC] -54[A] 54[A] 100[%] 100[%]-0[%]  

2.1 25[ºC] -40[A] 30[A] 90[%] 100[%]-10[%] 

2.2 95[%]-5[%] 

2.3 90[%]-0[%] 

3.1 45[ºC] -27[A] 14[A] 80[%] 100[%]-20[%] 

3.2 90[%]-10[%] 

3.3 80[%]-10[%] 

Table 37: The Red testing cases after a first iteration with the lab. The levels of the stress factors that are 

in red describe the most probable operation condition defined on the application requirements. The blue 

values are the ones modified after the first iteration with the lab 

As a result, firstly, the values of the tested temperature on the cycling operation mode are changed; 

and secondly, the testing case that describes better the application disappears from the testing 

cases, see Table 37. The change on the temperature values does not affect too much the obtainable 

result. The restrictions have increased the upper and lower values but all the values of interest are 

still inside the tested operation window, so it is considered acceptable. However, the restriction on 

the current leaves the case of interest outside the tested window (the lower tested value is higher 

than the one of interest), so assumptions on modelling level are required: 
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- The aging effect due to discharge currents below C/3 is assumed to be the same as the one 

generated with a C/3 current. The difference that could be is considered negligible. 

After that, the numbers of cases that can be tested are discussed. After a proper evaluation of the 

importance of the project, the cost of samples and the availability of resources, the maximum testing 

cases have been set on 5 on resting operation mode and 8 on testing the cycling operation mode. 

Since the red testing case matrix needs to be reduced, there is no sense on developing the orange, 

yellow and white testing case matrixes. 

In other to reduce the calendar aging testing cases from 9 to 5, we need at least discard 2 levels of 

the defined 6. In this case, the 0% SOC has been directly nominated since it was unlikely to happen. 

This level was added to improve the calendar aging behaviour description at low SOC. For the 

temperature, the middle value of the temperature has been nominated according to the following 

hypothesis: 

- The effect of the temperature in between 25ºC and 45ºC is linear. 

As result, a new calendar aging test matrix of 4 testing cases (below the restriction imposed by the 

lab of 5) can be generated. So as to complete the testing cases the lab is offering, an additional 

testing case is added. The proposed one is to test the calendar aging at 30% SOC at 25ºC. The 

batteries are used to be distributed at this same SOC (30%) and the most probable temperature in 

cycling and resting operation modes is this temperature (25ºC). The final calendar aging test matrix 

proposal is shown in Table 38. 

Test nº Temperature [ºC] SOC [%] 

1 25 100 
2 25 95 
3 25 30 
4 45 100 
5 45 95 

Table 38: Aging test matrix to characterize the calendar aging 

In other to reduce the cycling aging testing cases from 189 to 8, we need to reduce the levels and 

combinations of stress factors to the minimum. First of all, the levels need to be reduced to a 

minimum acceptable for the posterior modelling. The process in this application is as follow: 

- DOD: The most likely DOD values are above 90%, so the 80% DOD is nominated. 

- SOC range: The most likely operation consists on charging completely the battery (SOC 

ranges up to 100%) and discharging to values above 5% (values below 0% would generate 

safety problems), so the SOC range between 90% and 0% is nominated. 

- Charge current: The middle charge current is nominated (40A). 

- Discharge current: The maximum discharge current could be nominated since the 

application is very unlikely to work around this value. However, since the effect of the 

discharge current on the health indicators is expected to be almost the same for currents 

below C/3, more than 2 points is needed. It is not nominated any of the values on the 

discharge current stress factor. 

- Operation temperature: The effect of the temperature is expected to suffer an increase at 

low temperatures and high temperatures, so a minimum of 3 points is required. It is not 

nominated any of the values on the temperature stress factor. 

As a result of the nominations, a reduced test matrix can be generated, see Table 39. In this table 

the SOC range is defined by the upper SOC of this same SOC range. 

Operation temperature Charge current Discharge current DOD Upper SOC 

10[ºC] -54[A] 54[A] 100[%] 100[%] 

25[ºC] -27[A] 30[A] 90[%] 95[%] 

45[ºC] - 14[A] - - 

Table 39: The reduced testing cases on the cycling operation mode 
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The new proposed matrix generates a total of 54 testing cases, which are still way above the defined 

8 testing cases. However, the levels of the stress factors cannot be reduced further. In this scenario, 

the combinations between the levels are gradually restricted. 

Firstly, the tested temperature combinations are restricted. The three values of the temperature 

stress factor are only applied on the most probable operation condition: a 1C charge with a C/3 

discharge with a 90% DOD and with a SOC range of 100% to 10%. Then, the combinations of the 

rest stress factors (current, DOD and SOC) are done all at 25ºC. However, a modelling assumption 

is required: 

- The effect of the temperature on the cycling aging is independent to the current, DOD or 

SOC ranges if working on the safety window. 

As a result, the total testing cases are reduced from 54 to 20, see Table 40. In this point, the 

combination between the DOD, SOC range and currents need to be reduced to 6. One of the 6 

testing cases is already defined and cannot be changed: a 1C charge with a C/3 discharge with a 

90% DOD and with a SOC range of 100% to 10% at 25ºC. The rest are selected based on the 

experience while maintaining some conditions: 

- All the defined levels of every stress factor need to appear on the selected conditions. 

- The most probable levels of the stress factors will be the ones with more presence on the 

selected testing cases. 

- The more disperse the operation conditions of the testing cases are, the better the covered 

tested dimension will be. 

The selected 8 cases are put on red in Table 40. 

Test nº Temperature [ºC] Upper SOC [%] DOD [%] Charge C-rate [%] Discharge C-rate [%] 

1 10 100 90 1 0.3 
2 45 100 90 1 0.3 
3 25 100 90 1 0.3 
4 25 100 90 1 0.5 
5 25 100 90 1 1 
6 25 100 90 0.5 0.3 
7 25 100 90 0.5 0.5 
8 25 100 90 0.5 1 
9 25 100 100 1 0.3 

10 25 100 100 1 0.5 
11 25 100 100 0.5 1 
12 25 100 100 0.5 0.3 
13 25 100 100 0.5 0.5 
14 25 100 100 1 1 
15 25 95 90 1 0.3 
16 25 95 90 1 0.5 
17 25 95 90 0.5 1 
18 25 95 90 0.5 0.3 
19 25 95 90 0.5 0.5 
20 25 95 90 1 1 

Table 40: The Aging test matrix to characterize the cycling aging with 26 testing cases. The cases that are 

in red are the selected ones as the final ones 

In this point, the customer was consulted and a discussion was started. The calendar aging test 

matrix was accepted. However, the cycling aging test matrix generated some disagreements. Due to 

interests of future application of the selected battery, a particular evaluation of the aging generated 

with lower charging current was demanded. On the same hand, the reduction of the testing time was 

asked, so an agreement of increasing the minimum discharging current to C/2 and the most probable 

current to 1C was taken. This reformulation of the testing case levels was done by assuming that: 

- The aging effect due to discharge currents below C/2 is assumed to be the same as the one 

generated with a C/2 current. The difference that could be is considered negligible. 
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- The effect of the current on the aging trend of the selected health indicator between 1C and 

C/2 is linear. 

In this scenario, the amount of levels of the charging current stress factor is increased to 3 and the 

amount of levels of the discharging current stress factor is reduced to 2. The final cycling aging 

matrix is shown in Table 41. 

Test nº Temperature [ºC] Upper SOC [%] DOD [%] Charge C-rate [%] Discharge C-rate [%] 

1 25 100 90 1 0.5 
2 25 95 90 1 1 
3 25 95 90 0.5 1 
4 10 100 90 0.3 1 
5 45 100 90 0.3 1 
6 25 100 90 0.3 1 
7 25 100 90 0.5 0.5 
8 25 100 100 0.5 1 

Table 41: Aging test matrix to characterize the cycling aging 

The proposal of the cycling aging test matrix was accepted by the lab and the tests defined on Table 

38 and Table 41 were scheduled to run for 2 years, but before starting the tests, the ACT was 

designed. The long ACTs used at BOL and EOL contain a capacity, an OCV and an impedance 

characterization test. The selected OCV characterization test is done with a continuous small C-rate. 

The selected impedance characterization test is done with repeated charge and discharge pulse test 

on the whole operation SOC range with a step of 10% SOC. The short ACT contains the suggested 

capacity and impedance characterization test. 

3.4.1.2 Aging Model Construction 
After finishing the 2 years of testing period, the performed ACTs have been treated and the health 

indicators of interest have been obtained: 

- Dischargeable capacity (see Figure 32 and Figure 33). 

- Pure ohmic resistance (see Figure 34 and Figure 35). 

The comparison of the obtained results is done in terms of days in the case of calendar aging and in 

terms of energy throughput or equivalent cycles in the case of cycling aging. The days make 

reference to the total time in days elapsed in between aging measurements. The energy throughput 

or equivalent cycles make reference to the total energy discharged in between aging evaluations. 

The energy throughput is directly the Wh discharged and the equivalent cycle is the Wh discharged 

divide by the nominal energy in Wh. 

 

Figure 32: Relative dischargeable capacity values of the tested batteries under the calendar aging test 

matrix. 
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Figure 33: Relative dischargeable capacity values of the tested batteries under the cycling aging matrix. 

 

Figure 34: Relative pure ohmic resistance values of the tested batteries at 50% SOC under the calendar 

aging matrix. 

 

Figure 35: Relative pure ohmic resistance values of the tested batteries at 50% SOC under the cycling 

aging matrix. 

Afterwards, the obtained data has been analysed. In a first glance, it has been detected a problem 

with the test 8. The impedance data of the test 8 has been corrupted and has been discarded. As a 

consequence, there are 7 testing cases to develop the aging model that describes the pure ohmic 

resistance increase due to cycling aging. Then, the proposed modelling methodology has been 

followed. 

The first stage of the proposed modelling methodology consists on choosing the mathematical 

expression that fits better the selected health indicators (dischargeable capacity and the pure ohmic 

resistance). The literature tells us that both, the calendar aging model and the cycle aging model of 

the selected health indicators are likely to have an exponential decay tendency [95] [98]. 

Nevertheless, all the proposed 5 simple mathematical expressions are tested. The tested 

mathematical expressions are shown in Table 42. 

Aging Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Calendar x x x x x 

Cycling x x x x x 

Table 42: Applicable mathematical expressions to the obtained data from the aging test matrix 
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The fitting accuracy is measured with the Root Mean Square Error (RMSE) metric between the 

measurements and the estimation done with the fitted mathematical expression. This metric has 

been calculated on each test of both aging test matrix for the two selected health indicators. The 

mean of the obtained RMSE values on all the tests of the run aging test matrix is added as well, see 

Table 43, Table 44, Table 45 and Table 46. 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,00867 0,00228 0,01067 0,00006 0,00867 

Test 2 0,00777 0,00294 0,01725 0,00147 0,00777 

Test 3 0,01879 0,02492 0,07387 0,01873 0,01871 

Test 4 0,00806 0,01806 0,06533 0,00780 0,00806 

Test 5 0,01303 0,01035 0,03754 0,00323 0,01303 

Test 6 0,01413 0,01349 0,05026 0,00282 0,01413 

Test 7 0,02353 0,01770 0,06235 0,00903 0,02353 

Test 8 0,00812 0,01734 0,07585 0,00801 0,00750 

Mean RMSE 0,01276 0,01338 0,04914 0,00640 0,01268 

Table 43: Fitting RMSE of the dischargeable capacity evolution data with the proposed cycling aging 

models 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,04501 0,04501 0,04501 0,04501 0,04501 

Test 2 0,06649 0,06649 0,06649 0,06649 0,06649 

Test 3 0,04751 0,03631 0,09513 0,03496 0,03592 

Test 4 0,07983 0,07257 0,10424 0,07670 0,07724 

Test 5 0,04318 0,03793 0,05256 0,03807 0,03960 

Test 6 0,03265 0,02998 0,05637 0,03020 0,03025 

Test 7 0,04743 0,05063 0,09778 0,04736 0,04729 

Mean RMSE 0,05173 0,04842 0,07394 0,04840 0,04883 

Table 44: Fitting RMSE of the pure ohmic resistance evolution data with the proposed cycling aging 

models 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,00240 0,00296 0,01374 0,00137 0,00240 

Test 2 0,00373 0,00288 0,01434 0,00086 0,00373 

Test 3 0,00299 0,00212 0,01235 0,00091 0,00299 

Test 4 0,00190 0,00408 0,02745 0,00060 0,00190 

Test 5 0,00365 0,00441 0,02378 0,00045 0,00365 

Mean RMSE 0,00293 0,00329 0,01833 0,00084 0,00293 

Table 45: Fitting RMSE of the dischargeable capacity evolution data with the proposed calendar aging 

models 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,03330 0,03086 0,03079 0,03078 0,03330 

Test 2 0,04079 0,04084 0,04084 0,03801 0,03954 

Test 3 0,04575 0,04575 0,04575 0,04575 0,04575 

Test 4 0,01903 0,01583 0,02251 0,01640 0,01714 

Test 5 0,01867 0,01866 0,01867 0,01867 0,01867 

Mean RMSE 0,03151 0,03039 0,03171 0,02992 0,03088 

Table 46: Fitting RMSE of the pure ohmic resistance evolution data with the proposed calendar aging 

models 

The fitting of the dischargeable capacity data on both operation conditions (cycling and resting 

operation conditions) shows that the model that fits better the data is the power type model. This 

difference of the power type model with the rest models is almost 10 times on the best case (test 5 of 

resting operation) and at least 2 times on the worst case (test 1 of cycling operation) with an average 

improvement of at least 100%. This difference is relevant enough to select this power type model 

against the others. On the other hand, the fitting of the pure ohmic resistance data shows that there 

is not a clear winner. The biggest improvement respect to the simplest model is below 50% on all the 

cases. The difference cannot be defined as relevant. Therefore, the simplest model (linear model) is 

selected. 
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Next stage consists on linking the variables of the selected mathematical expressions and the stress 

factors. The applicable mathematical expressions for that aim are shown in Table 47 and Table 62. 

Here, the complexity of the available mathematical expression depends on the tested levels and the 

assumed hypotheses on the aging test matrix design. In this case, the temperature effect on the 

calendar aging model is considered linear since it is only modelled the temperature effect on high 

temperatures. In cycling mode, however, both the effect of low temperatures and the effect of high 

temperatures is tested and therefore, modelled. For this a non-linear mathematical expression based 

on two linear equations is formulated to model linearly on one hand the effect of low temperatures 

and on the other hand the effect of high temperatures. The upper SOC and the discharge current 

effect are evaluated with 2 levels each, so a linear model is only applicable. The effect of DOD is also 

tested with 2 levels, so a linear model is only applicable, at least on the dischargeable capacity 

health indicator modelling. Due to loss of data, it cannot be modelled the DOD effect on the pure 

ohmic resistance health indicator (tested only 1 level). In contrast, the mean SOC and the charge 

current effect is evaluated with 3 levels, so some more mathematical expressions are evaluated, see 

Table 47 and Table 62 respectively. 

Stress factor Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Mean SOC x x x x x 

Temperature x     

Table 47: The applicable mathematical expressions to link the stress factors and the free variables 

designed on the calendar aging model 

Stress factor Linear Exponential Logarithmic Power 
type 

2
nd

 order 
polynomial 

Double 
Linear 

Upper SOC x      

Temperature      x 

DOD x      

Charge C-rate x x x x x  

Discharge C-rate x      

Table 48: The applicable mathematical expressions to link the stress factors and the free variables 

designed on the cycling aging model. 

The possible combinations of these mathematical expressions are a total of: 

- 25 for the calendar aging model that describes the dischargeable capacity evolution. 

- 5 for the calendar aging model that describes the pure ohmic resistance evolution. 

- 25 for the cycling aging model that describes the dischargeable capacity evolution. 

- 25 for the cycling aging model that describes the pure ohmic resistance evolution. 

The RMSE on each possible combination has been calculated, see Table 49. 

Combination Calendar aging Cycling aging 

Dischargeable 
capacity 

Pure ohmic 
resistance 

Dischargeable 
capacity 

Pure ohmic 
resistance 

1 0.13064 4.94e-06 6.29038 6.36e-05 

2 182.928 7.12e-06 51.3022 0.06393 

3 9.43133 9.65e-06 51.3022 0.06395 

4 13.6691 7.12e-06 51.3022 0.06393 

5 8.59503 4.94e-06 52627866 0.06120 

6 2.66485  8.90e+21  

7 52.7651 Inf 

8 3.79468 Inf 

9 4.30601 Inf 

10 52.7651 51.3022 

11 2.69993 8.80e+21 

12 52.7651 Inf 

13 3.82311 Inf 

14 4.34067 Inf 

15 52.7651 51.3022 

16 2.68350 8.90e+21 
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17 52.7651 Inf 

18 3.80923 Inf 

19 4.32379 Inf 

20 52.7651 51.3022 

21 Inf 2.37e+22 

22 4795858 Inf 

23 52.76511 Inf 

24 5924139 Inf 

25 Inf 51.3022 

Table 49: The mean RMSE values of each combination of the proposed mathematical expressions 

The combination that gets the minimum RMSE among the evaluated ones are the first case for the 

dischargeable capacity on both calendar aging model (Eq. (56)) and cycling aging model (Eq. (58)), 

and for the pure ohmic resistance on the cycling aging model (Eq. (59)). In the case of the pure 

ohmic resistance of the calendar aging model, the first combination gets the same value as the fifth 

combination. In case of doubt, the simplest model is chosen. In this case, the simplest model is the 

first combination (two linear models, Eq. (57)). 

The obtained calendar aging model of the selected two health indicators, the dischargeable capacity 

and the pure ohmic resistance, are shown in Figure 36 and Figure 37 respectively. The obtained 

cycling aging model of the selected two health indicators, the dischargeable capacity and the pure 

ohmic resistance, are shown in Figure 38 and Figure 39 respectively. 

𝑄𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝑄𝑖𝑛𝑖 − 𝑣𝑎𝑟1 ∙ 𝑡
𝑣𝑎𝑟2 (56) 

𝑣𝑎𝑟1 = (−2.22𝑒−5) ∙ 𝑇 + (9.53𝑒−6) ∙ 𝑆𝑂𝐶  

𝑣𝑎𝑟2 = (0.0104) ∙ 𝑇 + (−0.0022) ∙ 𝑆𝑂𝐶  

Parameters Description 

𝑄𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 The dischargeable capacity evolution due to calendar aging. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

𝑡 The resting time related to calendar aging in days. 

𝑣𝑎𝑟1 The pre-power law variable. 

𝑣𝑎𝑟2 The power law variable. 

𝑇 The cell temperature at resting mode. 

𝑆𝑂𝐶 The mean SOC at resting mode. 

Table 50: Parameters of the calendar aging model of the dischargeable capacity evolution 

 
Figure 36: Aging trends of the dischargeable capacity decrease at different calendar conditions. 

𝑅𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝑅𝑖𝑛𝑖 + 𝑣𝑎𝑟1 ∙ 𝑡 (57) 

𝑣𝑎𝑟1 = (−1.39𝑒−7) ∙ 𝑇 + (2.96𝑒−7) ∙ 𝑆𝑂𝐶  

Parameters Description 

𝑅𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 The pure ohmic resistance evolution due to calendar aging. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

𝑡 The resting time related to calendar aging in days. 

𝑣𝑎𝑟1 The slope of the linear model. 
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𝑇 The cell temperature at resting mode. 

𝑆𝑂𝐶 The mean SOC at resting mode. 

Table 51: Parameters of the calendar aging model of the pure ohmic resistance evolution 

 
Figure 37: Aging trends of the pure ohmic resistance increase at different calendar conditions. 

𝑄𝑐𝑦𝑐𝑙𝑖𝑛𝑔 = 𝑄𝑖𝑛𝑖 − 𝑣𝑎𝑟1 ∙ 𝑐𝑦𝑐
𝑣𝑎𝑟2 (58) 

{
 
 

 
 𝑇 < 25º𝐶     𝑣𝑎𝑟1 = (−1.96𝑒

−4) ∙ 𝑇 + (6.37𝑒−4) ∙ 𝑆𝑂𝐶 + (−3.70𝑒−4) ∙ 𝐷𝑂𝐷

+(7.90𝑒−5) ∙ 𝐼𝑐ℎ𝑎 + (−2.58𝑒
−4) ∙ 𝐼𝑑𝑐ℎ

𝑇 ≥ 25º𝐶     𝑣𝑎𝑟1 = (1.91𝑒
−5) ∙ 𝑇 + (6.37𝑒−4) ∙ 𝑆𝑂𝐶 + (−3.70𝑒−4) ∙ 𝐷𝑂𝐷

+(7.90𝑒−5) ∙ 𝐼𝑐ℎ𝑎 + (−2.58𝑒
−4) ∙ 𝐼𝑑𝑐ℎ

  

{
 

 
𝑇 < 25º𝐶     𝑣𝑎𝑟2 = (−3.89𝑒

−2) ∙ 𝑇 + (−5.73𝑒−2) ∙ 𝑆𝑂𝐶 + (6.15𝑒−2) ∙ 𝐷𝑂𝐷

+(6.01𝑒−3) ∙ 𝐼𝑐ℎ𝑎 + (1.37𝑒
−3) ∙ 𝐼𝑑𝑐ℎ

𝑇 ≥ 25º𝐶     𝑣𝑎𝑟2 = (5.91𝑒
−4) ∙ 𝑇 + (−5.73𝑒−2) ∙ 𝑆𝑂𝐶 + (6.15𝑒−2) ∙ 𝐷𝑂𝐷

+(−6.01𝑒−3) ∙ 𝐼𝑐ℎ𝑎 + (−1.37𝑒
−3) ∙ 𝐼𝑑𝑐ℎ

  

Parameters Description 

𝑄𝑐𝑦𝑐𝑙𝑖𝑛𝑔 The dischargeable capacity evolution due to cycling aging. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

𝑐𝑦𝑐 The equivalent cycles done at cycling operation mode. 

𝑣𝑎𝑟1 The pre-power law variable. 

𝑣𝑎𝑟2 The power law variable 

𝑇 The operation temperature. 

𝑆𝑂𝐶 The upper SOC on cycling operation mode. 

𝐷𝑂𝐷 The DOD. 

𝐼𝑐ℎ𝑎 The charge current. 

𝐼𝑑𝑐ℎ The discharged current. 

Table 52: Parameters of the cycling aging model of the dischargeable capacity evolution 

 
Figure 38: Aging trends of the dischargeable capacity decrease at different cycling conditions. 
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𝑅𝑐𝑦𝑐𝑙𝑖𝑛𝑔 = 𝑅𝑖𝑛𝑖 + 𝑣𝑎𝑟1 ∙ 𝑐𝑦𝑐 (59) 

{
 
 

 
 𝑇 < 25º𝐶       𝑣𝑎𝑟1 = (1.48𝑒

−6) ∙ 𝑇 + (−2.17𝑒−5) ∙ 𝑆𝑂𝐶

+(−5.99𝑒−6) ∙ 𝐼𝑐ℎ𝑎 + (−8.39𝑒
−6) ∙ 𝐼𝑑𝑐ℎ

𝑇 ≥ 25º𝐶      𝑣𝑎𝑟1 = (2.82𝑒
−5) ∙ 𝑇 + (−2.17𝑒−5) ∙ 𝑆𝑂𝐶

+(−5.99𝑒−6) ∙ 𝐼𝑐ℎ𝑎 + (−8.39𝑒
−6) ∙ 𝐼𝑑𝑐ℎ

  

Parameters Description 

𝑅𝑐𝑦𝑐𝑙𝑖𝑛𝑔 The pure ohmic resistance evolution due to cycling aging. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

𝑐𝑦𝑐 The equivalent cycles done at cycling operation mode. 

𝑣𝑎𝑟1 The slope of the linear model. 

𝑇 The operation temperature. 

𝑆𝑂𝐶 The upper SOC on cycling operation mode. 

𝐼𝑐ℎ𝑎 The charge current. 

𝐼𝑑𝑐ℎ The discharged current. 

Table 53: Parameters of the cycling aging model of the pure ohmic resistance evolution 

 
Figure 39: Aging trends of the pure ohmic resistance increase at different cycling conditions. 

3.4.1.3 Aging Model Validation 
The constructed aging models are validated in terms of the accuracy describing the observed cases, 

the correctness of interpolations and the real life applicability. For that, firstly, the response of the 

generated model and the data used on the construction of the model is evaluated with the Root 

Mean Square Error metric in Table 54. 

 Calendar Aging Model Cycling Aging Model 

Dischargeable 
capacity [%] 

Pure ohmic 
resistance [%] 

Dischargeable 
capacity [%] 

Pure ohmic 
resistance [%] 

Test 1 0,36314 5,97195 0,34911 9,55325 

Test 2 0,23575 8,47539 0,19305 15,1384 

Test 3 0,16147 12,7900 3,16271 12,1440 

Test 4 0,17353 2,29398 1,08660 15,6313 

Test 5 0,21350 2,38823 0,33227 8,66537 

Test 6   0,88194 10,7840 

Test 7   1,09674 8,03807 

Test 8   1,16814  

Table 54: RMSE between the response of the model and the data used to construct the model 

The results show that the constructed model that describes the dischargeable capacity evolution has 

a maximum average fitting error of 3.2% and a fitting error below 1% on most of the tested cases (9 

from 13). Based on this, the constructed aging model to describe the dischargeable capacity 

evolution is considered highly accurate on the observed cases. In contrast, the constructed model 

that describes the pure ohmic resistance evolution has a minimum fitting error above 2% and a 

maximum fitting error of 15%. In this case, the accuracy is low even on the observed cases. This 

happens due to the noise level on the resistance measurements, which is something that cannot be 

solved once the tests have been finished. 
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Secondly, the generated models are tested under a wide range non-variable operation conditions 

that are always inside the tested operation conditions. Basically, the operation conditions are 

interpolated in order to see if the model gives non-logical values. The results from the constructed 

aging models need to keep the logic of the expected aging trend: 

- The dischargeable capacity will decrease with the rest and the cycling operation. 

- The pure ohmic resistance will increase with the rest and the cycling operation. 

The interpolated ranges are described in Table 55, taking into account that due to data limitations, 

the cycling aging model that describes the pure ohmic resistance evolution has 4 stress factors 

instead of 5; the DOD has not been modelled, so the interpolation of this stress factor is not done 

when evaluating the evolution of this health indicator. The results are shown in 3D figures; see Figure 

40, Figure 41, Figure 42 and Figure 43. The z axis represents the health indicator value, the y axis 

represents the comparison variable on each operation mode (the calendar aging is related to the 

time elapsed in between measurements and the cycling aging is related to the discharged energy in 

terms of equivalent cycles) and the x axis represents all the stress factors all together in a 

synthesized manner, being the indexing values of each combination of these stress factors the ones 

displayed on the x axis (“Validation Test [-]”). 

Stress factor 

Calendar aging Cycling Aging 

Operating 
temperature 

Mean 
SOC 

Operating 
temperature 

Upper 
SOC 

DOD 
Charge 
current 

Discharge 
current 

Maximum value 45[ºC] 100[%] 45[ºC] 100[%] 100[%] 54[A] 54[A] 

Minimum value 25[ºC] 30[%] 10[ºC] 95[%] 90[%] 18[A] 27[A] 

Step 1[ºC] 1[%] 2[ºC] 1[%] 1[%] 2[A] 2[A] 

Table 55: Interpolation cases possibilities on the aging model validation process of a High-Energy 

application 

 
Figure 40: The dischargeable capacity map based on Calendar aging model interpolations. 
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Figure 41: The pure ohmic resistance map based on calendar aging model interpolations. 

 
Figure 42: The dischargeable capacity map based on cycling aging model interpolations. 

 
Figure 43: The pure ohmic resistance map based on cycling aging model interpolations. 

The results show that the calendar aging model of the dischargeable capacity and the pure ohmic 

resistance give logical values for interpolated operation conditions (respect to the tested ones). The 

obtained dischargeable capacity evolution trends are delimited by the observed ones at the tested 
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cells. The same can be said on the cycling aging model of the pure ohmic resistance. Nonetheless, 

the cycling aging model of the dischargeable capacity shows more extreme trends inside 

interpolations, which means that the proposed model cannot describe properly operation conditions 

that are not tested beforehand. This is thought to be due to the huge amount of stress factors (5) and 

the sensibility of the proposed model (an exponential model generates huge changes on the final 

result with slight changes of the exponential variable). 

The proposed model needs to be rebuilt from the scratch. For that, the Table 45 need to be 

reviewed. Among the other possibilities, the one that can be considered more simple than the 

exponential model would be the linear model. Besides, there is no a clear winner among the rest, 

which means that the linear model would be the most interesting one. 

The stress factor modelling activity needs to be repeated with the selected linear model. The possible 

combinations of the mathematical expressions to describe the effect of the stress factors on the 

linear model that describes the dischargeable capacity evolution are a total of 5. The RMSE on each 

possible combination has been calculated, see Table 56. 

Combination 
Cycling aging 

Dischargeable capacity 

1 6,16994 

2 17,5313 

3 20,3699 

4 17,5313 

5 75,2502 

Table 56: The mean RMSE values of each combination of the proposed mathematical expressions ones 

rebuilt the model from scratch 

The combination that gets the minimum RMSE among the evaluated ones is the first case (Eq. (60)). 

The obtained cycling aging model of the dischargeable capacity is shown in Figure 48. 

𝑄𝑐𝑦𝑐𝑙𝑖𝑛𝑔 = 𝑄𝑖𝑛𝑖 − 𝑣𝑎𝑟1 ∙ 𝑐𝑦𝑐 (60) 

{
 

 
𝑇 < 25º𝐶     𝑣𝑎𝑟1 = (3.95𝑒

−5) ∙ 𝑇 + (4.10𝑒−6) ∙ 𝑆𝑂𝐶 + (−4.39𝑒−6) ∙ 𝐷𝑂𝐷

+(5.94𝑒−6) ∙ 𝐼𝑐ℎ𝑎 + (−2.10𝑒
−6) ∙ 𝐼𝑑𝑐ℎ

𝑇 ≥ 25º𝐶     𝑣𝑎𝑟1 = (3.60𝑒
−6) ∙ 𝑇 + (4.10𝑒−6) ∙ 𝑆𝑂𝐶 + (−4.39𝑒−6) ∙ 𝐷𝑂𝐷

+(5.94𝑒−6) ∙ 𝐼𝑐ℎ𝑎 + (−2.10𝑒
−6) ∙ 𝐼𝑑𝑐ℎ

  

Parameters Description 

𝑄𝑐𝑦𝑐𝑙𝑖𝑛𝑔 The dischargeable capacity evolution due to cycling aging. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

𝑐𝑦𝑐 The equivalent cycles done at cycling operation mode. 

𝑣𝑎𝑟1 The slope of the linear model. 

𝑇 The operation temperature. 

𝑆𝑂𝐶 The upper SOC on cycling operation mode. 

𝐷𝑂𝐷 The DOD. 

𝐼𝑐ℎ𝑎 The charge current. 

𝐼𝑑𝑐ℎ The discharged current. 

Table 57: Parameters of the corrected dischargeable capacity evolution cycling aging model 
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Figure 44: Aging trends of the dischargeable capacity decrease at different cycling conditions ones 

rebuilt the model from scratch. 

The validation process is repeated once again. Firstly, the response of the generated model and the 

data used on the construction of the model is evaluated with the Root Mean Square Error metric in 

Table 58. Secondly, the validation of its capacity of interpolation is repeated and displayed in Figure 

45 

 Cycling Aging Model 

Dischargeable capacity [%] 

Test 1 1,16748 

Test 2 1,89892 

Test 3 3,70878 

Test 4 1,45956 

Test 5 3,59956 

Test 6 5,77849 

Test 7 8,35217 

Test 8 0,92578 

Table 58: RMSE between the response of the model and the data used to construct the linear model 

 
Figure 45: The dischargeable capacity map based on cycling aging model interpolations ones rebuilt the 

model from scratch. 

The results show that the rebuilt model has a minimum fitting error of 1% and a maximum fitting error 

of 8%. The constructed linear model has much greater fitting errors than the previous power type 

model. However, it can be seen that the rebuilt model gives logical interpolated values now. This 

rebuilt cycling aging model that describes the dischargeable capacity evolution has a correct 

interpolation capacity in contrast with the previous one.  
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Thirdly, the applicability to real life application is tested. For that, the respond of the constructed 

aging model is evaluated with aging data obtained with real life cycles. In total, three tests with a real 

life cycle have been tested in parallel to the designed aging test matrix the 2 years of the project. 

These three tests consist on running the most probable operation use case profile at 10ºC, 25ºC and 

45ºC. The aging data has been obtained with the proposed ACT in the previous Aging Testing 

Definition section, from which the dischargeable capacity and the pure ohmic resistance evolution 

are subtracted (Figure 46 and Figure 47 respectively). 

In order to apply the constructed aging model along with the obtained real life cycle aging data, the 

real life cycle need to be expressed with static stress factors. For that, the following assumptions are 

made: 

- The mean values of the dynamic stress factors are representative of the generated aging 

with those dynamic stress factors.   

- The effect of values of stress factors out of the range of the tested ones is considered the 

same as the nearest tested value. 

After analysing the real life cycle profile based on these three assumptions, the static stress factors 

that represent the use profile of the High-Power application have been generated, see Table 59. 

Upper SOC DOD Charge current Discharge current 

95[%] 88[%]→90[%] 54[A] 5.4[A]→27[A] 

Table 59: The mean stress factor values that represent the operation condition of the proposed High-

Power application use case 

The constructed models of the dischargeable capacity and the pure ohmic resistance have been run 

with the representative values of the stress factors shown in Table 85. The results from the aging 

model and the gathered data of the selected health indicators, the dischargeable capacity and the 

pure ohmic resistance, are shown in Figure 46 and Figure 47 respectively. The error between 

measurement and estimation can be seen in Table 60. 

 Real cycle at 25ºC Real cycle at 45ºC Real cycle at 10ºC 

Capacity RMSE [Ah] 1,20961 1,38364 1,22963 

Resistance RMSE [Ω] 1.29e-4 1.07e-4 8.88e-5 

Table 60: Root Mean Square Error between the measured and estimated values of the real life cycle 

aging health indicators (dischargeable capacity and pure ohmic resistance) 

 
Figure 46: Dischargeable capacity evolution of the real High-Energy application use profile tested at 

three different temperatures: 10ºC, 25ºC and 45ºC. 
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Figure 47: Pure ohmic resistance evolution of the real High-Energy application use profile tested at three 

different temperatures: 10ºC, 25ºC and 45ºC. 

The results show that the proposed models have low accuracy. The proposed dischargeable 

capacity decrease model does not capture the actual trend of this health indicator evolution. In this 

case, the initial results have shown that the power based mathematical expression fits the 

dischargeable capacity fade much better than the rest models. However, because of the not 

fulfilment of the interpolation validation (due to the sensibility of the parameter used on the power 

based mathematical expression and the high number of stress factors involved in the modelling), the 

linear model has been selected instead of the power based mathematical expression. Besides, it can 

be seen that the behaviour of the test at 10ºC does not fit with the expected degradation rate. In 

Figure 33, the most harmful operation condition is done at 10ºC with a huge difference. In contrast, 

the degradation rate experienced on the test at 10ºC on Figure 46 shows less harmful effect than the 

tests at 25ºC or at 45ºC. This can mean two things, first, that the testing time has not been long 

enough to observe properly the degradation on those operation conditions; and second, it is not 

correct the assumption that the effect of the temperature is independent to the effect of the rest 

stress factors. Since the project was already finished, it has not been possible to generate more 

aging data. Therefore, it was not possible to check this issue. Besides, it is not possible to improve 

the model to describe the behaviour at 10ºC. Therefore, it is validated that the constructed model is 

not able to describe the behaviour of the dischargeable capacity evolutions under temperatures 

below 25ºC. 

On the other hand, the pure ohmic resistance evolution is overestimated. This health indicator is 

expected to increase with aging but instead, it decreases. This phenomenon is observed on the 

results from the aging tests run at cycling operation mode in Figure 35. Firstly, the measured pure 

ohmic resistance is higher than the nominal one. After several ACTs, the resistance decreases to its 

nominal value and then starts increasing. In Figure 47, we can just see the first decrease to its 

nominal value. This is why there are huge errors in between the measurements and estimations. The 

project is already finished and it is not possible to lengthen the tests and get more data, so the model 

that describes the pure ohmic resistance evolution cannot be validated in terms of real life 

applicability. 

To sum up, the interpolation capacity of the models has forced us to change the dischargeable 

capacity model at cycling operation mode (the rest have been validated). It has been selected a more 

simple model, which in this case is a linear model. On the other hand, the real life applicability has 

shown that this dischargeable capacity model at cycling operation mode does not capture correctly 

the aging trend of this health indicator and has been restricted to work in between temperature 

ranges from 25ºC to 45ºC. Moreover, due to lack of data, the pure ohmic resistance model has not 

been validated in terms of real life applicability. 
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3.4.2 Methodology validation on a High-Power Application 

The high-power application consists on a battery integrated on an electric public bus. For that, a 

High-Power NMC-LTO prismatic battery has been chosen. The battery characteristics are shown in 

Table 61. 

Item Specification 

Nominal Capacity 23 [Ah] 

Fast charge current 115 [A] 

Fast discharge current 115 [A] 

Maximum temperature 55 [ºC] 

Minimum temperature -30 [ºC] 

Table 61: High-Power battery specifications 

3.4.2.1 Aging Testing Definition 
Following the aging testing methodology, firstly the possible testing cases are reduced based on the 

delimitation imposed by the battery, see Table 62. 

Stress factor Operating temperature Current SOC DOD 

Maximum value 55[ºC] 115[A] 100[%] 100[%] 

Minimum value -33[ºC] -115[A] 0[%] 0[%] 

Minimum step 1[ºC] 0.001[A] 1[%] 1[%] 

Table 62: Testing cases possibilities on the first stage of the aging test matrix design on a High-Power 

application 

Secondly, the obtained aging test matrix is further reduced based on the application characteristics. 

The application consists on a bus that makes a daily route 320 days of a year. The daily tour consists 

on repeating 13 times the same route that takes around 1h to fulfil it. Each time the route is finished, 

the bus is partly charged for 7 min (fast charge) before starting again the route. It takes around 16 

hours to fulfil the 13 repetitions. Then, the bus goes to the garage for 8 h. There, the bus is charged 

at a normal charge current rate (slow charge) with a constant voltage stage when the end of charge 

voltage is reached. The working 16h is translated to a mean use profile of the battery (it is out of the 

scope of this thesis the way of getting this current profile). The mean current profile and the resultant 

energy evolution of the battery are shown in Figure 31. 

 

Figure 48: Application profile: current profile and the SOC evolution of the battery under that current 

profile at BOL. The positive values on the current profile represent the discharge current values while 

the negative values represent the charge current values. 

After a proper evaluation, several key aspects about the mean application have been resumed: 

- The battery will be on cycling mode 320 days per year (mostly, the aging will come from 

cycling aging). 

- The mean discharge current is almost C/2. 

- There are many excursions to peak currents above 4C. 

- The use profile reduces the energy of the battery a 60% of the nominal one (the DOD of the 

application is 60%). 

- The possible initial SOC value before initiating the route goes from 100% to 60%. 
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- The possible SOC after finishing the route goes from 40% to 0%. 

- The temperature of operation will be 25±10ºC. 

- The fast charge current is 4C. 

- The fast charge current is limited to 7min. 

- The slow charge current is 1C. 

- The batteries will be at a rest mode 45 days per year. 

- The rest period can be done at end of charge or end of discharge condition (at SOC values 

from 100% to 60% and values from 40% to 0%), but the most probable scenario is leaving 

the bus charged at constant current before the beginning of this rest period (around 90%). 

- The temperature on rest periods is the temperature at the garage, which is not controlled at 

holidays. The limit is placed on the temperature limits defined by the weather of the place of 

the application at the rest period season (spring and summer): 25
+17

-15ºC. 

Alternatives to the defined most probable operation condition would be: 

- The current profile is reduced by increasing the number of batteries on the application. This 

is unlikely because it increases the costs (probability below 29%). It is placed the limit to a 

mean discharge current of C/3 with a DOD of 50%. This affects the rest time period 

conditions: SOC values from 100% to 0%. 

- The current profile is increased by reducing the number of batteries on the application. This 

is likely to happen only if the application requirements are fulfilled (probability between 30% 

and 59%). A higher DOD could require a longer fast charge time, which is not acceptable. 

The limit is placed on a 1C discharge current with a total DOD of 75% keeping the maximum 

fast charge time of 7min. 

- The operation temperature range can be increased by simplifying the thermal management 

system. This is likely to happen (probability between 30% and 59%). The limit is placed on 

the temperature limits defined by the weather of the place of the application: 25
+17

-30ºC. 

- The fast charge current is decreased to 3C. It is very likely to happen (probability between 

60% and 90%). 

- The slow charge current is reduced to C/3. It is very likely to happen (probability between 

60% and 90%). 

- The amount of days on operation is likely to change. It doesn’t affect the aging test matrix. 

Once the application characteristics are properly evaluated, the possible testing cases that fits the 

application requirements is generated, see Table 63. For that, firstly, the testing cases are divided in 

the operation modes that appear on the application: cycling and resting (this makes reference to the 

cycling aging and calendar aging respectively). Then, the stress factors of interest on each operation 

mode are redefined. In this application, there are two changes from the defined generic stress 

factors: the current and the SOC. The effect of the current is divided in terms of the sign of the 

current and the effect of the SOC is presented as an average value or as a range of values. The 

current is divided in two in order to properly define the effect of negative currents on one hand (the 

charging process) and the positive current on the other hand (the discharging process). The SOC is 

presented in average value for resting periods, since there is no SOC change in this operation mode. 

Nonetheless, the cycling operation mode generates a change on the SOC; this is why the range of 

SOC values is presented instead of the average used on the resting period. 

Operation mode Operation 
temperature 

Charge 
current 

Discharge 
current 

DOD SOC range Average 
SOC 

Resting MIN 10[ºC]     0[%] 

MAX 42[ºC] 100[%] 

STEP 1[ºC] 1[%] 

Cycling MIN -5[ºC] -115[A] 0[A] 50[%] 50[%]-0[%] /…/ 
100[%]-50[%] 

 

MAX 42[ºC] 0[A] 115[A] 75[%] 75[%]-0[%] /…/ 
100[%]-25[%] 

STEP 1[ºC] 0.001[A] 0.001[A] 1[%] 1[%] 

Table 63: Stress factors of calendar and cycling aging 
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Before the last stage of restraining the aging test matrix, the importance of the testing cases needs to 

be expressed in a user-friendly way. In this context, the concept of the proposed colour system is 

applied. Firstly, a matrix containing the red testing cases has been built, see Table 64. Here, the 

condition that describes better the application requirements is highlighted (the levels of the stress 

factors that describe this operation condition are turned red). In total, we get 9 testing cases to 

describe the calendar aging behaviour and 189 testing cases to describe the cycling aging 

behaviour. 

Operation 
mode 

Level Operation 
temperature 

Charge 
current 

Discharge 
current 

DOD SOC range Average 
SOC 

Resting 1 10[ºC]     0[%] 

2 25[ºC] 50[%] 

3 42[ºC] 100[%] 

Cycling 1.1 15[ºC] -92[A] 92[A] 75[%] 100[%]-25[%]  

1.2 90[%]-15[%] 

1.3 75 [%]-0[%] 

2.1 25[ºC] -57[A] 52[A] 60[%] 100[%]-40[%] 

2.2 80[%]-20[%] 

2.3 60[%]-0[%] 

3.1 35[ºC] -23[A] 12[A] 50[%] 100[%]-50[%] 

3.2 75[%]-25[%] 

3.3 50[%]-0[%] 

Table 64: The Red testing cases. The levels of the stress factors that are in red describe the most 

probable operation condition defined on the application requirements 

Following the advice done at the end of the methodology, the generated test matrix is presented to 

CIDETEC’s lab. First of all, the viability of testing the proposed operations conditions is evaluated. 

CIDETEC’s facilities are able to test the defined conditions; however, there are limit resources that 

need to be shared with some other projects. This is why the actual lab availability has forced the 

following changes on the stress factor levels: 

- The absolute value of the current must be above 23A (1C) since it supposes to occupy the 

lab resources more than the acceptable project time. 

- The temperatures available on cycling operation mode are 10ºC, 25ºC and 45ºC. 

Operation 
mode 

Level Operation 
temperature 

Charge 
current 

Discharge 
current 

DOD SOC range Average 
SOC 

Resting 1 10[ºC]     0[%] 

2 25[ºC] 50[%] 

3 45[ºC] 100[%] 

Cycling 1.1 10[ºC] -92[A] 92[A] 75[%] 100[%]-25[%]  

1.2 90[%]-15[%] 

1.3 75 [%]-0[%] 

2.1 25[ºC] -57[A] 52[A] 60[%] 100[%]-40[%] 

2.2 80[%]-20[%] 

2.3 60[%]-0[%] 

3.1 45[ºC] -23[A] 23[A] 50[%] 100[%]-50[%] 

3.2 75[%]-25[%] 

3.3 50[%]-0[%] 

Table 65: The Red testing cases after a first iteration with the lab. The levels of the stress factors that are 

in red describe the most probable operation condition defined on the application requirements. The blue 

values are the ones modified after the first iteration with the lab 

As a result, firstly, the values of the tested temperature on the cycling operation mode and on the 

resting operation mode are changed; and secondly, the testing case that describes better the 

application disappears from the testing cases, see Table 65. The change on the temperature values 

on both operation modes does not affect too much the obtainable result. The restrictions have 

increased the tested limits but all the values of interest are still inside the tested operation window, so 

it is considered acceptable. However, the restriction on the current leaves the case of interest outside 

the tested window (the lower tested value is higher than the one of interest), so assumptions on 

modelling level are required: 
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- The aging effect due to discharge currents below 1C is assumed to be the same as the one 

generated with a C/2 current. The difference that could be is considered negligible. 

After that, the numbers of cases that can be tested are discussed. After a proper evaluation of the 

importance of the project, the cost of samples and the availability of resources, the maximum testing 

cases have been set on 5 on resting operation mode and 9 on testing the cycling operation mode. 

Since the red testing case matrix needs to be reduced, there is no sense on developing the orange, 

yellow and white testing case matrixes. 

In other to reduce the calendar aging testing cases from 9 to 5, we need to reduce the levels and 

combinations of stress factors. In this case, the 0% SOC has been directly nominated since it was 

unlikely to happen. This level was added to improve the calendar aging behaviour description at low 

SOC. As result, a new calendar aging test matrix of 6 testing is generated, see Table 66. In this 

point, a combination between the temperature and the SOC needs to be nominated. For that, the 

preference and likelihood of the application is evaluated: 

- The tested cases at 25ºC are the most probable cases (cannot be nominated). 

- Among the temperature, the cases with 10ºC are the least probable cases since the resting 

operation mode happens on spring and summer (likely to nominate). 

- The most likely SOC is 100% (the 100% SOC shouldn’t be nominated). 

As a result, the nominated test is the testing case at 10ºC and at 50% SOC. 

Test nº Temperature [ºC] SOC [%] 

1 10 100 
2 10 50 
3 25 100 
4 25 50 
5 45 100 
6 45 50 

Table 66: The Aging test matrix to characterize the calendar aging with 6 testing cases. The cases that 

are in red are the selected ones as the final ones 

In other to reduce the cycling aging testing cases from 189 to 9, we need to reduce the levels and 

combinations of stress factors to the minimum. First of all, the levels need to be reduced to a 

minimum acceptable for the posterior modelling. The process in this application is as follow: 

- DOD: The least probable DOD is nominated, which is the 50% DOD (it is unlikely to increase 

the amount of batteries). 

- SOC range: The most likely operation consists on charging completely the battery (SOC 

ranges up to 100%) so the low limits are nominated. In addition to this, the middle value is 

put in common; the SOC range of 80% to 20% with a 60% DOD is changed to a SOC range 

of 90% to 30%. 

- Charge current: It appears in two levels along the application, at 1C and at 4C. The three 

levels are left as they are. 

- Discharge current: The maximum discharge current could be nominated since the 

application is very unlikely to work around this value. 

- Operation temperature: The effect of the temperature is expected to suffer an increase at 

low temperatures and high temperatures, so a minimum of 3 points is required. It is not 

nominated any of the values on the temperature stress factor. 

As a result of the nominations, a reduced test matrix can be generated, see Table 67. In this table 

the SOC range is defined by the upper SOC of this same SOC range. 

Operation temperature Charge current Discharge current DOD Upper SOC 

10[ºC] -92[A] 52[A] 75[%] 100[%] 

25[ºC] -57[A] 23[A] 60[%] 90[%] 

45[ºC] -23[A] - - - 

Table 67: The reduced testing cases on the cycling operation mode 
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The new proposed matrix generates a total of 72 testing cases, which are still way above the defined 

9 testing cases. However, the levels of the stress factors cannot be reduced further. In this scenario, 

the combinations between the levels are gradually restricted. 

Firstly, the tested temperature combinations are restricted. The three values of the temperature 

stress factor are only applied on the most probable and stressful operation condition: a 4C charge 

with a 1C discharge with a 60% DOD and with a SOC range of 100% to 40%. Then, the 

combinations of the rest stress factors (current, DOD and SOC) are done all at 25ºC. However, a 

modelling assumption is required: 

- The effect of the temperature on the cycling aging is independent to the current, DOD or 

SOC ranges if working on the safety window. 

As a result, the total testing cases are reduced from 72 to 26, see Table 68. In this point, the 

combination between the DOD, SOC range and currents need to be reduced to 7. One of the 7 

testing cases is already defined and cannot be changed: a 4C charge with a 1C discharge with a 

60% DOD and with a SOC range of 100% to 40% at 25ºC. Besides, since there are two levels of the 

charge current on a normal operation, it is imposed another testing case: a 1C charge with a 1C 

discharge with a 60% DOD and with a SOC range of 100% to 40% at 25ºC. The rest 6 cases are 

selected based on the experience while maintaining some conditions: 

- All the defined levels of every stress factor need to appear on the selected conditions. 

- The most probable levels of the stress factors will be the ones with more presence on the 

selected testing cases. 

- The more disperse the operation conditions of the testing cases are, the better the covered 

tested dimension will be. 

The selected 9 cases are put on red in Table 68. 

Test nº Temperature [ºC] Upper SOC [%] DOD [%] Charge C-rate [%] Discharge C-rate [%] 

1 10 100 60 4 1 
2 45 100 60 4 1 
3 25 100 60 4 1 
4 25 100 60 4 2.3 
5 25 100 60 2.5 1 
6 25 100 60 2.5 2.3 
7 25 100 60 1 1 
8 25 100 60 1 2.3 
9 25 100 75 4 1 

10 25 100 75 4 2.3 
11 25 100 75 2.5 1 
12 25 100 75 2.5 2.3 
13 25 100 75 1 1 
14 25 100 75 1 2.3 
15 25 90 60 4 1 
16 25 90 60 4 2.3 
17 25 90 60 2.5 1 
18 25 90 60 2.5 2.3 
19 25 90 60 1 1 
20 25 90 60 1 2.3 
21 25 90 75 4 1 
22 25 90 75 4 2.3 
23 25 90 75 2.5 1 
24 25 90 75 2.5 2.3 
25 25 90 75 1 1 
26 25 90 75 1 2.3 

Table 68: The Aging test matrix to characterize the cycling aging with 26 testing cases. The cases that are 

in red are the selected ones as the final ones 

In this point, the customer was consulted and a discussion was started. Firstly, the calendar aging 

test matrix was evaluated. Here, the customer asked us to introduce a new SOC level. The customer 
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showed an interest in analysing the effect of operating the bus on resting mode with or without a 

previous charge. In this scenario, the added level is 30% of SOC because it is inside the operation 

range and because the suppliers used to send the batteries at this same SOC (considered the least 

detrimental SOC on resting periods). On the same hand, the customer discarded the 100% SOC 

level since he claimed that it was very unlikely to reach this value before a rest period. In 

consequence, the SOC levels were finally modified to 90%, 60% and 30%. 

Among the generated 9 new cases, the cases at 90% SOC were kept at the three temperature levels 

due to the high interest of the customer on this regard. Then, the other two SOC levels were tested at 

45ºC, since it was expected to have higher probability of occurrence of temperatures of 45ºC than 

temperatures of 10ºC (resting mode at spring and summer) and because fast results were demanded 

(it is expected to have higher degree of deterioration at cells stored at 45ºC than at 25ºC). The 

accepted final calendar aging test matrix is shown in Table 69. 

Test nº Temperature [ºC] SOC [%] 

1 25 90 
2 45 90 
3 10 90 
4 45 60 
5 45 30 

Table 69: Aging test matrix to characterize the calendar aging 

Secondly, the cycling aging test matrix was discussed. Due to interests of future application of the 

selected battery, several modifications were introduced: 

- The maximum charge current rate was increased to the maximum value (5C). 

- The discharge current rate at higher levels was demanded. The maximum discharge current 

was raised to 3C. 

- The testing of a lower level of DOD was asked. The lower DOD was modified to 50%. 

-  The maximum upper SOC was restricted to 95%. In consequence, the 90% of upper SOC 

was reduced to have a minimum difference between levels of 10% of SOC in order to 

increase the case inside the testing conditions. 

- The temperature evaluation was modified to an operation condition of 95% upper SOC, 50% 

DOD, 1C charge current rate and 1C discharge current rate. 

Considering all these changes, the final cycling aging test matrix is generated (Table 70). 

Test nº Temperature [ºC] Upper SOC [%] DOD [%] Charge C-rate [%] Discharge C-rate [%] 

1 25 100 50 1 1 
2 25 100 50 3 1 
3 25 100 50 5 1 
4 25 100 50 1 3 
5 10 100 50 1 1 
6 45 100 50 1 1 
7 25 100 75 1 1 
8 25 90 50 1 1 
9 25 90 75 1 1 

Table 70: Aging test matrix to characterize the cycling aging 

The final proposals of the cycling aging test matrix and the calendar aging test matrix were accepted 

by the lab and the tests defined on Table 69 and Table 70 were scheduled to run for 3 years, but 

before starting the tests, the ACT was designed. The long ACTs used at BOL and EOL contain a 

capacity, an OCV and an impedance characterization test. The selected OCV characterization test is 

done with a continuous small C-rate. The selected impedance characterization test is done with 

repeated charge and discharge pulse test on the whole operation SOC range with a step of 10% 

SOC. The short ACT contains the suggested capacity and impedance characterization test. 
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3.4.2.2 Aging Model Construction 
After finishing the 3 years of testing period, the performed ACTs have been treated and the health 

indicators of interest have been obtained: 

- Dischargeable capacity (see Figure 49 and Figure 50). 

- Pure ohmic resistance (see Figure 51 and Figure 52). 

The comparison of the obtained results is done in terms of days in the case of calendar aging and in 

terms of energy throughput or equivalent cycles in the case of cycling aging. The days make 

reference to the total time in days elapsed in between measurements. The energy throughput or 

equivalent cycles make reference to the total energy discharged in between measurements. The 

energy throughput is directly the Wh discharged and the equivalent cycle is the Wh discharged divide 

by the nominal energy in Wh. 

 

Figure 49: Relative dischargeable capacity values of the tested batteries under the calendar aging test 

matrix. 

 

Figure 50: Relative dischargeable capacity values of the tested batteries under the cycling aging matrix. 

 

Figure 51: Relative pure ohmic resistance values of the tested batteries at 50% SOC under the calendar 

aging matrix. 
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Figure 52: Relative pure ohmic resistance values of the tested batteries at 50% SOC under the cycling 

aging matrix. 

Afterwards, the obtained data has been analysed. In a first glance, it has been seen that the 

dischargeable capacity on all the tests of the defined calendar and cycling aging test matrixes except 

one are still above the nominal value given by the datasheet, even though being running for 3 years. 

We cannot observe properly the decay trend of the dischargeable capacity. However, the project 

cannot be lengthened anymore. 

Then, the proposed modelling methodology has been followed. The first stage of the proposed 

modelling methodology consists on choosing the mathematical expression that fits better the 

selected health indicators (dischargeable capacity and the pure ohmic resistance). The tested 

mathematical expressions are shown in Table 71. 

Aging Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Calendar x x x x x 

Cycling x x x x x 

Table 71: Applicable mathematical expressions to the obtained data from the aging test matrix 

The fitting accuracy is measured with the Root Mean Square Error (RMSE) metric between the 

measurements and the estimation done with the fitted mathematical expression. This metric has 

been calculated on each test of both aging test matrix for the two selected health indicators. The 

mean of the obtained RMSE values on all the tests of the run aging test matrix is added as well, see 

Table 72, Table 73, Table 74 and Table 75. 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,00438 0,00388 0,00412 0,00406 0,00438 

Test 2 0,00258 0,00258 0,00258 0,00258 0,00258 

Test 3 0,00207 0,00206 0,00568 0,00199 0,00199 

Test 4 0,00300 0,00226 0,00864 0,00233 0,00300 

Test 5 0,00243 0,00243 0,00243 0,00243 0,00243 

Test 6 0,00362 0,00291 0,00454 0,00295 0,00314 

Test 7 0,00223 0,00225 0,00327 0,00221 0,00219 

Test 8 0,00178 0,00173 0,00181 0,00174 0,00178 

Test 9 0,00133 0,00155 0,00319 0,00130 0,00133 

Mean RMSE 0,00260 0,00241 0,00403 0,00240 0,00254 

Table 72: Fitting RMSE of the dischargeable capacity evolution data with the proposed cycling aging 

models 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,02397 0,02318 0,02423 0,02365 0,02397 

Test 2 0,01073 0,01008 0,01298 0,01024 0,01024 

Test 3 0,01923 0,01686 0,02101 0,01790 0,01923 

Test 4 0,00357 0,00189 0,00392 0,00233 0,00357 

Test 5 0,01402 0,01348 0,01398 0,01398 0,01402 

Test 6 0,01211 0,01322 0,01989 0,01153 0,01211 

Test 7 0,00334 0,00305 0,00523 0,00332 0,00334 

Test 8 0,00265 0,00224 0,00605 0,00259 0,00264 

Test 9 0,00265 0,00248 0,00442 0,00260 0,00263 

Mean RMSE 0,01025 0,00961 0,01241 0,00979 0,01020 

Table 73: Fitting RMSE of the pure ohmic resistance evolution data with the proposed cycling aging 

models 
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 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,00236 0,00208 0,00214 0,00213 0,00236 

Test 2 0,00334 0,00257 0,00613 0,00283 0,00284 

Test 3 0,00414 0,00406 0,00407 0,00407 0,00414 

Test 4 0,00408 0,00408 0,00408 0,00408 0,00408 

Test 5 0,00442 0,00442 0,00442 0,00442 0,00442 

Mean RMSE 0,00367 0,00344 0,00417 0,00351 0,00357 

Table 74: Fitting RMSE of the dischargeable capacity evolution data with the proposed calendar aging 

models 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,002217 0,00215 0,00420 0,00214 0,00214 

Test 2 0,010746 0,01037 0,01818 0,01034 0,01038 

Test 3 0,002738 0,00244 0,00273 0,00273 0,00269 

Test 4 0,00233 0,00253 0,01450 0,00232 0,00233 

Test 5 0,00192 0,00290 0,01156 0,00192 0,00192 

Mean RMSE 0,00399 0,00408 0,01023 0,00389 0,00389 

Table 75: Fitting RMSE of the pure ohmic resistance evolution data with the proposed calendar aging 

models 

The fitting of the data of both health indicators show that there is not a clear winner. The biggest 

improvement respect to the simplest model is below 50% on all the cases. The difference cannot be 

defined as relevant. Therefore, the simplest model (linear model) is selected. 

Next stage consists on linking the variables of the selected mathematical expressions and the stress 

factors. The applicable mathematical expressions for that aim are shown in Table 47 and Table 62. 

Here, the complexity of the available mathematical expression depends on the tested levels and the 

assumed hypotheses on the aging test matrix design. In this case, both the effect of low 

temperatures and the effect of high temperatures are tested and therefore, modelled on both aging 

test matrix. For this, an non-linear mathematical expression based on two linear equations is 

formulated to model linearly on one hand the effect of low temperatures and on the other hand the 

effect of high temperatures on calendar aging model as well as on the cycling aging model. The 

upper SOC, DOD and discharge current effect are evaluated with 2 levels each, so a linear model is 

only applicable. In contrast, the mean SOC and the charge current effect are evaluated with 3 levels, 

so some more mathematical expressions are evaluated; see Table 47 and Table 62 respectively. 

Stress factor Linear Exponential Logarithmic Power type 2
nd

 order 
polynomial 

Double 
Linear 

Mean SOC x x x x x  

Temperature      x 

Table 76: The applicable mathematical expressions to link the stress factors and the free variables 

designed on the calendar aging model of the High-Power application 

Stress factor Linear Exponential Logarithmic Power 
type 

2
nd

 order 
polynomial 

Double 
Linear 

Upper SOC x      

Temperature      x 

DOD x      

Charge C-rate x x x x x  

Discharge C-rate x      

Table 77: The applicable mathematical expressions to link the stress factors and the free variables 

designed on the cycling aging model of the High-Energy application 

The possible combinations of these mathematical expressions are a total of: 

- 5 for the calendar aging model that describes the dischargeable capacity evolution. 

- 5 for the calendar aging model that describes the pure ohmic resistance evolution. 

- 5 for the cycling aging model that describes the dischargeable capacity evolution. 

- 5 for the cycling aging model that describes the pure ohmic resistance evolution. 

The RMSE on each possible combination has been calculated, see Table 78. 
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Combination Calendar aging Cycling aging 

Dischargeable 
capacity 

Pure ohmic 
resistance 

Dischargeable 
capacity 

Pure ohmic 
resistance 

1 0.10389 1,39e-05 0,25893 3,34e-05 

2 0.13880 1,75e-05 20,9965 0,00399 

3 0.16611 1,95e-05 21,0173 0,00399 

4 0.13880 1,75e-05 20,9965 0,00399 

5 0.10389 1,39e-05 39,8590 0,00452 

Table 78: The mean RMSE values of each combination of the proposed mathematical expressions 

The combination that gets the minimum RMSE among the evaluated ones are the first case for both 

health indicators, the dischargeable capacity and the pure resistance increase, on the cycling aging 

model (Eq. (61) and Eq. (62)) In the case of both health indicators on the calendar aging model, the 

first combination gets the same value as the fifth combination. In case of doubt, the simplest model is 

chosen. In this case, the simplest model is the first combination (two linear models, Eq. (63) and Eq. 

(64)). 

The obtained calendar aging model of the selected two health indicators, the dischargeable capacity 

and the pure ohmic resistance, are shown in Figure 53 and Figure 54 respectively. The obtained 

cycling aging model of the selected two health indicators, the dischargeable capacity and the pure 

ohmic resistance, are shown in Figure 55 and Figure 56 respectively. 

𝑄𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝑄𝑖𝑛𝑖 − 𝑣𝑎𝑟1 ∙ (61) 

{
𝑇 < 25º𝐶         𝑣𝑎𝑟1 = (−2.94𝑒−7) ∙ 𝑇 + (1.01𝑒−7) ∙ 𝑆𝑂𝐶

𝑇 ≥ 25º𝐶         𝑣𝑎𝑟1 = (−7.69𝑒−8) ∙ 𝑇 + (1.01𝑒−7) ∙ 𝑆𝑂𝐶
  

Parameters Description 

𝑄𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 The dischargeable capacity evolution due to calendar aging. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

𝑡 The resting time related to calendar aging in days. 

𝑣𝑎𝑟1 The pre-power law variable. 

𝑣𝑎𝑟2 The power law variable. 

𝑇 The cell temperature at resting mode. 

𝑆𝑂𝐶 The mean SOC at resting mode. 

Table 79: Parameters of the calendar aging model of the dischargeable capacity evolution 

 
Figure 53: Aging trends of the dischargeable capacity decrease at different calendar conditions. 

𝑅𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 𝑅𝑖𝑛𝑖 − 𝑣𝑎𝑟1 ∙ 𝑡 (62) 

{
𝑇 < 25º𝐶         𝑣𝑎𝑟1 = (−1.50𝑒−6) ∙ 𝑇 + (1.07𝑒−7) ∙ 𝑆𝑂𝐶

𝑇 ≥ 25º𝐶         𝑣𝑎𝑟1 = (−1.17𝑒−6) ∙ 𝑇 + (1.07𝑒−7) ∙ 𝑆𝑂𝐶
  

Parameters Description 

𝑅𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 The pure ohmic resistance evolution due to calendar aging. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

𝑡 The resting time related to calendar aging in days. 
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𝑣𝑎𝑟1 The pre-power law variable. 

𝑣𝑎𝑟2 The power law variable. 

𝑇 The cell temperature at resting mode. 

𝑆𝑂𝐶 The mean SOC at resting mode. 

Table 80: Parameters of the calendar aging model of the pure ohmic resistance evolution 

 
Figure 54: Aging trends of the pure ohmic resistance increase at different calendar conditions. 

𝑄𝑐𝑦𝑐𝑙𝑖𝑛𝑔 = 𝑄𝑖𝑛𝑖 − 𝑣𝑎𝑟1 ∙ 𝑐𝑦𝑐 (63) 

{
 

 
𝑇 < 25º𝐶     𝑣𝑎𝑟1 = (3.15𝑒

−7) ∙ 𝑇 + (−1.76𝑒−8) ∙ 𝑆𝑂𝐶 + (8.66𝑒−8) ∙ 𝐷𝑂𝐷

+(2.04𝑒−8) ∙ 𝐼𝑐ℎ𝑎 + (1.33𝑒
−7) ∙ 𝐼𝑑𝑐ℎ

𝑇 ≥ 25º𝐶     𝑣𝑎𝑟1 = (1.35𝑒
−7) ∙ 𝑇 + (−1.76𝑒−8) ∙ 𝑆𝑂𝐶 + (8.66𝑒−8) ∙ 𝐷𝑂𝐷

+(2.04𝑒−8) ∙ 𝐼𝑐ℎ𝑎 + (1.33𝑒
−7) ∙ 𝐼𝑑𝑐ℎ

  

Parameters Description 

𝑄𝑐𝑦𝑐𝑙𝑖𝑛𝑔 The dischargeable capacity evolution due to cycling aging. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

𝑐𝑦𝑐 The equivalent cycles done at cycling operation mode. 

𝑣𝑎𝑟1 The slope of the linear model. 

𝑇 The operation temperature. 

𝑆𝑂𝐶 The upper SOC on cycling operation mode. 

𝐷𝑂𝐷 The DOD. 

𝐼𝑐ℎ𝑎 The charge current. 

𝐼𝑑𝑐ℎ The discharged current. 

Table 81: Parameters of the cycling aging model of the dischargeable capacity evolution 

 
Figure 55: Aging trends of the dischargeable capacity decrease at different cycling conditions. 

𝑅𝑐𝑦𝑐𝑙𝑖𝑛𝑔 = 𝑅𝑖𝑛𝑖 + 𝑣𝑎𝑟1 ∙ 𝑐𝑦𝑐 (64) 
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{
 

 
𝑇 < 25º𝐶     𝑣𝑎𝑟1 = (2.48𝑒

−6) ∙ 𝑇 + (7.32𝑒−8) ∙ 𝑆𝑂𝐶 + (−6.38𝑒−8) ∙ 𝐷𝑂𝐷

+(2.08𝑒−8) ∙ 𝐼𝑐ℎ𝑎 + (−3.09𝑒
−7) ∙ 𝐼𝑑𝑐ℎ

𝑇 ≥ 25º𝐶     𝑣𝑎𝑟1 = (1.17𝑒
−6) ∙ 𝑇 + (7.32𝑒−8) ∙ 𝑆𝑂𝐶 + (−6.38𝑒−8) ∙ 𝐷𝑂𝐷

+(2.08𝑒−8) ∙ 𝐼𝑐ℎ𝑎 + (−3.09𝑒
−7) ∙ 𝐼𝑑𝑐ℎ

  

Parameters Description 

𝑅𝑐𝑦𝑐𝑙𝑖𝑛𝑔 The pure ohmic resistance evolution due to cycling aging. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

𝑐𝑦𝑐 The equivalent cycles done at cycling operation mode. 

𝑣𝑎𝑟1 The slope of the linear model. 

𝑇 The operation temperature. 

𝑆𝑂𝐶 The upper SOC on cycling operation mode. 

𝐷𝑂𝐷 The DOD. 

𝐼𝑐ℎ𝑎 The charge current. 

𝐼𝑑𝑐ℎ The discharged current. 

Table 82: Parameters of the cycling aging model of the pure ohmic resistance evolution 

 
Figure 56: Aging trends of the pure ohmic resistance increase at different cycling conditions. 

3.4.2.3 Aging Model Validation 
The constructed aging models are validated in terms of the accuracy describing the observed cases, 

the correctness of interpolations and the real life applicability. For that, firstly, the response of the 

generated model and the data used on the construction of the model is evaluated with the Root 

Mean Square Error metric in Table 83. 

 Calendar Aging Model Cycling Aging Model 

Dischargeable 
capacity [%] 

Pure ohmic 
resistance [%] 

Dischargeable 
capacity [%] 

Pure ohmic 
resistance [%] 

Test 1 0,28469 0,42434 0,84678 2,40938 

Test 2 0,60584 1,19068 1,03068 1,33488 

Test 3 0,43300 0,84270 0,23540 5,28276 

Test 4 1,25762 0,59201 0,35958 1,48808 

Test 5 1,52367 0,29520 0,38704 1,67186 

Test 6   0,52278 1,34346 

Test 7   0,27298 2,00911 

Test 8   0,20735 1,21311 

Test 9   0,23034 1,71074 

Table 83: RMSE between the response of the model and the data used to construct the model 

The results show that the constructed model that describes the dischargeable capacity evolution has 

a maximum fitting error of 1.5% and an error below 0.5% on most of the tested cases (8 from 14); 

and that the constructed model that describes the pure ohmic resistance evolution has a maximum 

fitting error of 5.2% and an error below 1.5% on most of the tested cases (8 from 14). Based on this, 

the constructed two aging models are considered highly accurate on the observed cases. The 

accuracy of the model that describes the pure ohmic resistance evolution is lower than the accuracy 

level obtained with the model that describes the dischargeable capacity evolution due to the noise 

level on the measurements, but it is still low enough to be considered highly accurate. 
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Secondly, the generated models are tested under a wide range non-variable operation conditions 

that are always inside the tested operation conditions. Basically, we interpolate the operation 

conditions in order to see if the model gives non-logical values. The results from the constructed 

aging models need to keep the logic of the expected aging trend: 

- The dischargeable capacity will decrease with the rest and the cycling operation. 

- The pure ohmic resistance will increase with the rest and the cycling operation. 

The interpolated ranges are described in Table 84. The results are shown in 3D figures; see Figure 

40, Figure 41, Figure 42 and Figure 43. The z axis represents the health indicator value, the y axis 

represents the comparison variable on each operation mode (the calendar aging is related to the 

time elapsed in between measurements and the cycling aging is related to the discharged energy in 

terms of equivalent cycles) and the x axis represents all the stress factors all together in a 

synthesized manner, being the indexing values of each combination of these stress factors the ones 

displayed on the x axis (“Validation Test [-]”). 

Stress factor Calendar aging Cycling Aging 

Operating 
temperature 

Mean 
SOC 

Operating 
temperature 

Upper 
SOC 

DOD Charge 
current 

Discharge 
current 

Maximum value 45[ºC] 90 [%] 45[ºC] 100[%] 75[%] 115[A] 69[A] 

Minimum value 10[ºC] 30[%] 10[ºC] 90[%] 50[%] 23[A] 23[A] 

Step 1[ºC] 1[%] 2[ºC] 1[%] 5[%] 5[A] 5[A] 

Table 84: Interpolation cases possibilities on the validation process of a High-Energy application 

 
Figure 57: The dischargeable capacity map based on Calendar aging model interpolations. 

 
Figure 58: The pure ohmic resistance map based on calendar aging model interpolations. 
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Figure 59: The dischargeable capacity map based on cycling aging model interpolations. 

 
Figure 60: The pure ohmic resistance map based on cycling aging model interpolations. 

The results show that the constructed calendar and cycling aging models of the dischargeable 

capacity and the pure ohmic resistance give logical values for interpolated operation conditions 

(respect to the tested ones). The obtained dischargeable capacity evolution trends and pure ohmic 

resistance evolution trends are delimited by the observed ones. It can be claimed that the proposed 

models interpolate correctly. 

Thirdly, the applicability to real life application is tested. For that, the respond of the constructed 

aging model is evaluated with aging data obtained with real life cycles. In total, three tests with a real 

life cycle have been tested in parallel to the designed aging test matrix the 3 years of the project. 

These three tests consist on running the most probable operation use case profile at 10ºC, 25ºC and 

45ºC. The aging data has been obtained with the proposed ACT in the previous Aging Testing 

Definition section, from which the dischargeable capacity and the pure ohmic resistance evolution 

are subtracted (Figure 61 and Figure 62 respectively). 

In order to apply the constructed aging model along with the obtained real life cycle aging data, the 

real life cycle need to be expressed with static stress factors. For that, the following assumptions are 

made: 

- The slow charging does not accelerate the aging in comparison with the slow charge. 

Therefore, the static current charge value is taken the current value of the fast charge. 
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- The effect of values of stress factors out of the range of the tested ones is considered the 

same as the nearest tested value. 

- The mean values of the dynamic stress factors are representative of the generated aging 

with those dynamic stress factors.   

After analysing the real life cycle profile based on these three assumptions, the static stress factors 

that represent the use profile of the High-Power application have been generated, see Table 85. 

Upper SOC DOD Charge current Discharge current 

100[%]→95[%] 60[%] 92[A] 12[A]→23[A] 

Table 85: The mean stress factor values that represent the operation condition of the proposed High-

Power application use case 

The constructed models of the dischargeable capacity and the pure ohmic resistance have been run 

with the representative values of the stress factors shown in Table 85. The results from the aging 

model and the gathered data of the selected health indicators, the dischargeable capacity and the 

pure ohmic resistance, are shown in Figure 61 and Figure 62 respectively. The error between 

measurement and estimation can be seen in Table 86. 

 
Figure 61: Dischargeable capacity evolution of the real High-Power application use profile tested at 

three different temperatures: 10ºC, 25ºC and 45ºC. 

 
Figure 62: Pure ohmic resistance evolution of the real High-Power application use profile tested at three 

different temperatures: 10ºC, 25ºC and 45ºC. 

 Real cycle at 25ºC Real cycle at 45ºC Real cycle at 10ºC 

Capacity RMSE [Ah] 0,11037 0,13080 0,60625 

Resistance RMSE [Ω] 4,38e-05 7,64e-06 2,15e-05 

Table 86: Root Mean Square Error between the measured and estimated values of the real life cycle 

aging health indicators (dischargeable capacity and pure ohmic resistance) 
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The results show that the proposed model with the representative stress factors at 25ºC and 45ºC fits 

well the trend of both health indicators. The error between the estimated and the measured pure 

ohmic resistance at 25ºC is the highest among the three, but in Figure 62 can be seen that this huge 

error comes from the noise of the measurements and that it is indeed capturing correctly the trend of 

this health indicator. Nonetheless, the results from fitting the behaviour of the real life cycle aging 

trends at 10ºC are not acceptable at all. The behaviour of both health indicators at 10ºC cannot be 

described with the proposed model. 

The aging data obtained at 10ºC is evaluated, see Figure 63. The effect of low temperatures on static 

operation conditions and on dynamic operation conditions (real life cycle) are not correlated. The low 

temperature reduces the degradation rate experienced in static operation conditions; in contrast, it 

increases the degradation rate in dynamic operation conditions. This can mean two things, first, that 

the testing time has not been long enough to observe properly the degradation on those operation 

conditions; and second, the assumption that the effect of the temperature is independent to the effect 

of the rest stress factors is not correct. Since the project was already finished, it has not been 

possible to generate more aging data. Therefore, it was not possible to check this issue. Besides, it is 

not possible to improve the model to describe the behaviour at 10ºC. Therefore, it is validated that 

the constructed model is not able to describe the behaviour of both health indicator evolutions under 

temperatures below 25ºC. 

 

Figure 63: Comparison of the effect of low temperatures on the dischargeable capacity decay under 

static operation conditions and dynamic operation conditions. 

To sum up, the interpolation capacity is validated on all the proposed models; and the applicability of 

real cases of the proposed models is validated but restricted to work in between temperature ranges 

from 25ºC to 45ºC. 

3.4.3 Hypothesis validation 

The proposed aging test matrix design methodology and aging model construction methodology are 

consolidated on some strong hypothesis. From all of them, the following ones have been studied in 

detail: 

- The calendar and cycling aging can be added linearly. 

- The mean values of the dynamic stress factors are representative of the generated aging 

with those dynamic stress factors. 

Item Specification 

Nominal Capacity 2600 [mAh] 

Fast charge current 2600 [mA] 

Fast discharge current 5200 [mA] 

Maximum temperature 45 [ºC] 

Minimum temperature 0 [ºC] 

Table 87: SAMSUNG’s ICR18650-26F battery specifications 
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For that, specific aging tests have been run on certain batteries that have given information about the 

correctness of these hypotheses. The selected battery is SAMSUNG’s ICR18650-26F lithium-ion 

battery. The characteristics of this battery are shown in Table 87. 

The data required to validate the correctness of these hypotheses consist on the dischargeable 

capacity and pure ohmic resistance evolution under different operation conditions. In order to study 

the first hypothesis, three types of tests are thought to be needed: a test with only calendar effect, a 

test with only cycling effect and a test with a mix of both calendar and cycling effect. In order to study 

the second hypothesis, two types of tests are thought to be needed: a test with a static operation 

condition equal to the mean value of the stress factors extracted from the second type of test that 

consist on a real life cycle (see Figure 64). 

a)

 

b)

 
Figure 64: Current profiles of the tested real life cycles. A) has a mean current of  3120 mA and b) has a 

mean current of 2080 mA. 

On the same hand, the design of the test matrix has taken into account all the different validation that 

have been thought to be necessary on this thesis, which are the next ones: 

- A resting time inferior of 3h generates a relaxing effect instead of a calendar aging effect. 

- The damage generated on the different operation modes can be added in a cumulative 

damage model. 

Test Upper 
SOC 

Discharge 
time 

Discharge current Rest SOC Rest 
time 

Operation 
mode 

1 - - - 20[%] Inf Resting 

2 - - - 40[%] Inf Resting 

3 - - - 60[%] Inf Resting 

4 - - - 100[%] Inf Resting 

5 100[%] 30[min] 2080[mA] - - Static cycle 

6 100[%] 30[min] 3120[mA] - - Static cycle 

7 100[%] 30[min] 4160[mA] - - Static cycle 

8 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

- - Dynamic cycle 

9 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

End of charge 1[h] Dynamic cycle 

10 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

End of discharge 1[h] Dynamic cycle 

11 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

End of charge 8[h] Dynamic cycle 

12 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

End of discharge 8[h] Dynamic cycle 

13 100[%] 30[min] Mean value of 
2080[mA] 

- - Real cycle 

14 100[%] 30[min] Mean value of  
3120[mA] 

- - Real Cycle 

Table 88: Aging test matrix design to validate the main hypotheses done on the aging model development 

In order to study the third hypothesis, three types of tests are thought to be needed: a test with only 

calendar effect, a reference test without any resting time, a test with a cycling operation mode that 
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intercalates rest time smaller than 3h and a test with a cycling operation mode that intercalates rest 

time bigger than 3h. In order to test the fourth hypothesis, two types of tests are thought to be 

needed: a test with non-variable or static operation conditions and a test with an operation condition 

that changes from one static operation to another one, repeating the same static operation conditions 

in a closed loop way. In addition, the difference of having rest times at the end of the discharge and 

at the end of charge is also added to the evaluation because of CIDETEC’s interests. As a result, the 

combined aging test matrix shown in Table 88 is designed, from which the tests numbers 4, 5, 6, 7, 

8, 11, 13 and 14 are used on the study of the two hypotheses done on this chapter (highlighted in 

bold letters). 

The ACT developed on this study is the same as the one used on the previous validations: a capacity 

validation test, an OCV characterization test using low C-rate values and an impedance 

characterization test using charge and discharge pulse tests all along the SOC range. 

After the design of all the required tests (the aging test matrix and the ACT), these tests have been 

run for 6 months in CIDETEC’s facilities and the obtained data has been treated with the aim of 

validating the proposed two hypotheses. 

3.4.3.1 First hypothesis validation 
Among the tests defined on this new aging test matrix, the test 4 (only resting), the test 8 (only 

cycling) and the test 11 (mix of resting and cycling) are evaluated to validate the first hypothesis. For 

that, firstly, the health indicators of interest are extracted from the data obtained from the tests: the 

dischargeable capacity and pure ohmic resistance, see Figure 65 and Figure 66. 

 
Figure 65: Dischargeable capacity evolution of tests 4, 8 and 11. 

 
Figure 66: Pure ohmic resistance evolution of tests 4, 8 and 11. 

Then, the extracted health indicators are modelled with the aim of correlating the health indicator 

evolution with the resting time and with the discharged energy. This modelling exercise only requires 

fitting the observable trends of the health indicators extracted from the tests 4 and 8 with a 

mathematical expression. The required steps to fulfil this modelling exercise are detailed on the first 

phase of the proposed aging modelling methodology. 

The first phase of the proposed modelling methodology consists on choosing the mathematical 

expression that fits better the selected health indicators (dischargeable capacity and the pure ohmic 

resistance). The tested mathematical expressions are shown in Table 89. 
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Aging Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Calendar x x x x x 

Cycling x x x x x 

Table 89: Selection of mathematical expressions that can be applied to describe the aging trend of the 

selected health indicators 

The fitting accuracy is measured with the Root Mean Square Error (RMSE) metric between the 

measurements and the estimation done with the fitted mathematical expression. This metric has 

been calculated on each test of both aging test matrix for the two selected health indicators. The 

mean of the obtained RMSE values on all the tests of the run aging test matrix is added, see Table 

90 and Table 91. 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 4 0,00103 0,00053 0,00666 0,00048 0,00061 

Test 8 0,02836 0,02947 0,10794 0,02048 0,01846 

Table 90: Fitting RMSE of the dischargeable capacity evolution data extracted from the proposed test 

number 4 and test number 8 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 4 0,00765 0,00441 0,03942 0,00136 0,00228 

Test 8 0,06188 0,06224 0,09453 0,06085 0,06072 

Table 91: Fitting RMSE of the pure ohmic resistance evolution data extracted from the proposed test 

number 4 and test number 8 

The fitting of the data of both health indicators show that the mathematical expression that fits better 

the results obtained from the test 4 (the calendar aging) is the power type equation. In contrast, there 

is not a clear winner among the mathematical expressions that describe the results obtained from the 

test 8 (the cycling aging). Therefore, the simplest model (linear model) is selected. 

The selected calendar and cycling aging models are added linearly in a complete aging model, see 

Eq. (65) and Eq. (66). for the concrete operation conditions imposed on the test 11 (a train of cycles 

defined on tests 5, 6 and 7), the aging behaviour on test 11 is estimated by adding both models 

linearly and compared with the actual health indicators extracted from the test 11, see Figure 67 and 

Figure 68. 

𝑄 = 𝑄𝑖𝑛𝑖 − (4.07𝑒
−5 ∙ 𝑡1.23) − (1.37𝑒−4 ∙ 𝑐𝑦𝑐) (65) 

𝑅 = 𝑅𝑖𝑛𝑖 + (1.21𝑒
−4 ∙ 𝑡1.35) + (8.89𝑒−5 ∙ 𝑐𝑦𝑐) (66) 

Parameters Description 

𝑄 The dischargeable capacity. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

𝑡 The resting time related to calendar aging in days. 

𝑐𝑦𝑐 The discharged energy in Ah. 

𝑅 The pure ohmic resistance. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

Table 92: Parameters of the complete aging model 

 
Figure 67: Comparison of the observed dischargeable capacity evolution in the test 11 (blue dotted line) 

and the estimated dischargeable capacity with the complete aging model (red line). 
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Figure 68: Comparison of the observed pure ohmic resistance evolution in the test 11 (blue dotted line) 

and the estimated pure ohmic resistance with the complete aging model (red line). 

The results show that the complete model is able to capture the trend of the dischargeable capacity 

and the pure ohmic resistance evolution. Based on this, this first hypothesis is validated at the 

observed operation conditions. 

3.4.3.2 Second hypothesis validation 
Among the tests defined on this new aging test matrix, the test 5 (static operation conditions), the test 

6 (static operation conditions), the test 7 (static operation conditions), the test 13 (real life operation 

conditions) and 14 (real life operation conditions) are evaluated to validate the second hypothesis. 

For that, the health indicators of interest are extracted from the data obtained from the tests: the 

dischargeable capacity and pure ohmic resistance, see Figure 69 and Figure 70. 

 
Figure 69: Dischargeable capacity evolution of the tests 5, 6, 7, 13 and 14. 

 
Figure 70: Pure ohmic resistance evolution of the tests 5, 6, 7, 13 and 14. 

In this case, the validation of the hypothesis comes from the testing data itself, since the assumed 

hypothesis states that the aging on the tests 5 and 13 are the same and the aging on the tests 6 and 

14 are the same. This hypothesis could be assumed to be true looking at the pure ohmic resistance 

evolution. The observed trends on the tests 5, 6, 13 and 14 look alike. However, this is not 

happening on the dischargeable capacity evolution. The cases with real life cycles suffer higher 

dischargeable capacity decay than the cases with static operation conditions (considering the mean 

value of the real life cycles as the correlation parameter). Besides, the results show that both tests 

run with the defined two real cycle current profiles (tests 13 and 14) experience almost the same 

aging trend, even though having a difference between their mean current value of 1040mA (a 50% 

higher mean current level). 
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In this scenario, the data is further analysed. The real applied operation conditions on tests 5, 6, 7, 

13 and 14 are evaluated. The most relevant variables are displayed: the average current on each 

cycle (Figure 71), the average temperature on each cycle (Figure 72), the discharged time on each 

cycle (Figure 73) and the end of discharge voltage on each cycle (Figure 74). 

 
Figure 71: Average current values of each cycle done at tests 5, 6, 7, 13 and 14. 

 
Figure 72: Average temperature values of each cycle done on the tests 5, 6, 7, 13 and 14. 

 
Figure 73: Time of discharge on each cycle done on the tests 5, 6, 7, 13 and 14. 

 
Figure 74: End of Discharge voltage on each cycle done on the tests 5, 6, 7, 13 and 14. 

The results show that the mean current values of the tests 5, 6, 13 and 14 are coincident with the 

expected ones. The test 7 starts to enter the Constant Voltage mode at around 500 equivalent cycles 

(the mean current reduces) but the rest of the tests keep the mean current imposed on the design of 

the tests. The temperature measurements show that the temperature on tests 13 and 14 are a bit 

higher than the temperatures measured on cell 5 and 6, but they have a similar temperature 

difference between 5-6 and 13-14. Checking on the time of discharge of each cycle and the end of 

discharge voltage, it has been found that the implementation of the operation conditions of the tests 
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13 and 14 have not been respected. The tests 13 and 14 have been discharged until the end of 

discharge voltage every cycle. The discharge time on each cycle has not been restricted to 30 min 

but rather to the required time to reach the end of discharge voltage. This was not what it was 

planned. However, it explains why both tests experience similar aging trends since both have a DOD 

near the 100% (there is no Constant Voltage phase so it changes slightly on each cycle). It is more; it 

also explains why the test 13 with lower current rates could generate greater degradation. The 

deeper the DOD is, the greater the deterioration of the battery is expected. Lower currents allow 

deeper discharge since more energy is discharged before reaching the end of discharge voltage. 

The wrong implementation of the tests 13 and 14 makes impossible to completely validate this 

second hypothesis. However, relevant information about the degradation has been obtained. Firstly, 

it has been seen that the discharge with constant current and with a real life current profile generates 

similar mean operation temperatures. This fact points to the correctness of this second hypothesis. 

Secondly, the most relevant stress factor has been identified on SAMSUNG 18650 26F batteries: the 

deepness of the discharge or DOD. The tested battery on test 14 is experiencing higher discharge 

current rates and higher temperatures than the battery on test 13; nevertheless, both batteries are 

experiencing almost the same deterioration. This means that the effect of deep discharges 

contributes much greatly than the current and temperature to the battery aging at least on the tested 

ranges (almost 100% DOD, 2-3A and 30-37ºC).  

3.5 Conclusions 

This chapter has proposed the methodology to design the whole aging evaluation exercise: from the 

design of the aging test matrix to the construction of the aging model. The whole methodology has 

been tested on a High-Power and on a High-energy application. The constructed aging models have 

been validated with real life cycle aging data. Some important hypotheses assumed along the 

proposal have been discussed and validated as well. 

The design of the aging testing methodology has shown that a full and deep aging analysis of the 

operation conditions on a certain application is not realistic. A proper aging analysis contains just too 

many testing cases where even some of the most relevant ones are doomed to be discarded. Both 

applications has shown us that the economic restrain (invested lab resources on the project) limits 

greatly the testing cases, where testing cases out of the most likely operation conditions are 

automatically discarded and where testing cases with operation conditions with low deterioration 

rates are modified (increased to couple the expected testing time of the project). All this leads to the 

need of embracing hypotheses about the aging behaviour such as the done respect to the 

temperature (it shows a linear effect up –down a certain level) or the discharge current (there is a 

constant deterioration rate under a certain level). The practice of assuming hypotheses is 

fundamental but dangerous, since the final results will be conditioned to the assumed hypotheses. In 

case those are not correct, the constructed aging model will not give accurate results on the 

operation conditions where those hypotheses are not correct. A clear example is the assumed 

hypothesis of being the temperature independent from the rest stress factors, at least at 

temperatures below 25ºC (tested at 10ºC). The effect of the 10ºC operation temperature on the aging 

behaviour shows a much greater deterioration at the real life cycle test than at the test with static 

operation conditions. It has been found that there could be a dependency between low temperatures 

and the rest stress factors. As a result, the constructed model cannot describe the aging behaviour of 

applications operated at temperatures below 25ºC. 

In addition to this, it has been seen that the testing matrix design is in continuous change due to 

changes on the client priorities. The details of the application are often poorly defined at the 

beginning of the project and the acquired knowledge about it reforms all the requirements. It is found 

to be interesting to spend time in the proper understanding of the application and in the identification 

of the most likely deviations from the initial statement of the application requirements. 

Besides, specific aging analyses are typically added to the aging modelling exercise, such as an 

aging-thermal study used for the selection of the thermal management system. Those aging 

analyses will restrain even more the options that the aging test matrix designer has in case they are 
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not considered on the proposal design. This is why there should be a fluent communication between 

the project leader, the lab and the customer. 

The aging modelling proposal has shown that the applicable mathematical expressions used on the 

second phase of the proposed aging modelling methodology are completely dependent to the aging 

testing matrix. A stress factor that has been tested with 2 levels can only be described by a linear 

model; there is no sense on using a mathematical expression with a higher dimension if there are 

available only two points. 

On the same hand, it has been seen that the restrains imposed on the aging testing matrix limits 

greatly the operation window that the obtained model is able to describe. The results show how the 

constructed model could have only been validated on a smaller operation window than the expected 

one; the performance of the constructed aging models at low temperatures has shown huge fitting 

errors. 

The modelling activities developed on the evaluated use cases have shown that the quality of the 

data is a key aspect when constructing the aging model. Firstly, the observed health indicators need 

to show relevant deteriorations in order to capture and validate the effect of the evaluated stress 

factors. Low deterioration levels are shown by the observed dischargeable capacity at the High-

Power application and by the pure ohmic resistance at the High-Energy application. Shallow 

degradation rates on the gathered data trammels the identification and/or the validation of the effect 

of the stress factors. The validation of the dischargeable capacity evolution model constructed for the 

High-Power application does not shows conclusive results. It looks like the constructed model is able 

to describe the dischargeable capacity decay experienced under real cycle operation conditions, but 

in reality, there is just 1% capacity decay. It is not an enough deterioration to state anything around 

the model itself. The validation of the pure ohmic resistance evolution model constructed for the 

High-Energy application shows practically the same; there is no significant raise of the pure ohmic 

resistance on the data used for the validation to state anything around the model itself. Secondly, the 

obtained data need to be as clear as possible. Noisy data leads to the incapacity of distinguishing 

good results from bad results on the proposed modelling methodology. The selection of the 

mathematical expressions is done by measuring and comparing the Root Mean Square Error. Noisy 

data increases this metric indistinctive to the applied mathematical expression which will decline the 

selection to the simplest mathematical expression. Besides, noisy data increases the uncertainty and 

makes less clear the validation of the models, such as in the validation of the pure ohmic resistance 

model constructed for the High-Energy application. 

The first part of the selection of the mathematical expression has shown that the power type 

mathematical expression is likely to be the one that describes the best the evolution of the 

dischargeable capacity decay of the selected battery on the High-Energy application. Instead, the 

linear model is the mathematical expression that is likely to describe the best the pure ohmic 

resistance increase of the selected battery on the High-Energy application and the evolution of both 

selected health indicators of the selected battery on the High-Power application. 

The second part of the selection process of the mathematical expressions has shown that the 

mathematical expression that could fit the best all the effects of the stress factors on the proposal is 

the linear model. In this case, the temperature effect is expected to be exponential [88] but at the 

same time forced to be linear due to the hypotheses done at the design of the aging test matrixes. 

The effect of the DOD, the SOC ranges and the discharge current are only tested with 2 levels, 

therefore, limited to be characterized with a linear model. The charge current is the only stress factor 

that could have been modelled with a mathematical expression different to the linear model, but 

finally, the Root Mean Square Errors have determine to be the linear model the most appropriate 

mathematical expression. This could be interpreted as being the simplest model the best option 

when there is not enough data to describe properly the behaviour of the system under evaluation. 

The validation of the constructed aging models for the defined two applications show different 

aspects of the constructed models. Firstly, it has been discovered that the proposed aging modelling 

methodology is able to capture the effect of the stress factors on the trend of the selected health 
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indicators even though having little data (up to 9 operation conditions to describe 5 stress factors). 

The models get low fitting errors on most of the cases. It is found that the fitting of the pure ohmnic 

resistance evolution has greater relative fitting errors, which has been addressed to the 

measurement noise. The noise of the measurements needs to be treated before doing the 

measurements. This means that there is no other choice but to deal with this noisy data and accept a 

high fitting error. Secondly, it has been perceived that the interpolation capability of all the linear 

models get logical results. The constructed power type model that describes the calendar effect on 

the dischargeable capacity evolution has been validated as well in terms of interpolation capability; 

nonetheless, the one related with the cycling aging has not been able to be validated. This model 

returns values of capacity of -1500% on some interpolated cases, which are not realistic. This is 

thought to be due to the increase of the stress factors. When dealing with a mathematical expression 

that has a very sensible variable, such as the power type equation (the power variable), the increase 

of free variables inside the calculation of this sensible variable leads to the inconsistency of the 

model itself. The fact is that there is too little data; the free variables that describe this sensible 

variable cannot be adjusted properly. Therefore, it is advisable to use simple models on those cases, 

such as the rebuilt model, which gets higher fitting errors but that give logic interpolated values. 

Thirdly, it has been seen that the constructed models by following the proposed modelling 

methodology are able to describe 2 of the tested 3 cases with real life cycle current profile. It has 

been seen that the effect of the temperature at temperatures below 25ºC is not independent to the 

rest of the stress factors; one of the main hypotheses done at the model construction is violated. 

Therefore, the constructed model does not describe the operation window at temperatures below 

25ºC. The description of this operation window comes from doing additional aging tests. 

The validation of two of the most relevant hypotheses have shown that, firstly, the deterioration given 

on resting periods and the deterioration given on cycling periods can be linearly added. Secondly, the 

mean values of the dynamic stress factors are likely to be representative of the generated aging with 

those dynamic stress factors. It has not been possible to prove that a static operation and a real life 

operation can be linked with the mean value of the stress factors, but hints about its correctness 

have been given (the generation of temperature is similar). On the same hand, it has been found 

some details about the deterioration of the SAMSUNG 1865026F battery. Firstly, it has been found 

that operating this battery at 100% DOD is really harmful.  Secondly, It has been found that the 

operation on some ranges can generate the same deterioration on the battery independent to the 

changes of some stress factors (the change on current and temperature levels has not had any effect 

on the degradation path of the tests 13 and 14). This discovery shows that there are predominant 

stress factors, at least operating within some ranges, which overlap the effect of the rest of the stress 

factors. 

At the same time, this chapter has been able to respond some hypotheses done at the research 

project definition. It has been seen that it is possible to describe the degradation that experiences the 

battery on real life application using a model constructed uniquely on data obtained from tests done 

at lab level with static operation conditions. It has also found that the aging path that the battery has 

can be totally described by the monitoring of the selected two health indicators: the dischargeable 

and pure ohmic resistance evolution. In contrast, it was expected that the developed aging testing 

methodology could reduce the testing cost by reducing the testing cases, which has been impossible 

to perform. The evaluated applications have had a budget so tight that it has been impossible to 

really reduce anything. However, the proposed aging testing methodology has served to meet the 

economic restrains of the project while allowing an aging model able to fit properly the obtained data, 

interpolate realistically and describe the aging of batteries cycled with real life current profiles, which 

is a merit by itself. 
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CHAPTER 4: 

4 Sizing Energy Storage Systems 
 

This chapter presents a sizing tool that not only considers the electric and thermal performance of 

the battery solution, but also the aging and the cost. For that, a decision approach built on a 

simulation environment is developed. The electric, thermal and aging behaviour of the system are 

simulated on the application operation conditions for the entire lifespan of the project. Meanwhile, the 

previously generated End of Life map and the tracked aging health indicators are used to determine 

the replacements of the batteries. The whole simulation is repeated on a pre-defined sizing range. As 

a result, the proposed sizing tool shows a cost diagram containing the cost of each tested size from a 

pre-defined range of sizes and highlights as the optimal size the one with the minimum cost. The tool 

is presented in two contexts: an e-mobility solution and a stationary solution. In addition to this, the 

assumption that the aging behaviour can be modelled by a cumulative aging model and the 

assumption that a rest period below 3h does not generate calendar aging are discussed and 

validated. The contributions of this chapter consist on firstly, the simulation environment that 

introduces the three performance aspects of a lithium ion battery: the electric behaviour, the thermal 

behaviour and the aging behaviour; secondly, the cost determination of a battery solution on an 

electric vehicle; thirdly, the cost determination of a battery solution on a stationary application; 

fourthly, the validation of the cumulative behaviour of the aging model; and fifthly, the identification of 

a relaxation effect at certain rest periods and at certain SOC values. 
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4.1 Introduction 

The sizing exercise of electric components is a key aspect on the design of any machine. The 

electric components are commonly sized based on the functional requirements of the machine. The 

machine needs to fulfil certain application requirements and the components of that machine are 

selected to allow the fulfilment of them all along the lifespan of the machine. Firstly, a size option that 

assures the correct performance of the machine at the beginning of life of the machine is pre-

selected. Then, the typical sizing process considers a performance decay of the evaluated electric 

components until the end of the guarantee with which the pre-selected sizes are increased to tackle 

the deterioration. 

This process is not optimum. This process tends to oversize the components more than the required 

to assure the correct performance of the machine all the guarantee period. Besides, it may be more 

profitable to reduce the size of some evaluated components even though requiring replacement of 

those components. In this scenario, this thesis proposes to calculate the cost that different sizing 

options of lithium ion battery energy storage systems have on the most relevant applications of 

lithium ion batteries: the Electric Vehicle and Stationary storage systems. The cost calculation 

integrates the simulation of the operation and deterioration of the batteries all along the energy 

storage system’s lifespan with which all the economic costs and incomes are calculated. For that, 

firstly, a standard simulation environment used to simulate the operation and deterioration of the 

battery solution is described. Secondly, the proposed standard simulation environment is adapted to 

calculate the cost of different sizing options of each application. Finally, the proposed adapted 

simulation environment is tested with real cases and the most significant hypotheses done on the 

developed simulation environment are discussed and validated. 

4.2 Simulation environment 

The proposed simulation environment consists on running a certain yearly input current profile N 

times with the constructed performance models, where N is the lifespan of the project in years. If the 

simulated performance of the battery reaches the End of Life threshold before the end of the whole 

simulation, replacement activities are activated. The replacement activity supposes that the operation 

of the battery is stopped for a certain time period and that aged batteries are replaced by new ones. 

The replacement of the batteries is represented by resetting the State of the Health-Indicators of the 

battery. The whole algorithm is described in Algorithm 1. 

The input current profile is considered as a given by the application requirements. If the operation 

conditions are uncertain, the most probable profile is used to determine the most probable optimal 

size. 

The performance models are the electric, thermal and aging models. The electric and thermal 

models are constructed as defined at the “End of Life Calculation Framework” chapter, see section 

“Battery model”. These two models are directly used to calculate the voltage and temperature 

responses of the battery. The aging models are constructed as defined at the “Aging: Testing and 

Modelling” chapter, section “Proposal of Modelling Methodology”. These models need to be 

constructed before using them on this simulation environment. 

The electric and thermal performance of the battery is proposed to be simulated with a step time of 

15 min. This step time is small enough to get relevant information about the electric and thermal 

performance evolution of the battery all along the project lifespan but big enough not to saturate the 

computer. There are cases where a smaller time step is required due to the characteristics the 

current profile has. On those cases, a subroutine loop is run inside those two models. As a result, the 

current profile is simulated with full detail and the simulation is not saturated (only the information at 

each 15 min is saved). 

The aging of the batteries is simulated with a discrete time step as well. It is assumed that firstly, the 

cycling and the calendar deterioration are gradually and discretely accumulating each time step: and 

secondly, the previous aging path does not affect the actual aging path. The simulation of the aging 

model in this way means that the simulated aging model is based on cumulative damage theory [50], 
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which basically justifies the use of discrete samplings and discrete deterioration estimations. The 

proposed simulation time step is 24h. The dynamic of the aging behaviour is much slower than the 

dynamic of the electric and thermal behaviour. There will not be a relevant degradation on just a day, 

but 24h is a short enough time step to simulate a gradual performance decrease. 

The End of Life threshold is proposed to be calculated as a map that gathers the information of the 

tracked health indicators as defined at the “End of Life Calculation Framework” chapter, section 

“Methodology”. In this thesis, the pure ohmic resistance evolution and the dischargeable capacity 

evolution are the proposed health indicators with which the EOL map is constructed. The End of Life 

threshold needs to be calculated before using it on this simulation environment. Besides, it may be 

necessary to calculate more than one End of Life threshold beforehand if the current profile of the 

application changes when modifying the size of the battery solution. 

𝑺𝑰𝒁𝑰𝑵𝑮𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏𝑬𝒏𝒗𝒊𝒓𝒐𝒏𝒎𝒆𝒏𝒕(𝑰, 𝑵, ∆𝒕, ∆𝒔, 𝑩, 𝑬𝒐𝑳𝑻𝑯)  

1:   INITIALIZE simulation 
2:   for 𝒊 = 𝟏 to 𝑵 do 

3:       for 𝐮 = 𝟏 to 𝑳 do 
4:           if 𝑬𝒐𝑳𝑻𝑯 is reached 
5:                REPLACEMENT exercise 
6:                if 𝚫𝐮 == 𝑴 
7:                      END REPLACEMENT exercise  
8:                      INITIALIZE performance models 
9:                end if 
10:         else 

11:               [𝑺𝑶𝑪(𝒖), 𝑻(𝒖), 𝑽(𝒖)] = 𝑬𝑳𝑬𝑪𝑻𝑹𝑰𝑪_𝑻𝑯𝑬𝑹𝑴𝑨𝑳_𝑴(𝑰̅(𝒖), ∆𝒕, ∆𝒔) 

12:               if 𝚫𝐮 == 𝑩 

13:                     [𝑸(𝒖), 𝑹(𝒖)] = 𝑨𝑮𝑰𝑵𝑮_𝑴(𝑺𝑶𝑪(∆𝒖), 𝑻(∆𝒖), 𝑰̅(∆𝒖), ∆𝒕𝟏, ∆𝒔, 𝑩,𝑸
(𝒖−𝟏), 𝑹(𝒖−𝟏)) 

14:             end if 
15:         end if 
16:     end for 
17: end for 
Where 

𝑰 = Yearly current profile. 

𝑵 = Lifespan of the project. 

𝑳 = The amount of simulation time steps that contains a year. 

𝑴 = Amount of step times required on the replacement exercise. 

𝑩 = The amount of simulation step times that are inside the aging step time. 

∆𝒕 = Step time of the simulation. 

∆𝒔 = Input sample time. 

𝑬𝒐𝑳𝑻𝑯 = The End of Life threshold. 

𝑰̅(𝒖) = The input current profile vector at (𝒖) simulation time step. 

𝑬𝑳𝑬𝑪𝑻𝑹𝑰𝑪_𝑻𝑯𝑬𝑹𝑴𝑨𝑳_𝑴= The electric-thermal model. 

𝑨𝑮𝑰𝑵𝑮_𝑴 = The aging model. 

𝑺𝑶𝑪(𝒖) = The Staste of Charge at (𝐮) simulation time. 

𝑻(𝒖) = The temperature of the cell at (𝐮) simulation time. 

𝑽(𝒖) = The voltage response of the battery at (𝐮) simulation time. 

𝑸(𝒖) = The dischargeable capacity at (𝐮) simulation time. 

𝑹(𝒖) = The pure ohmic resistance at (𝐮) simulation time. 

Algorithm 4: Algorithm of the proposed simulation environment. 

4.3 Applications 

Lithium ion batteries are nowadays integrated on many kinds of applications such as mobile phones, 

laptops, drones, electric cigarettes etc, but there are two applications that have a much more impact 

on our society and on the war against the climate change: the electric vehicle application and the 

stationary application. Besides, the proper sizing of the battery solution on these two applications 

plays especially a very important role in the business model due to the required huge investments. 
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4.3.1 Electric vehicle application 

The electric vehicle is the alternative that important vehicle OEMs (Original Equipment Manufacturer) 

are providing to internal-combustion vehicles. Cities all over the world are betting on this type of 

vehicle to replenish their bus or track fleet. In this scenario, the proper sizing of the battery solution of 

these vehicles is primordial to reach the final application requirements. 

This particular application of lithium ion batteries used to have some sizing common criteria. Firstly, 

there used to be an electric performance requirement. There is a minimum feasible size. Secondly, 

there used to be a space limitation. The electric vehicle has a defined size with a limited space for 

the battery solution (there is a maximum size). Thirdly, there used to be a minimum battery module 

level. The sizing options are reduce considerably due to modularity limitations of the solution. 

Fourthly, there used to be a defined route or a routine that needs to be fulfilled. The electric vehicle 

will need to provide certain performance all along the project lifespan. This criterion is used on the 

End of Life mapping developed on the chapter “End of Life Calculation Framework”. And fifthly, there 

used to be a guaranty agreement that needs to be respected. This represents the project lifespan in 

terms of potential costs (the cost from replacements will be assumed by the OEM). 

Once the application is understood, the simulation environment has been adapted to the application 

characteristics, see Algorithm 5. The cost of each feasible sizing option is quantified based on the 

battery units that are needed on the lifespan of the project. The simulation environment is set up with 

the selected size and run with the yearly routine of the application a total of times equal to the 

lifespan of the project. As a result, the total amount of batteries required on the project is guessed. 

Thanks to this, a cost value is attached to each feasible sizing option and a cost diagram is 

generated, from which the optimal size is highlighted (the size option with the smallest cost). 

{𝑪𝑶𝑺𝑻(𝒋)}
𝒋=𝟏

𝝆
= 𝑺𝑰𝒁𝑰𝑵𝑮𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝑽𝒆𝒉𝒊𝒄𝒍𝒆𝑨𝒑𝒑 ({𝑰

(𝒋)}
𝒋=𝟏

𝝆
, 𝑵, ∆𝒕, ∆𝒔, 𝑩, {𝑬𝒐𝑳𝑻𝑯

(𝒋)
}
𝒋=𝟏

𝝆

, {𝑪𝑰(𝒋)}
𝒋=𝟏

𝝆
)  

1:   INITIALIZE simulation 
2:   for 𝒊 = 𝟏 to 𝑵 do 

3:       for 𝐮 = 𝟏 to 𝑳 do 

4:           if 𝑬𝒐𝑳𝑻𝑯
(𝒋)

 is reached 

5:                REPLACEMENT exercise 
6:                if 𝚫𝐮 == 𝑴 
7:                      END REPLACEMENT exercise 
8:                      𝑹𝑪(𝒊) = 𝟏 
8:                      INITIALIZE performance models 
9:                end if 
10:         else 

11:               [𝑺𝑶𝑪(𝒖), 𝑻(𝒖), 𝑽(𝒖)] = 𝑬𝑳𝑬𝑪𝑻𝑹𝑰𝑪_𝑻𝑯𝑬𝑹𝑴𝑨𝑳_𝑴(𝑰̅(𝒋,𝒖), ∆𝒕, ∆𝒔) 

12:               if 𝚫𝐮 == 𝑩 

13:                     [𝑸(𝒖), 𝑹(𝒖)] = 𝑨𝑮𝑰𝑵𝑮_𝑴(𝑺𝑶𝑪(∆𝒖), 𝑻(∆𝒖), 𝑰̅(𝒋,∆𝒖), ∆𝒕𝟏, ∆𝒔, 𝑩,𝑸
(𝒖−𝟏), 𝑹(𝒖−𝟏)) 

14:             end if 
15:         end if 
16:     end for 
17: end for 

18: 𝑪𝑶𝑺𝑻(𝒊) = 𝑪𝑶𝑺𝑻_𝑪𝑨𝑳𝑪𝑼𝑳𝑨𝑻𝑰𝑶𝑵(𝑪𝑰(𝒋), 𝑹𝑪) 

Where 

𝑰(𝒋) = Yearly current profile of the (𝐣) size option. 

𝑵 = Lifespan of the project. 

𝑳 = The amount of simulation time steps that contains a year. 

𝑴 = Amount of step times required on the replacement exercise. 

𝑩 = The amount of simulation step times that are inside the aging step time. 

∆𝒕 = Step time of the simulation. 

∆𝒔 = Input sample time. 

𝑬𝒐𝑳𝑻𝑯
(𝒋)

 = The End of Life threshold of the (𝐣) size option. 

𝑰̅(𝒋,𝒖) = The input current profile vector of the (𝐣) size option at (𝐮) simulation time step. 

𝑬𝑳𝑬𝑪𝑻𝑹𝑰𝑪_𝑻𝑯𝑬𝑹𝑴𝑨𝑳_𝑴 = The electric-thermal model. 

𝑨𝑮𝑰𝑵𝑮_𝑴 = The aging model. 
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𝑺𝑶𝑪(𝒖) = The Staste of Charge at (𝐮) simulation time. 

𝑻(𝒖) = The temperature of the cell at (𝐮) simulation time. 

𝐕(𝐮) = The voltage response of the battery at (𝐮) simulation time. 

𝐐(𝐮) = The dischargeable capacity at (𝐮) simulation time. 

𝐑(𝐮) = The pure ohmic resistance at (𝐮) simulation time. 

𝐂𝐎𝐒𝐓_𝐂𝐀𝐋𝐂𝐔𝐋𝐀𝐓𝐈𝐎𝐍 = The cost calculation equation. 

𝐂𝐈(𝐣) = Initial capital costs of the (𝐣) size option. 

𝐑𝐂 = Replacements done all along the lifespan of the project. 

𝐂𝐎𝐒𝐓(𝐢) = Total cost of the (𝐣) size option. 

Algorithm 5: Algorithm of the updated simulation environment to an Electric Vehicle application. 

The sizing exercise has been applied on two different types of applications of an electric bus fleet: an 

electric bus fleet that requires a High-Energy battery and an electric bus fleet that requires a High-

Power battery. The application scenario has been simplified to only one bus line on each type of 

application. The sizing activity of the battery solution on the buses of each bus line is repeated, see 

Table 93. Therefore, the sizing of the battery solution of the bus of one bus line is considered enough 

to test the proposed methodology under different types of electric vehicle application. 

Bus 
line 

Daily current profile Yearly operation EOL 
Optimal 

size 

1 

 

320 days working. 
45 days resting. 

90% SOH 

20 
modular 
battery 
units 

2 

 

300 days working. 
65 days resting. 

60% SOH 

26 
modular 
battery 
units 

… … … … … 

N 

 

320 days working. 
45 days resting. 

83% SOH 

58 
modular 
battery 
units 

Table 93: A fictitious example of the sizing activity of an entire bus fleet with N bus lines 

4.3.2 Stationary application 

The stationary application of lithium ion batteries is a consequence of increasing the rate of solar and 

wind renewable energy on the grid. This kind of renewable energy cannot be generated in a flexible 

way; it depends on the weather conditions. Therefore, it requires an energy balancing element. In 
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this scenario, lithium ion battery based Energy Storage Systems are positioning first in the market 

[3][4]. 

This particular application of lithium ion batteries used to have some sizing common criteria. Firstly, 

there used to be a pre-defined minimum feasible size. Secondly, there used to be a minimum battery 

module level. The sizing options are reduce due to modularity limitations of the solution. Thirdly, 

there used to be a limit on the initial investment. The investors have a limited budget that cannot be 

overcome. 

The stationary application has many differences respect to the electric vehicle application that 

complicates greatly the cost estimation. Firstly, the discharged energy from the battery generates 

incomes while the charged one generates expenses. Besides, the price for the charged and 

discharged energy is a variable element. This complicates the cost quantification. Secondly, the 

batteries are operated as the operator wants. The operation of the battery solution affects the cost-

income balance. On one hand, the more the battery solution is used the more income is generated. 

On the other hand, the more the battery solution is used, the more degradation is generated and the 

less profitability can be obtained on future uses. Thirdly, the End of Life criteria is not always known. 

The stationary application may have imposed a minimum performance rate with which define the End 

of Life criterion or may not. Self-supply applications (at a household level or at energy plant level) are 

examples of the stationary application that do not have to fulfil a certain electric requirement. The 

battery solution of those stationary applications can be completely squeezed until the State of Health 

of the battery reaches the possible lowest value in terms of safety. However, even the battery 

manufacturers cannot determine the State of Health at which catastrophic events could occur. To 

solve these two issues, firstly, a techno-economic metric is provided to add the energy incomes-

expenses onto the whole cost calculation: the Levelized Cost of Energy (LCOE); secondly, the 

simplest operation criteria is applied on all the run sizing simulations: the battery is operated to get 

the maximum efficiency; and thirdly, a conservative State of Health value is used to determine the 

End of Life. 

The Levelized Cost of Energy (LCOE) is the energy price required for a project to exactly meet its 

operating costs in a year and the share of capital in that year. In other words, the LCOE is the 

minimum price at which energy must be sold for an energy project to break even [99]. For that, the 

cost of the whole system and the energy provided all along the lifespan of the project is calculated, 

Eq. (67). 

𝐿𝐶𝑂𝐸 =
𝐶

𝐸
 (67) 

Parameters Description 

𝐿𝐶𝑂𝐸 The Levelized Cost of Energy. 

𝐶 The levelized cost. 

𝐸 The levelized provided energy. 

Table 94: The Levelized Cost of Energy equation 

Once the application is understood, the simulation environment has been adapted to the application 

characteristics, see Algorithm 6. The simulation environment is set up with the selected size and run 

with the yearly routine of the application a total of times equal to the lifespan of the project. As a 

result, the Levelized Cost of Energy (LCOE) provided by the battery solution all along the project 

lifespan is calculated. Thanks to all this, a cost value is attached to each feasible sizing option and a 

cost diagram is generated, from which the optimal size is highlighted (the size option with the 

smallest cost). 

{𝑳𝑪𝑶𝑬(𝒋)}
𝒋=𝟏

𝝆
=

𝑺𝑰𝒁𝑰𝑵𝑮𝑺𝒕𝒂𝒕𝒊𝒐𝒏𝒂𝒓𝒚𝑨𝒑𝒑 (𝑷𝒈, 𝑷𝒅, 𝑵, ∆𝒕, ∆𝒔, 𝑩, 𝑬𝒐𝑳𝑻𝑯, {𝑪𝑰
(𝒋)}

𝒋=𝟏

𝝆
, {𝑴𝑶(𝒋)}

𝒋=𝟏

𝝆
, {𝑺(𝒋)}

𝒋=𝟏

𝝆
, 𝜽𝒍𝒐𝒔𝒔𝒆𝒔, 𝜽€)  

1:   INITIALIZE simulation 
2:   for 𝒊 = 𝟏 to 𝑵 do 

3:       for 𝐮 = 𝟏 to 𝑳 do 

4:           if 𝑬𝒐𝑳𝑻𝑯 is reached 
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5:                REPLACEMENT exercise 
6:                if 𝚫𝐮 == 𝑴 
7:                      END REPLACEMENT exercise 
8:                      𝑹𝑪(𝒊) = 𝟏 
8:                      INITIALIZE performance models 
9:                end if 
10:         else 

11:               [𝑰̅(𝒖), 𝑬(𝒖)] = 𝑩𝑨𝑻𝑻_𝑶𝑷𝑬𝑹𝑨𝑻𝑶𝑹(𝑷𝒈
(𝒖)
, 𝑷𝒅

(𝒖)
, 𝑺(𝒋), 𝑺𝑶𝑪(𝒖−𝟏), 𝑽(𝒖−𝟏), 𝜽𝒍𝒐𝒔𝒔𝒆𝒔 , 𝜽€) 

12:               [𝑺𝑶𝑪(𝒖), 𝑻(𝒖), 𝑽(𝒖)] = 𝑬𝑳𝑬𝑪𝑻𝑹𝑰𝑪_𝑻𝑯𝑬𝑹𝑴𝑨𝑳_𝑴(𝑰̅(𝒖), ∆𝒕, ∆𝒔) 

13:               if 𝚫𝐮 == 𝑩 

14:                     [𝑸(𝒖), 𝑹(𝒖)] = 𝑨𝑮𝑰𝑵𝑮_𝑴(𝑺𝑶𝑪(∆𝒖), 𝑻(∆𝒖), 𝑰̅(∆𝒖), ∆𝒕𝟏, ∆𝒔, 𝑩,𝑸
(𝒖−𝟏), 𝑹(𝒖−𝟏)) 

15:             end if 
16:         end if 
17:     end for 
18: end for 

19: 𝑳𝑪𝑶𝑬(𝒊) = 𝑳𝑪𝑶𝑬_𝑪𝑨𝑳𝑪𝑼𝑳𝑨𝑻𝑰𝑶𝑵(𝑬, 𝑪𝑰(𝒋),𝑴𝑶(𝒋), 𝑺(𝒋), 𝑹𝑪, 𝜽€) 

Where 

𝑷𝒈 = Yearly available charge power profile. 

𝑷𝒅 = Yearly power demand profile. 

𝑩𝑨𝑻𝑻_𝑶𝑷𝑬𝑹𝑨𝑻𝑶𝑹 = Decision maker of battery operation. 

𝜽𝒍𝒐𝒔𝒔𝒆𝒔 = The variables needed to calculate the power losses (inversors etc.). 

𝜽€ = Economical variables. 

𝑵 = Lifespan of the project. 

𝑳 = The amount of simulation time steps that contains a year. 

𝑴 = Amount of step times required on the replacement exercise. 

𝑩 = The amount of simulation step times that are inside the aging step time. 

∆𝒕 = Step time of the simulation. 

∆𝒔 = Input sample time. 

𝑬𝒐𝑳𝑻𝑯 = The End of Life threshold. 

𝑰̅(𝒖) = The input current profile vector at (𝒖) simulation time step. 

𝑬 = The charged-discharged energy evolution. 

𝑬𝑳𝑬𝑪𝑻𝑹𝑰𝑪_𝑻𝑯𝑬𝑹𝑴𝑨𝑳_𝑴= The electric-thermal model. 

𝑨𝑮𝑰𝑵𝑮_𝑴 = The aging model. 

𝑺𝑶𝑪(𝒖) = The Staste of Charge at (𝒖) simulation time. 

𝑻(𝒖) = The temperature of the cell at (𝒖) simulation time. 

𝑽(𝒖) = The voltage response of the battery at (𝒖) simulation time. 

𝑸(𝒖) = The dischargeable capacity at (𝒖) simulation time. 

𝑹(𝒖) = The pure ohmic resistance at (𝒖) simulation time. 

𝑳𝑪𝑶𝑬_𝑪𝑨𝑳𝑪𝑼𝑳𝑨𝑻𝑰𝑶𝑵 = The LCOE calculation equation. 

𝑪𝑰(𝒋) = Initial capital costs of the (𝒋) size option. 

𝑴𝑶(𝒋) = Maintenance and Operation costs of the (𝒋) size option. 

𝑹𝑪 = Replacements done all along the lifespan of the project. 

𝑳𝑪𝑶𝑬(𝒊) = The levelized cost of energy of the (𝒋) size option. 

Algorithm 6: Algorithm of the updated simulation environment to a Stationary application. 

4.4 Validation 

The proposed sizing simulation environment has been adapted to the most relevant lithium ion 

battery applications: the Electric Vehicle application and the stationary application. These adapted 

simulation environments are tested and discussed. For that, a stationary battery solution use case 

and two electric vehicle use cases are introduced. The work done along this thesis is profited to feed 

up the simulation environment such as the EOL maps and the performance models (electric, thermal 

and aging models). Firstly, the application characteristics are deeply analysed. Here, the cost 

calculation and the simulation outputs are determined. Then, the elements required on the simulation 

environment are constructed. Next, the elements related with the cost calculation are gathered. 

Finally, the obtained results are shown and discussed. 

In addition to this, two relevant hypotheses done along the proposed simulation environment are 

analysed and discussed. 
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4.4.1 High-Energy Electric Vehicle application 

This electric vehicle application is sized with the point of view of a bus OEM. The OEM takes 

responsibility to fulfil the performance and guaranty requirements imposed by the customer. The 

maintenance of the bus used to be done by the OEM but the operation of the bus is commonly done 

by a third enterprise or the customer itself. 

Most of the characteristics of the High-Energy application have been already described on this 

thesis. The End of Life criteria has been already defined on the “End of Life Calculation Framework” 

chapter. Here the End of Life map for the minimum size has been already estimated. The daily 

current profile for the minimum size as well as the yearly days on operation and on rest is introduced 

on the “Aging: Testing and Modelling” chapter, with which the yearly current profile is generated.  The 

results from the aging modelling have shown that a charge at C/3 is less harmful than a charge at 

1C, so the charge current has been changed to C/3. The resume of these variables are gathered in 

Table 95. 

Daily current profile Yearly operation EOL 

 
+ CCCV charge at C/3 

320 days working. 
45 days resting. 

 
Table 95: Characteristics of the High-Energy minimum sizing option introduced on the sizing activity 

The rest characteristics are the following ones: 

- The minimum unit of the battery solution is a battery pack. 

- The minimum size of the battery solution is 4 battery packs in parallel. 

- The maximum size of the battery solution is 8 battery packs. 

- The guaranty of the project is 10 years. 

The resume of the characteristics leaves us five sizing options: 4 battery packs in 4p1s connexion (4 

in parallel and 1 in serial), 5 battery packs in 5p1s, 6 battery packs in 6p1s, 7 battery packs in 7p1s  

or 8 battery packs in 4p2s. Before running the simulation, the current profiles for each sizing option 

and the EOL maps are estimated; see Figure 75 and Figure 76 respectively. 

 

Figure 75: Current profiles of the different sizing options on the High-Energy application. 
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Figure 76: EOL maps of the different sizing options on the High-Energy application. 

The cost of the whole battery solution can be divided in an initial capital investment (CI), the 

maintenance and operation cost (M&O) and the replacement cost (RC). 

Firstly, the initial capital investment is calculated. For that, the components that composed the battery 

solution have been defined: 

- The batteries. 
- The battery module. 
- The battery pack. 
- The Battery Management System (BMS). 

The cost of the batteries is defined based on nowadays commercial prices (the price of each battery 

is confidential). For the battery module and pack housing, an approach of the industrial cost has 

been introduced. For the cost of the BMS, a price of an actual BMS designed by CIDETEC has been 

added. The results are resumed in Table 104. 

Element CI [€] 

Battery (per pack) 10,000 
Battery pack and module housing (per pack) 4,000 

BMS per pack 1,000 

Table 96: Cost values taken into account on BESS CI calculation 

Secondly, the maintenance and operation cost is defined. In this case, the maintenance of the bus 

doesn’t depend on the sizing of the battery solution. At the same time, the operation of the bus is not 

done by the bus manufacturer. Therefore, the maintenance and operation cost is discarded on the 

cost calculation. 

Thirdly, the replacement cost is calculated. The replacement is done when the EOL criteria is 

reached. In that moment, all the batteries are replaced. The cost of the selected battery is assumed 

to decrease 2% each year. With this assumption, the replacement cost is calculated at the operation 

years that a replacement is required. 

Finally, the cost related to each sizing option is calculated. In this case, the payment is done in one 

time. It is not necessary to loan money to the bank. Therefore, the costs are linearly added to 

calculate the total cost of the battery solution. 

The simulation environment is constructed and run for each possible size of the battery solution. The 

generated replacement events are displayed in Figure 77. The obtained results are displayed in 

Table 97. 
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Figure 77: Replacement events on the High-Energy Electric Vehicle application. 

Sizes Initial Investment [€] Replacement Cost [€] Total Cost [€] 

4 Battery packs 60,000 144,000 204,000 
5 Battery packs 75,000 44,000 119,000 
6 Battery packs 90,000 0 90,000 
7 Battery packs 105,000 0 105,000 
8 Battery packs 120,000 0 120,000 

Table 97: Sizing simulation results of the High-Energy Electric Vehicle application 

It can be seen that the replacement cost makes the smallest two sizing options more expensive than 

the next bigger sizing option. As a consequence, the optimum sizing is the third sizing option with 6 

battery packs. 

4.4.2 High-Power Electric Vehicle application 

This electric vehicle application is sized with the point of view of a bus OEM. The OEM takes 

responsibility to fulfil the performance and guaranty requirements imposed by the customer. The 

maintenance of the bus used to be done by the OEM but the operation of the bus is commonly done 

by a third enterprise or the customer itself. 

Most of the characteristics of the High-Power application have been already described on this thesis. 

The End of Life criteria has been already defined on the “End of Life Calculation Framework” chapter. 

Here, the End of Life map for the minimum size has been already estimated.  The daily current profile 

for the minimum size as well as the yearly days on operation and on rest is introduced on the “Aging: 

Testing and Modelling” chapter, with which the yearly current profile is generated. The resume of 

these variables are gathered in Table 98. 

Daily current profile Yearly operation EOL 

 
+ CCCV charge at 1C 

320 days working. 45 
days resting. 

 
Table 98: Characteristics of the High-Power minimum sizing option introduced on the sizing activity 

The rest characteristics are the following ones: 

- The minimum unit of the battery solution is a battery pack that contains 200 batteries. 

- The minimum size of the battery solution is 4 battery packs. 
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- The maximum size of the battery solution is 5 battery packs. 

- The guaranty is of the project is 15 years. 

The resume of the characteristics leaves us two sizing options: 4 battery packs in 4p1s connexion (4 

in parallel and 1 in serial) or 5 battery packs in 5p1s. Before running the simulation, the current 

profiles for each sizing option and the EOL maps are estimated; see Figure 78 and Figure 79 

respectively. 

 
Figure 78: Current profiles of the different sizing options on the High-Power application. 

 
Figure 79: EOL maps of the different sizing options on the High-Power application. 

The cost of the whole battery solution can be divided in an initial capital investment (CI), the 

maintenance and operation cost (M&O) and the replacement cost (RC). 

Firstly, the initial capital investment is calculated. For that, the components that composed the battery 

solution have been defined: 

- The batteries. 
- The battery module housing. 
- The battery pack housing. 
- The Battery Management System (BMS). 

The cost of the batteries is defined based on nowadays commercial prices (the price of each battery 

is confidential). For the battery module and pack housing, an approach of the industrial cost has 

been introduced. For the cost of the BMS, a price of an actual BMS designed by CIDETEC has been 

added. The results are resumed in Table 104. 

Element CI [€] 

Battery (per pack) 22,000 
Battery pack and module housing (per pack) 5,000 

BMS per pack 1,000 

Table 99: Cost values taken into account on BESS CI calculation 
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Secondly, the maintenance and operation cost is defined. In this case, the maintenance of the bus 

doesn’t depend on the sizing of the battery solution. At the same time, the operation of the bus is not 

done by the bus manufacturer. Therefore, the maintenance and operation cost is discarded on the 

cost calculation. 

Thirdly, the replacement cost is calculated. The replacement is done when the EOL criteria is 

reached. In that moment, all the batteries are replaced. The cost of the selected battery is assumed 

to decrease 2% each year. With this assumption, the replacement cost is calculated at the operation 

years that a replacement is required. 

Finally, the cost related to each sizing option is calculated. In this case, the payment is done in one 

time. It is not necessary to loan money to the bank. Therefore, the costs are linearly added to 

calculate the total cost of the battery solution. 

The simulation environment is constructed and run for each possible size of the battery solution. The 

generated replacement events are displayed in Figure 80. The obtained results are displayed in 

Table 100. 

 
Figure 80: Replacement events on the High-Power Electric Vehicle application. 

Sizes Initial Investment [€] Replacement Cost [€] Total Cost [€] 

4 Battery packs 112,000 0 112,000 
5 Battery packs 140,000 0 140,000 

Table 100: Sizing simulation results of the High-Power Electric Vehicle application 

In this use case, the optimal sizing option is the smallest sizing option. The used High-Power 

batteries have high endurance to aging, which means that even the smallest battery solution doesn’t 

need any replacement. As a result, the smallest size that fits the electrical and thermal requirements 

is also the cheapest sizing option (optimum). 

4.4.3 Micro-grid stationary application 

The proposed stationary application is contextualized in a CO2-neutral, self-sufficient micro-grid that 

switches from island mode to grid connected mode at will (Figure 81). This micro-grid is being 

constructed in Zellik, Belgium and managed by VUB with the Green Energy Campus project [100]. It 

will host interconnected prosumers including a large green data center (>1 MW thermal producer), an 

incubator for start-ups, a large parking lot (150-400 vehicles) with electric charging infrastructure and 

72 companies from different sectors. The Green Energy Campus will integrate renewable energy 

production systems (10MW solar and 13.2MW wind Energy) along with battery energy storage 

capacity for energy balancing issues to generate part of the demanded energy. 

On this context, the battery solution is sized with the point of view of the owner of the energy 

installation. The owner of the energy installation takes responsibility of constructing, operating and 

maintaining the whole energy installation. The produced energy is used to cover the energy demand 

on the micro-grid. Once covered the energy demand of the micro-grid, the energy surplus is sold to 

Belgium’s grid manager or used to charge the batteries. In case the generation cannot cover the 

whole demand, the batteries are used to fill the energy difference between generation and demand. 

The battery system has operational aspects that affect the provided energy to the micro-grid and to 

Belgium’s grid. As a result, the cost estimation of the energy generation elements is affected. This 

means that the cost estimation of the energy generation elements and the cost estimation of the 

battery solution cannot be divided. In consequence, the proposed cost estimation integrates the 
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costs and incomes generated by the energy generation elements as well as the costs and incomes 

generated by the Battery Energy Storage System (BESS). 

 
Figure 81: Green Energy Campus’s electrical Micro-Grid design [100]. 

The cost of the energy generation installation is quantified with the LCOE. The proposed LCOE 

calculation approach takes some assumptions: 

- The energy generation installation will have to cover the energy demand of the micro-grid 
(𝐸𝑠𝑜𝑙𝑎𝑟&𝑤𝑖𝑛𝑑𝐷𝑖𝑟𝑒𝑐𝑡). The energy generation installation cannot use the energy to charge the 

BESS or to sell it to the grid unless this demand is completely covered. 
- The grid will buy the entire energy surplus the energy generation installation has but at a 

reduced price respect to its cost price (𝐸𝑆𝑢𝑟𝑝𝑙𝑢𝑠𝑅𝑒𝑑𝑢𝑐𝑒𝑑). 

- The BESS is only charged with the energy surplus generated by the renewable energy 
generation elements (the energy surplus obtained from the solar and wind power plants 
once the demand of the industrial park at Zellik is covered). 

- The BESS is taken as an energy generation power plant where the energy used on charging 
and the energy losses on battery and power electronics are taken as self-consumption 
(discarded on the LCOE calculation). 

Based on these assumptions and based on the works of C. S. Lai et al [101] and M. Bruck et al [102], 

the equation to calculate the LCOE is developed (Eq. (68)).  

𝐿𝐶𝑂𝐸𝑠𝑦𝑠𝑡𝑒𝑚 =
∑

𝐶𝑠𝑜𝑙𝑎𝑟 + 𝐶𝑤𝑖𝑛𝑑 + 𝐶𝐵𝐸𝑆𝑆
(1 + 𝑟)𝑡

𝑁
𝑡=0

∑
𝐸𝑠𝑜𝑙𝑎𝑟&𝑤𝑖𝑛𝑑𝐷𝑖𝑟𝑒𝑐𝑡 + 𝐸𝐵𝐸𝑆𝑆 + 𝐸𝑆𝑢𝑟𝑝𝑙𝑢𝑠𝑅𝑒𝑑𝑢𝑐𝑒𝑑

(1 + 𝑟)𝑡
𝑁
𝑡=0

 (68) 

Parameters Description 

𝐿𝐶𝑂𝐸𝑠𝑦𝑠𝑡𝑒𝑚 The Levelized Cost of Energy of the whole energy generation plant. 

𝐶𝑠𝑜𝑙𝑎𝑟 The yearly cost of the solar power plant. 

𝐶𝑤𝑖𝑛𝑑 The yearly cost of the wind power plant. 

𝐶𝐵𝐸𝑆𝑆 The yearly cost of the Battery Energy Storage System. 

𝑁 The lifespan of the project. 

𝑟 The discount rate. 

𝐸𝑠𝑜𝑙𝑎𝑟&𝑤𝑖𝑛𝑑𝐷𝑖𝑟𝑒𝑐𝑡 The provided energy to the micro-grid from the solar and wind power plants. 

𝐸𝐵𝐸𝑆𝑆 The provided energy to the micro-grid from the Battery Energy Storage System. 

𝐸𝑆𝑢𝑟𝑝𝑙𝑢𝑠𝑅𝑒𝑑𝑢𝑐𝑒𝑑  The energy surplus sold to the grid 

Table 101: The Levelized Cost of Energy equation adapted to the proposed stationary application 

This equation introduces the yearly cost of the energy generation installations and the yearly total 

energy generation. In total, the energy generation plant is scheduled to be operative 𝑁 years. This 𝑁 
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number is defined by the power plant that has the higher operation expectation. The expected 

lifetime from the wind and solar installations is 25 years [103], longer than the BESS lifetime. 

Therefore, the lifespan of the energy generation installation is set to 25 years. Another element 

added to the formula is the “discount rate” that represents the currency inflation (𝑟). This parameter 

considers the investment risk as well as some other economic metrics used on economic 

assessments. As for this work, the assumed discount rate value is taken from the study on [104], that 

is 8.9%. 

The used batteries on this stationary application are the same as the batteries used on the High-

Energy Electric Vehicle application. The performance models have been already constructed. The 

rest characteristics of the simulation are the following ones: 

- A minimum BESS of 3MWh. 

- The minimum modular element is a battery module of 5kWh. 

- The limit of the initial investment is 4,500,000€ (more or less 10MWh). 

- The EOL threshold is set up to a 60% relative dischargeable capacity, a 250% relative pure 

ohmic resistance or to the failure of covering the demand of the micro-grid at least half of the 

year. 

- The BESS is charge and discharged whenever it is possible as long as the safety window is 

respected. 

The resume of the characteristics leaves us 1401 sizing options: from 3MWh to 10MWh with a step 

of 5kWh. There are too many options with low relevance (3.000MWh and 3.005MWh are practically 

the same); therefore, it has been decided to increase the step to 1MWh. This leaves us 8 sizing 

options: 3MWh, 4MWh, 5MWh, 6MWh, 7MWh, 8MWh, 9MWh and 10MWh. 

Before running the simulation, the energy generation and demand power profiles are calculated. The 

required energy (demand) is calculated from the 2017’s energy consumption of the 70 enterprises 

placed at the Green Campus (Figure 82) and from the thermal management system of the BESS. 

The selected thermal management system consists on a liquid heating-cooling system that will 

ensure a constant operation temperature of 25ºC. The consumption has been assumed to be 

proportional with a factor of 1.5 to the cooling power required to keep those constant 25ºC, see 

Figure 83.  

 
Figure 82: The demand on Zellik on 2017 with an interval of 15 min. 

 
Figure 83: The energy demand from the Thermal Management System. 
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The energy generation is calculated from the solar and wind energy generation. As for 

simplifications, due to restrictions on data availability, the yearly solar and wind energy generation is 

taken as constant (the environmental conditions given on 2017 are repeated every year). The wind 

power is calculated based on the wind speed measured on Zellik. The wind speed is used on a look 

up table function where it is related with the power generation of a 3.3 MW wind turbine (Figure 84). 

In total, 4 wind turbines are installed, making it an installation of 13.2 MW. 

 
Figure 84: Wind Power generation of a 3,3MW wind turbine. 

The chosen solar energy generation is Photovoltaic (PV). The PV energy generation calculus is 

based on a 816 KW peak power PV generation system that is already installed at Zellik. The power 

generation and the installed peak power generation are considered to be linearly proportional and the 

scaling is done dividing the generation data by 816 and multiplying by the installed peak power 

generation in kW, which in this case is 10 MW. 

Once obtained the yearly power profiles of the generation and demand, the simulation is run. To do 

so, the operation of the BESS along the whole project lifespan is simulated. On the simulation, the 

battery operator decides how to use the batteries in terms of the defined operation criteria 

(conservative operation). The battery dynamic behaviour and deterioration are modelled to couple 

realistically the imbalance between the energy generation and the demand. In addition, the energy 

loses given by the Joule effect on the BESS and the converter efficiency are quantified. In the case 

of BESS Joule effect losses, the losses depend on the efficiency of the battery, the increase of the 

resistance due to the aging and the power the BESS is operated (Eq. (69)). 

𝑃𝑗𝑜𝑢𝑙𝑒(𝑡𝑘) = 𝑃(𝑡𝑘) ∙ 𝜂𝐵𝐸𝑆𝑆 ∙ ∆𝑅𝑟,0 𝑡𝑜 𝑘 (69) 

Parameters Description 

𝑃𝑗𝑜𝑢𝑙𝑒(𝑡𝑘) The power losses due to the Joule effect at time instant 𝑡𝑘. 

𝑃(𝑡𝑘) The power that is demanded to or from the battery solution at time instant 𝑡𝑘. 

𝜂𝐵𝐸𝑆𝑆 The efficiency of the battery. 

∆𝑅𝑟,0 𝑡𝑜 𝑘 The relative increment of the pure ohmic resistance of the battery (respect to the 
nominal value) from time instant 𝑡0 to time instant 𝑡𝑘. 

Table 102: Joule losses on the BESS 

In the case of the converter, each commercial converter has an efficiency curve which can be used 

to know the losses on the converter (Figure 85). The chosen converter is the SIEMENS sinvert 200 

MS [105]. The images of data has been reverse engineered to extract the underlying numerical data 

available using the WebPlotDigitizer [106]. 
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Figure 85: Efficiency of SIEMENS sinvert 200 MS [105]. 

The simulation is kept without any maintenance event unless the EOL threshold is reached. When 

the EOL is reached, the replacement exercise is set up and all the battery are replaced. The BESS is 

disabled for a replacement time and the deterioration of the batteries is reset to the initial values. 

After simulating the BESS behaviour for the lifespan of the project, the cost related to its operation 

are estimated. The cost of the whole installation has been assumed to be the sum of the costs of 

each energy generation that the micro-grid is composed. This cost comprises the costs of the solar 

power plant, the wind power plant and the BESS, which are divided in the initial capital investment 

(CI), the maintenance and operation cost (M&O) and the replacement cost. 

The cost of the solar and wind power plants are taken from average cost values calculated by the 

European Commission [103]. The cost values used on the simulations are shown in Table 103, 

where in this case, the M&O comprises also the replacement cost. The CI value given by the 

European Commission and the M&O value given by the Green Campus project is multiplied by the 

installed MW (13.2 for wind and 10 for solar). 

Generation type CI [€/KW] M&O [€/MWyear] 

Solar PV (ground) 800 34,000 
Wind onshore 1,767 50,000 

Table 103: Cost values of an average solar and wind power plant on Belgium [103] 

In the case of the BESS, the cost has been calculated from the scratch. Firstly, the components of 

the BESS installation have been defined: 

- The batteries. 
- The battery module. 
- The Battery Management System (BMS). 
- The battery container. 
- The energy converter. 
- The thermal management system. 

For the batteries and battery modules, an approach of the industrial cost has been introduced. For 

the cost of the BMS, a price of an actual BMS designed by CIDETEC has been added. The cost of 

the battery container considers both, the space to stock all the battery modules (industrial containers) 

as well as the infrastructure to stack them (shelving for heavy loads). The cost for the energy 

converter is calculated multiplying the required number of converters with the cost of the chosen 

commercial converter: SIEMENS sinvert 200 MS. The cost of the proposed thermal management 

system is calculated based on commercial elements and CIDETEC’s expertise. The results are 

resumed in Table 104. 
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Element CI [€] 

BESS battery (per module) 1,000 
BESS housing (per module) 400 

BMS per module 100 
Container 13,500 

Converter (unit) 50,000 
Thermal management system 50,000 

Table 104: Cost values taken into account on BESS CI calculation 

Secondly, the M&O is calculated. Based on our experience, the yearly maintenance cost of a 1 MW 

BESS installation is 3,000 €. The operation cost is assumed to be the cost of having a qualified 

employee hired to operate the BESS (50,000€). 

Finally, the replacement cost is calculated. The replacement is done when the EOL criteria is 

reached. In that moment, all the batteries are replaced. The cost of the selected battery is assumed 

to decrease 2% each year. With this assumption, the replacement cost is calculated at the operation 

years that a replacement is required, see Figure 86. 

 
Figure 86: Replacement events on the Micro-grid stationary application. 

Once the investment cost is properly defined, the maintenance and operation cost and the 

replacement cost, the total cost of the whole energy generation plant is calculated. For that, one 

more assumption is taken: the initial investment is done with a 10-year loan to a bank with an interest 

of 5% to pay in yearly payments. The calculus of the payment of each year is done with MATLAB’s 

function “payper” [107]. Then, the obtained values along the loan interest for each year are used as 

the yearly cost on the LCOE calculation (Eq. (68)). 

All the calculated LCOE are shown in Table 105 and in Figure 87. In addition, the contribution of 

each the battery solution to the LCOE value is displayed in Figure 88. 

Sizes LCOE [€/MWh] 

3 MWh 130,56 
4 MWh 130,90 
5 MWh 133,56 
6 MWh 136,56 
7MWh 139,63 
8 MWh 142,79 
9 MWh 145,96 
10 MWh 149,03 

Table 105: LCOE simulation results of the Micro-grid stationary application 
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Figure 87: LCOE results. The blue part of each bar represents the LCOE contribution of the solar and 

wind power plants and the yellow part represents the contribution of the BESS on the selected BESS 

size. 

 
Figure 88: BESS contribution on the LCOE of the whole energy generation plant of the evaluated micro-

grid. 

The results show that the most profitable sizing is the smallest sizing option (3 MWh). However, there 

is a small difference between the LCOE obtained with 3MWh and 4MWh (0.34 €/MWh) and there is 

an important difference on the time the whole micro-grid can work on island mode, see Figure 89. 

Roominess on the operation of the BESS opens a range of possibilities such as offering additional 

ancillary services to another grid (additional incomes) or the reduction of the operation conditions 

(reduction of the replacement costs) [108]. 

 
Figure 89: The covered time at island mode by the energy generation plant. 

The sizing needs to consider these possibilities if applicable. However, the operation of the proposed 

battery solution on this Micro-grid stationary application is believed to be restricted to the evaluated 

case: the BESS is operated in order to maximize the operation time. Supplementary information 

about the effect of the BESS operation criteria is available in [108]. 

4.4.4 Hypotheses validation 

The proposed sizing methodology is consolidated on some strong hypotheses. From all of them, the 

following ones have been studied in detail: 

- A resting time inferior of 3h generates a relaxing effect instead of a calendar aging effect. 

- The damage generated on the different operation modes can be added in a cumulative 

damage model. 
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For that, specific aging tests have been run on certain batteries that have given information about the 

correctness of these hypotheses. The selected battery is SAMSUNG’s ICR18650-26F lithium-ion 

battery. The characteristics of this battery are shown in Table 106. 

Item Specification 

Nominal Capacity 2600 [mAh] 

Fast charge current 2600 [mA] 

Fast discharge current 5200 [mA] 

Maximum temperature 45 [ºC] 

Minimum temperature 0 [ºC] 

Table 106: SAMSUNG’s ICR18650-26F battery specifications 

As introduced on “Aging: Testing and Modelling” chapter, in order to study the third hypothesis, two 

types of tests are thought to be needed: a reference test without any resting time and a test with a 

cycling operation mode that intercalates rest time smaller than 3h. In order to test the fourth 

hypothesis, two types of tests are thought to be needed: a test with non-variable or static operation 

conditions and a test with an operation condition that changes from one static operation to another 

one, repeating the same static operation conditions in a closed loop way. This can come from only 

cycling operation conditions or it can come from mixing operation conditions that generate cycling 

aging as well as calendar aging. 

Test Upper 
SOC 

Discharge 
time 

Discharge current Rest SOC Rest 
time 

Operation 
mode 

1 - - - 20[%] Inf Resting 

2 - - - 40[%] Inf Resting 

3 - - - 60[%] Inf Resting 

4 - - - 100[%] Inf Resting 

5 100[%] 30[min] 2080[mA] - - Static cycle 

6 100[%] 30[min] 3120[mA] - - Static cycle 

7 100[%] 30[min] 4160[mA] - - Static cycle 

8 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

- - Dynamic cycle 

9 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

End of charge 1[h] Dynamic cycle 

10 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

End of 
discharge 

1[h] Dynamic cycle 

11 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

End of charge 8[h] Dynamic cycle 

12 100[%] 30[min] A train of cycles of 
tests 5, 6 and 7 

End of 
discharge 

8[h] Dynamic cycle 

13 100[%] 30[min] Mean value of 
2080[mA] 

- - Real cycle 

14 100[%] 30[min] Mean value of  
3120[mA] 

- - Real Cycle 

Table 107: Aging test matrix design to validate the main hypotheses done on the aging model 

development 

The ACT developed on this study is the same as the one used on the previous validations: a capacity 

validation test, an OCV characterization test using low C-rate values and an impedance 

characterization test using charge and discharge pulse tests all along the SOC range. 

After the design of all the required tests (the aging test matrix and the ACT), these tests have been 

run for 6 months in CIDETEC’s facilities and the obtained data has been treated with the aim of 

validating the proposed two hypotheses. 

4.4.4.1 First hypothesis validation 
Among the tests defined on Table 88, the test 8 (reference) and the tests 9 and 10 (1h rest period) 

are evaluated to validate the first hypothesis. For that, the health indicators of interest are extracted 

from the data obtained from the tests: the dischargeable capacity and pure ohmic resistance, see 

Figure 69 and Figure 70. 
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Figure 90: Dischargeable capacity evolution of the tests 8, 9 and 10. 

 
Figure 91: Pure ohmic resistance evolution of the tests 8, 9 and 10. 

In this case, the validation of the hypothesis comes from the testing data itself. The assumed 

hypothesis states that the aging on the test 8 (no rest time) and the aging on the tests 9 and 10 (rest 

times shorter than 1h) are the same. The observed pure ohmic resistance aging paths have quite 

similar trends, which supports this hypothesis. The test 8 experiences an unexpected resistance 

decrease on the second ACT, but the aging paths from this point onwards are almost parallels. On 

the other hand, the dischargeable capacity evolution shows a contradiction. The dischargeable 

capacity of test 9 reduces much faster than the tests 8 and 10, but the dischargeable capacity 

evolution of test 10 and test 8 are practically the same. Surprisingly, the test with rest times at middle 

SOC values (20%, 40% and 60%) shows a different degradation path than the test with rest times at 

100% SOC. This could indicate that there is not a relaxation effect at high SOC; instead, there is 

calendar aging. 

To prove that the increase on the observed aging path’s trend of the test 9 comes from the calendar 

aging, the addition of both aging is calculated with the developed cycling and calendar aging models 

at the “Aging: Testing and Modelling” chapter, see Eq. (65) and Eq. (66). The results are displayed in 

Figure 67 and Figure 68. 

𝑄 = 𝑄𝑖𝑛𝑖 − (4.07𝑒
−5 ∙ 𝑡1.23) − (1.37𝑒−4 ∙ 𝑐𝑦𝑐) (70) 

𝑅 = 𝑅𝑖𝑛𝑖 + (1.21𝑒
−4 ∙ 𝑡1.35) + (8.89𝑒−5 ∙ 𝑐𝑦𝑐) (71) 

Parameters Description 

𝑄 The dischargeable capacity. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

𝑡 The resting time related to calendar aging in days. 

𝑐𝑦𝑐 The discharged energy in Ah. 

𝑅 The pure ohmic resistance. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

Table 108: Parameters of the complete aging model 
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Figure 92: Comparison of the observed dischargeable capacity evolution in the test 9 (blue dotted line) 

and the estimated dischargeable capacity with the complete aging model (red line). 

 
Figure 93: Comparison of the observed pure ohmic resistance evolution in the test 9 (blue dotted line) 

and the estimated pure ohmic resistance with the complete aging model (red line). 

The estimated aging path that considers both calendar and cycling aging contributions matches the 

aging path generated with rest times of 1h at 100% SOC. The results show that the test 9 has a 

calendar aging contribution even though having a rest time of just 1h. 

To sum up, it has been proved that rest times of 1h at middle SOC does not generate any 

degradation but that rest times of 8h at those middle SOC does generate it. In contrast, rest times of 

1h at 100% SOC generates calendar aging from the start of the rest period. 

In this scenario, in order to completely validate that there is a relaxation effect on rest times below 

3h, the generation of calendar aging at higher rest times is studied. In this way, the confirmation of 

having different deterioration behaviour at different rest periods is evaluated. Among the tests 

defined on Table 88, the test 1, 2 and3 (only resting), the test 8 (only cycling) and the test 12 (mix of 

resting and cycling at middle SOC) are evaluated to completely validate the first hypothesis. For that, 

the health indicators of interest are extracted from the data obtained from the tests: the 

dischargeable capacity and pure ohmic resistance, see Figure 94 and Figure 95. 

 
Figure 94: Dischargeable capacity evolution of the tests 1, 2, 3, 8 and 12. 
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Figure 95: Pure ohmic resistance evolution of the tests 1, 2, 3, 8 and 12. 

Then, the extracted health indicators are modelled with the aim of correlating the health indicator 

evolution with the resting time and with the discharged energy. This modelling exercise only requires 

fitting the observable trends of the health indicators extracted from the tests 1, 2, 3 and 8 with a 

mathematical expression. The required steps to fulfil this modelling exercise are detailed on the first 

phase of the proposed aging modelling methodology section of the “Aging Modelling” chapter. 

Furthermore, the Health Indicators extracted from the test 8 are already modelled. The efforts need 

to be done with the calendar aging representation of tests 1, 2 and 3. 

The first phase of the proposed modelling methodology consists on choosing the mathematical 

expression that fits better the selected health indicators (dischargeable capacity and the pure ohmic 

resistance). The tested mathematical expressions are shown in Table 89. 

Aging Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Calendar x x x x x 

Table 109: Selection of mathematical expressions to describe the aging trend 

The fitting accuracy is measured with the Root Mean Square Error (RMSE) metric between the 

measurements and the estimation done with the fitted mathematical expression. This metric has 

been calculated on tests 1, 2, 3 for the two selected health indicators, see Table 90 and Table 91. 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,00073 0,00031 0,00520 0,00048 0,00057 

Test 2 0,00019 0,00072 0,00543 0,00015 0,00019 

Test 3 0,00228 0,00082 0,00539 6,414e-05 0,00228 

Table 110: Fitting RMSE of the dischargeable capacity evolution data extracted from the proposed test 

number 1, 2 and 3 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 1 0,01132 0,01088 0,01121 0,01112 0,01132 

Test 2 0,00989 0,00019 0,02349 0,00139 0,00208 

Test 3 0,01464 0,01446 0,01449 0,01446 0,01464 

Table 111: Fitting RMSE of the pure ohmic resistance evolution data extracted from the proposed test 

number 1, 2 and 3 

The fitting of the data of both health indicators show that the mathematical expression that fits better 

the results obtained from the test 1, 2 and 3 is the power type equation or the exponential equation. 

The work done with the other calendar aging tests (test 4) showed that the mathematical expression 

that fits better the results is the power type equation. Therefore, the power type equation is selected. 

The selected calendar and cycling aging models are added linearly in a complete aging model, see 

Eq. (72) and Eq. (73). The aging on test 12 is estimated and displayed in Figure 96 and Figure 97. 

𝑄 = 𝑄𝑖𝑛𝑖 − (4.51𝑒
−5 ∙ 𝑡1

1.16 + 1.48𝑒−4 ∙ 𝑡2
0.97 + 1.10𝑒−3 ∙ 𝑡3

0.64) − (1.37𝑒−4 ∙ 𝑐𝑦𝑐) (72) 

𝑅 = 𝑅𝑖𝑛𝑖 + (1.30𝑒
−3 ∙ 𝑡1

0.37 + 4.21𝑒−7 ∙ 𝑡2
2.28 + 5.40𝑒−3 ∙ 𝑡3

0.00) + (8.89𝑒−5 ∙ 𝑐𝑦𝑐) (73) 

Parameters Description 

𝑄 The dischargeable capacity. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 
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𝑡𝑖 The resting time related to calendar aging in days related to the test 𝑖. 
𝑐𝑦𝑐 The discharged energy in Ah. 

𝑅 The pure ohmic resistance. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

Table 112: Parameters of the complete aging model 

 
Figure 96: Comparison of the observed dischargeable capacity evolution in the test 12 (blue dotted line) 

and the estimated dischargeable capacity with the complete aging model (red line). 

 
Figure 97: Comparison of the observed pure ohmic resistance evolution in the test 12 (blue dotted line) 

and the estimated pure ohmic resistance with the complete aging model (red line). 

The results show that there is a contribution of calendar aging with rest time of 8h. This supports the 

hypothesis of having a different behavior depending on the length of the rest period. 

4.4.4.2 Second hypothesis validation 
A cumulative aging model implies that the aging is independent to its previous state. The damage on 

the battery is linearly added as time advances independently to its previous use. It has been proved 

already that the calendar aging and the cycling aging can be added in a cumulative way on “Aging 

Modelling” chapter, however, it still remains to test if the aging generated at different operation 

conditions fulfils this hypothesis. Among the tests defined on Table 88, the test 8 with cycling static 

operation conditions (tests 5, 6 and 7) and that with dynamic operation conditions (tests 8) are 

evaluated to validate the second hypothesis. For that, the health indicators of interest are extracted 

from the data obtained from the tests: the dischargeable capacity and pure ohmic resistance, see 

Figure 98 and Figure 99. 

 
Figure 98: Dischargeable capacity evolution of the tests 5, 6, 7 and 8. 
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Figure 99: Pure ohmic resistance evolution of the tests 5, 6, 7 and 8. 

Then, the extracted health indicators are modelled with the aim of correlating the health indicator 

evolution with discharged energy. This modelling exercise only requires fitting the observable trends 

of the health indicators extracted from the tests with static operation conditions (tests 5, 6 and 7) with 

a mathematical expression. The required steps to fulfil this modelling exercise are detailed on the 

first phase of the proposed aging modelling methodology. 

The first phase of the proposed modelling methodology consists on choosing the mathematical 

expression that fits better the selected health indicators (dischargeable capacity and the pure ohmic 

resistance). The tested mathematical expressions are shown in Table 113. 

Aging Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Cycling x x x x x 

Table 113: Selection of mathematical expressions to describe the aging trend 

The fitting accuracy is measured with the Root Mean Square Error (RMSE) metric between the 

measurements and the estimation done with the fitted mathematical expression. This metric has 

been calculated on the tests 5, 6 and 7 for the two selected health indicators, see Table 114 and 

Table 115. 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 5 0,00832 0,01044 0,03140 0,00248 0,00832 

Test 6 0,00688 0,01425 0,04755 0,00435 0,00688 

Test 7 0,02066 0,02370 0,09606 0,01353 0,01103 

Table 114: Fitting RMSE of the dischargeable capacity evolution data extracted from the proposed test 

number 5, 6 and 7 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 5 0,02199 0,02196 0,04287 0,01246 0,02199 

Test 6 0,01180 0,01328 0,05247 0,00829 0,00774 

Test 7 0,06865 0,04144 0,14216 0,04411 0,04504 

Table 115: Fitting RMSE of the pure ohmic resistance evolution data extracted from the proposed test 

number 5, 6 and 7 

The fitting of the data of both health indicators show that the mathematical expression that fits better 

all the results is the power type equation. The constructed calendar and cycling aging models are 

added linearly in a complete aging model, see Eq. (74) and Eq. (75). The aging on test 12 is 

estimated and displayed in Figure 96 and Figure 97. 

𝑄 = 𝑄𝑖𝑛𝑖 − (1.13𝑒
−3 ∙ 𝑐𝑦𝑐1

0.64 + 3.63𝑒−4 ∙ 𝑐𝑦𝑐2
0.81 + 4.16𝑒−6 ∙ 𝑐𝑦𝑐3

1.44) (74) 

𝑅 = 𝑅𝑖𝑛𝑖 + (5.25𝑒
−3 ∙ 𝑐𝑦𝑐1

0.49 + 2.36𝑒−6 ∙ 𝑐𝑦𝑐2
1.44 + 6.31𝑒−9 ∙ 𝑐𝑦𝑐3

2.29) (75) 

Parameters Description 

𝑄 The dischargeable capacity. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

𝑐𝑦𝑐𝑖 The discharged energy in Ah related to the test 𝑖 + 4. 

𝑅 The pure ohmic resistance. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

Table 116: Parameters of the complete aging model 
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Figure 100: Comparison of the observed dischargeable capacity evolution in the test with dynamic 

operation conditions (dots) and the estimated one with the complete aging model (stars). 

 
Figure 101: Comparison of the observed pure ohmic resistance evolution in the test with dynamic 

operation conditions (dots) and the estimated one with the complete aging model (stars). 

The results show that the model does not describe the pure ohmic resistance and the dischargeable 

capacity evolution at the last observed ACTs. Both aging trends at the last ACTs change but the 

model does not show this change. The reason behind this is attributed to the change on the first 

derivative of the mathematical expression (also referred as the aging rate). The used power type 

equation has a derivative value dependent to the discharged energy. This implies that the aging rate 

is different at different state of health. In this scenario, the direct linear adding of the aging generates 

a cumulative error that increases with time, having the highest errors at the latest state of health 

observations. 

 
Figure 102: Elapsed concept on cumulative aging model [109]. 

The solution of the linear addition has been thought to be resolved with the concept of elapsed time 

(and elapsed discharged energy) used on [109]. Yukio [109] stated that there are some master 

curves (also referred as aging paths) that correspond to the deterioration at specific operation 

conditions. The real aging path of the battery can be deducted from this master curves, see Figure 
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102. Basically, the proposal on [109] requests to determine the elapsed time (or elapsed discharged 

energy if calculating cycling aging) that is required to reach the actual state of health of the battery at 

the operation conditions that the battery has been used beyond that actual state of health. For that, 

the process shown in Figure 102 can be implemented. Nonetheless, it is simpler to deduct the 

elapsed variable analytically by solving the equation itself (guess the time or discharged energy by 

knowing the pure ohmic resistance increase or dischargeable capacity decrease). 

As a result, the complete model is modified (see Eq. (76) and Eq. (77)) and the dischargeable 

capacity evolution on test 8 is estimated again, see Figure 103. 

𝑄(𝑡𝑘) = 𝑄(𝑡𝑘−1) − ((1.13𝑒
−3 ∙ (𝑒𝑐𝑦𝑐1 + ∆𝑐𝑦𝑐1)

0.64 − 1.13𝑒−3 ∙ 𝑒𝑐𝑦𝑐1
0.64)

+ (3.63𝑒−4 ∙ (𝑒𝑐𝑦𝑐2 + 𝑐𝑦𝑐2)
0.81 − 3.63𝑒−4 ∙ (𝑒𝑐𝑦𝑐2)

0.81)

+ (4.16𝑒−6 ∙ (𝑒𝑐𝑦𝑐3 + 𝑐𝑦𝑐3)
1.44 − 4.16𝑒−6 ∙ (𝑒𝑐𝑦𝑐3)

1.44)) 

(76) 

𝑅(𝑡𝑘) = 𝑅𝑖𝑛𝑖(𝑡𝑘−1)

+ ((5.25𝑒−3 ∙ (𝑒𝑐𝑦𝑐1 + 𝑐𝑦𝑐1)
0.49 − 5.25𝑒−3 ∙ (𝑒𝑐𝑦𝑐1)

0.49)

+ (2.36𝑒−6 ∙ (𝑒𝑐𝑦𝑐2 + 𝑐𝑦𝑐2)
1.44 − 2.36𝑒−6 ∙ (𝑒𝑐𝑦𝑐2)

1.44)

+ (6.31𝑒−9 ∙ (𝑒𝑐𝑦𝑐3 + 𝑐𝑦𝑐3)
2.29 − 6.31𝑒−9 ∙ (𝑒𝑐𝑦𝑐3)

2.29)) 

(77) 

Parameters Description 

𝑄 The dischargeable capacity. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

∆𝑐𝑦𝑐𝑖 The discharged energy in Ah related to the test 𝑖 + 4 in between the previous sample 
time instant 𝑡𝑘−1 and the current sample time instant 𝑡𝑘. 

𝑒𝑐𝑦𝑐𝑖 The elapsed discharged energy in Ah required to reach the value of the modelled health 
indicator in the previous sample time instant 𝑡𝑘−1 related to the test 𝑖 + 4. 

𝑅 The pure ohmic resistance. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

Table 117: Parameters of the corrected complete aging model 

 
Figure 103: Comparison of the observed dischargeable capacity evolution in the test with dynamic 

operation conditions (dots) and the estimated one with the corrected complete aging model (stars). 

 
Figure 104: Comparison of the observed pure ohmic resistance evolution in the test with dynamic 

operation conditions (dots) and the estimated one with the complete aging model (stars). 

The results show that there is a high fitting error between the estimated and observed pure ohmic 

resistance evolution. However, it looks like there is a constant offset between both lines (they are 

almost parallel). Based on this, the model that uses the elapsed concept is believed to be able to 
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capture the trend of the pure ohmic resistance evolution. The fitting error is attributed to an odd event 

rather than to the model. The battery has experienced an unexpected resistance decrease at the 

second check-up, which is not related to the common aging behaviour (out of this thesis the 

evaluation of odd events). This can be corrected with few observations and with an in-field prediction 

algorithm (see next chapter). 

On the other hand, the dischargeable capacity evolution has still the same issue at the latest check-

ups. In this case, the problem is attributed to the lack of observations on those relative dischargeable 

capacity values. The tests 5 and 6 have only generated 20% of dischargeable capacity decrease; 

there is no observation below this value. The constructed model needs to extrapolate the captured 

trend to further relative dischargeable capacity values, which adds high uncertainty levels to the 

estimations. In this case, it is especially critical since it is expected a change of the aging rate on 

those extrapolated cases. This issue is left to the next chapter, which treats the improvement of the 

errors committed on the aging modelling. 

4.5 Conclusions 

This chapter has proposed the methodology to select the most profitable sizing option of a lithium ion 

battery solution integrated on the two most relevant use cases: the Electric Vehicle and the 

Stationary storage system. The optimization is done based on the levelized cost of the application, 

which takes into account the initial capital investment, the maintenance costs, the operation costs-

benefits and the replacement costs. A simulation environment has been designed to calculate the 

operation costs-benefits and the replacement costs. The constructed simulation environment has 

been adapted and tested with real case applications. Some important hypotheses assumed along the 

proposal have been discussed and validated as well. 

The results from the High-Energy Electric Vehicle application show that the smallest sizing option is 

not the most profitable one. The calculated costs show that the replacement costs related with the 

first two smallest sizing options make them more expensive than the third smallest sizing option. On 

the same hand, the fourth and fifth sizing options have higher initial investments that the third option. 

Consequently, the third sizing option is the most profitable sizing option. It can be concluded that the 

cost of the energy storage system can be reduce and optimize by a proper sizing that considers the 

remaining useful life. 

The results from the High-Power Electric Vehicle application show that the smallest sizing option is 

the most profitable one. The selected High-Power battery has a remarkable lifespan and 

subsequently, there are not replacement costs on any of the evaluated sizing options on the 15 

operation years. These results show that the smallest size of the battery solution can also be the 

most profitable one on some cases, avoiding like this an unnecessary oversizing. 

The results from the Micro-grid stationary application show that the defined minimum sizing option is 

the most profitable one. The calculated values of levelized cost of the electricity from the energy 

generation plant of the evaluated Micro-grid show that the increase of the sizing increases 

significantly as well the final cost almost all cases. The exception occurs between the smallest two 

installations. The difference in cost between the installation of 3 MWh and 4 MWh is only 0.34€/MWh 

while between the rest there is a constant increase of 3 €/MWh more or less. This could be 

interpreted as being the supplied energy insufficient to compensate the installation cost on those 

cases that there is a constant cost raised. The installation of 3 MWh, in contrast, shows higher cost 

than the expected if applied the observed constant raised of the electricity cost. The cost of the 

installation of 3 MWh should be 3 €/MWh lower than the cost of the installation of 4 MWh, but it is 

only 0.34 €/MWh. The difference of cost between these two cases and the rest is believed to come 

from the replacements cost. The installation of 3 MWh requires 4 replacements while the installation 

of 4MWh only requires 2 (a half). In this scenario, the aging of the battery would be a key aspect to 

get higher profitability especially from the installation of 3 MWh. The conservative operation of the 

battery can decrease the total cost of the installation, see [108]. Nonetheless, the most profitable 

case should still be the installation of 3 MWh since it has the highest room of improvement (the case 

with higher replacements with a total of 4). In addition to this, the offering of an ancillary service to 
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another grid could be considered, which could increase considerably the income [108]. The use of 

ancillary services can only come from oversized installation and on countries that this service is paid 

(in Spain it is not paid, but in Belgium there is an ancillary energy market). The installation of 3 MWh 

couldn’t afford this additional service. This means that the installation of 4 MWh could become the 

most profitable one. 

In this chapter, the validation of the proposed sizing methodology comes from analysing the final cost 

of the evaluated applications at the end of their lifespan, which will not be available before the end of 

this thesis. Besides, it would require implementing the different sizing options on the real life, which is 

not viable. Therefore, the obtained results from the developed studies cannot be validated. 

The validation of two of the most relevant hypotheses have shown that, firstly, there is not a 

deterioration due to resting periods of 1h at middle SOC values but resting period of the same length 

at 100% SOC does generate it. At the same time, it has been checked that resting times of 8h does 

generate calendar aging indistinctly to the SOC. This has proved that short rest periods cannot be 

always taken as calendar aging. Secondly, the cumulative behaviour of the model has been studied 

and confirmed. It has been seen that the constructed model could generate relevant errors on some 

cases. It has been seen that an odd event could bias all the estimations from that event onwards. It 

has been also seen that the model is as good as the data available. The constructed model 

extrapolates the trends observed on the training data; the model cannot estimate unobserved trend 

changes. This is a huge limitation when dealing with mixed operation condition since the operation 

conditions that stress little the battery will be certainly limited (time is money), adding like this huge 

uncertainties to the correctness of the estimations.  

 

 

 

  



131 

 

CHAPTER 5: 

5 Model Accuracy Improvement 
 

This chapter responds to the objective of improving the accuracy of the constructed models, focusing 

on the aging model. The detected most critical issues on the previous chapter are, on one hand, the 

raise of the estimation error due to odd events; and on the other hand, the raise of the estimation 

error when extrapolating in time the observed operation conditions. To solve this, firstly, data-driven 

prognosis tools are proposed to reduce the committed error due to odd events on describing the 

aging behaviour, but before that, the performance of some stochastic prognostic tools on a lithium 

ion battery Remaining Useful Life prognosis problem are evaluated and compared. For that, a 

universal evaluation framework has been designed. As a result, the most interesting stochastic 

prognostic tool among the evaluated ones is deduced and applied with aging data with an odd event 

on a validation framework. Secondly, the extrapolations in time on the observed operation conditions 

are reduced by generating artificially the posterior aging path of those observed operation conditions 

thanks to Half-cell data. To do that, the most likely posterior aging path is deducted by inferring the 

occurrence of a sudden change on the observed aging path. The contributions of this chapter consist 

on firstly, the universal evaluation framework for stochastic prognosis tools; secondly, the 

comparison of the different evaluated stochastic prognosis algorithms; thirdly, the Half-Cell data 

analysis tool; and fourthly, the proposed approach to quantify the likelihood of a sudden change on 

the observed aging path. 
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5.1 Introduction 

Some of the constructed aging models show limitations on capturing the real form of the aging path 

of the evaluated health indicators (the dischargeable capacity and the pure ohmic resistance 

evolution). It has been observed that those limitations can come from different immovable sources: 

noisy data, too small aging test matrixes, data with shallow degradation, unexpected odd events etc. 

On those cases, the estimations done with the models are not accurate. This problem cannot be 

completely dealt with on the modelling exercise. The accuracy needs to be improved by adding 

external elements. Data-diving algorithms from the machine learning domain are a suitable option. 

Data-diving or data-driven algorithms consist on finding patterns on huge data sets. It is not expected 

to have huge data sets available but rather little field data. Nonetheless, the ability of finding patterns 

on data sets can be applied to correct the response of the aging model. These algorithms capture the 

aging behaviour that the model is not able to describe. Thanks to this, the handicap of having noisy, 

little or not relevant data can be partially compensated. 

These algorithms are applied only when field data is available. In those cases, the response of the 

model is improved with early measurements of the dischargeable capacity and pure ohmic 

resistance. 

Among the available data-diving algorithms, there are plenty of options that can assist on improving 

the constructed aging models. However, it is not evident how to select one. Each algorithm has its 

advantages and disadvantages. There is not a single optimal algorithm. There are many aspects that 

need to be thoughtfully evaluated before choosing one. This chapter provides a unified evaluation 

framework of this kind of algorithms. In concrete, the evaluation framework is placed on the context 

of the scheduled continuation of this thesis: the on-field Remaining Useful Life (RUL) prognosis of a 

lithium ion battery. 

The RUL prognosis of a lithium ion battery has been deeply discussed. It is widely believed that a 

reasonable and appropriate RUL estimator has to take into account the uncertainty of battery 

behavior [44]. The RUL is a random variable and therefore, a point prediction of the RUL is relatively 

inaccurate [41]. The distribution of RUL is of interest for full understanding of the RUL [42]. This is 

why stochastic algorithms are the most appropriate algorithms to increase the accuracy of the RUL 

estimator. 

The most used stochastic algorithms on lithium ion batteries RUL prognosis are evaluated. The 

obtained results are compared and the most appropriate algorithm is selected. The selected 

algorithm is tested with the real life cycle data of the evaluated High-Energy and High-Power use 

cases in a validation environment. 

Furthermore, the constructed aging models do not expect any kind of aging path change. The 

modelling methodology is built on the assumption that the battery experiences the same observed 

aging trends on future unknown states. This hypothesis is especially uncertain when feeding the 

model with data with shallow degradation (little observation of the trend evolution). It has been found 

that sudden performance decays can come from one point onwards, which increases drastically the 

error committed by the model. The literature points that the sudden change of the aging trend is 

caused by the lithium plating phenomenon [11]. 

Lithium plating refers to the lithium ions deposit as metallic lithium on the negative electrode during 

charge [37]. The occurrence of aging induced by lithium plating leads to the turning point from linear 

to nonlinear aging characteristics (the sudden change of aging trend) [15]. This means that it is likely 

that something that happens at an electrode level (the negative electrode) generates that sudden 

aging trend change. 

In this scenario, the state of health of the negative electrode needs to be calculated. For that, the 

Open Circuit Voltage (OCV) of the full cell is used. The fact is that the OCV always provides a 

thermodynamic fingerprint of the electrodes at any point in time [31], which is exploited for this issue. 
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The OCV of each electrode at a fresh state
1
 (beginning of life) are convoluted to fit the OCV of the 

full cell at the observed different state of healths. As a result of the fitting process, the stoichiometric 

change of the OCV of the negative electrode is calculated. This is used as the health indicator of the 

negative electrode with which the aging of the negative electrode is tracked and modelled. Then, if a 

sudden performance decay is likely to happen, the constructed aging model of the negative electrode 

is used to generate artificially the data of that sudden performance decay in order to correct the aging 

model of the full cell. This process is applied on two tests with incomplete data sets achieved with the 

validation aging test matrix. 

5.2 On-field Remaining Useful Life Prognosis 

Nowadays’ industry has increased the demand of prognostic solutions to optimize as much as 

possible the operation efficiency and the return of the investment. Among the different kind of 

solutions required by industrial entities that require prognosis, the integration of Remaining Useful 

Life (RUL) predictions on the solution design step or on decision-making applications is becoming 

quite popular. For this, data-mining algorithms are the methods that are having more popularity, and 

among them, the ones that quantify the uncertainty such as the stochastic algorithms are the most 

popular ones. 

Nonetheless, there are many kinds of stochastic algorithms that can be applied on an on-field RUL 

prognosis and it is not clear which one should be used. The selection of the “optimal” algorithm for 

the desired application is non-trivial. In this context, it is proposed an evaluation methodology that will 

assist on clarifying the advantages and disadvantages of every stochastic algorithm. The proposal is 

applied onto the stochastic algorithms that appear the most on lithium ion battery RUL prognosis 

studies. The obtained evaluation metrics are compared and discussed in order to guess which of the 

evaluated algorithms would be the most appropriate. 

5.2.1 Evaluation Methodology 

There are many studies that compare different kinds of stochastic algorithms [110][111] or that 

present improved algorithms which overcome deficiencies of the original algorithms [93][112]. 

However, the comparison between evaluated algorithms in different studies becomes untreatable 

due to the differences on the evaluation methods taken on each study. The unavailability of validation 

and verification methods for prognostics [57] leads to each author to perform the evaluation of those 

algorithms according to his own chosen methods. Besides, due to the lack of consensus on the 

comparison metrics, in many cases, authors only use evaluation metrics that consist on the fitness of 

the result respect to the prediction data set [113][92], leaving aside some other important 

characteristics such as the evaluation of the probability distribution of the estimation [42]. 

In addition to this, all these algorithms are tested under a certain input constraint (a certain data set 

and prior knowledge of the system), which influences the performance. In general, each author uses 

the inputs they have interest on and treat these inputs the way they need to. The fact is that many of 

the sources of uncertainty on the RUL estimation are “inputs” to the prognostic algorithm and these 

are rarely taken into account on the tested algorithms [114]. This means that the algorithm could be 

penalized or accepted according to the fitness of the prediction respect to the ground truth in case 

the algorithm did not have access to accurate prior knowledge and/or an accurate data of the future 

conditions of the component/system. 

Besides all this, stochastic algorithms themselves have many key design concepts that change 

completely their performance and that are not always completely described or taken into account. As 

a general trend, authors don’t specify the method used on the parameterization of the algorithm 

[112][115][116][117][47] even though the chosen parameters have a big influence on the final results 

[111]. Authors don’t either specify the method applied to quantify the uncertainty (the probability 

distribution) of RUL predictions [118] even though knowing that any prediction would be meaningless 

for effective decision-making unless uncertainty in prognostic is carefully accounted for [57]. 

                                                        
1
 The aging mechanisms that appear on the observed aging trend are assumed not to 

damage the voltage response inherent to the electrode composition (the OCV profile).  
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Motivated by this, and aiming at achieving indicators to select the “optimal” algorithm, a unified 

evaluation framework for stochastic algorithms applied to RUL prognosis problems is presented. 

5.2.1.1 Unified evaluation methods 
The evaluation methods quantifies (qualitatively and/or quantitatively) the attributes of a test unit in a 

certain context with a certain goal. Then, the attributes or features are compared with reference 

features or with features taken from some other units in the same context. 

This chapter proposes to measure and quantify the key attributes by the calculation of some specific 

set of metrics (quantitative evaluation) along with the display of a set of graphs (qualitative 

evaluation), which can be used as a standardized language with which technology developers and 

users can share their findings [57]. The context of the proposed evaluation method on this chapter is 

a RUL prognosis problem (description of the prediction performance) with the goal of developing and 

implementing robust performance assessment algorithms with desired performance levels as well as 

implementing the prognostics system within user specifications. 

 Quantitative method 
The proposed quantitative method quantifies two of the three key performance attributes on RUL 

prognosis problems: the correctness and the timeliness in a prediction; and the computational 

performance. The correctness makes reference of the accuracy and precision of the algorithm, what 

is the main evaluation metrics on all algorithms However, it wouldn’t be fair to judge an algorithm’s 

performance based on only a single instant, as it is likely predicting a more general case under 

uncertainty. This is why timeliness is also evaluated. Besides, the algorithms are often rejected due 

to final user requirements. This means that the candidates for the optimal will only be the ones that 

meet the final user requirements. This is why computational performance is also evaluated. To cover 

all this aspects, we present three set of unified evaluation metrics (Table 118, Table 123 and Table 

127). 

The third key performance attribute, which is not considered in the proposed quantitative method, 

would be the confidence. The confidence refers to the level of trust a prediction method’s output can 

have [57]. The reason why the confidence quantification has been discarded on the proposed 

quantitative method is that the trust on the output has a higher relationship with the trust on the data 

and the prior knowledge of the system (inputs) rather than the algorithm itself [119]. The confidence 

remains almost the same when using the same inputs. 

Correctness 
When searching for an optimal solution, the correctness is what we all think about. Correctness 

refers to the accuracy and precision of the predicted distributions. The metrics that evaluate the 

correctness measure the deviation of a prediction output from ground truth and the spread of the 

distribution at any given time instant that may be of interest to a particular application [57]. For this 

aim, the proposed metrics to measure the correctness of the obtained output with respect to its 

desired specification in terms of accuracy are the Root Mean Squared Error of the prediction (𝑅𝑀𝑆𝐸), 

the relative accuracy of the RUL value (𝑅𝐴) and the probability of predicting the ground truth; and in 

terms of precision is the probability distribution width (Table 118). 

Metric Description 

Prediction 
RMSE 

Root Mean Squared Error (RMSE) on the prediction data set (prediction fitting error) 
[113][92]. 

RA Relative Accuracy (RA) of the predicted RUL respect to the real RUL [120]. 

P value The probability of estimating the ground truth (from a normalized PDF) [114]. 

PDF width The relative width of the probability distribution with a 68% confidence range respect to 
the real RUL [121]. 

Table 118: Set of metrics that quantifies the correctness 

The root mean squared error is one of the most used metrics in evaluation and comparison studies 

[112][92][122]. In this work, the prediction RMSE is evaluated as an accuracy indicator (Eq. (78)). 

This metric shows the average differences between ground truth data and predictions, quantifying 

the accuracy on the tracking of the system’s behaviour (the trend under the noise) as well as the 
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noise. We suggest not basing the accuracy evaluation just on this metric, since the noise is also 

affecting the value of this metric. However, it is useful to show if there is something off on the tracking 

of the system’s behaviour (accurate predictions usually have low prediction errors), and therefore, on 

the prediction accuracy of the algorithm. 

𝑅𝑀𝑆𝐸(𝑡𝜆) =
√
∑ (𝑦̂𝑗 − 𝑦𝑗)

2𝐿+1
𝑗=1

𝐿 + 1
, 𝑦𝑗 = 𝑦(𝑡𝜆), 𝑦(𝑡𝜆 + 1),… , 𝑦(𝑡𝜆 + 𝐿) 

(78) 

Parameters Description 

𝑅𝑀𝑆𝐸 The Root Mean Square Error on the prediction. 

𝑡𝜆 The time instant that starts the prediction. 

𝐿 The amount of estimations. 

𝑦̂ The estimation. 

𝑦 The measurement. 

Table 119: The prediction Root Mean Square Error 

Therefore, in order to have more information about the accuracy of the prediction algorithm, another 

metric is proposed: the Relative Accuracy. This metric quantifies the accuracy on predicting the most 

probable values of the desired events (the end of life event). This metric is calculated by Eq. (79). 

The range of values for the Relative Accuracy is [0,1], where the perfect score is 1 [57]. 

𝑅𝐴(𝑡𝜆) = 1 − |
𝑅𝑈𝐿𝜆̂ − 𝑅𝑈𝐿𝜆

𝑅𝑈𝐿𝜆
| (79) 

Parameters Description 

𝑅𝐴 The Remaining Useful Life prediction Relative Accuracy 

𝑡𝜆 The time instant that starts the prediction. 

𝑅𝑈𝐿̂ The estimated Remaining Useful Life. 

𝑅𝑈𝐿 The measured Remaining Useful Life. 

Table 120: The Relative Accuracy 

To complete the accuracy evaluation, the accuracy of the predicted distribution is also quantified. 

This work proposes to calculate the probability of predicting the real RUL (𝑃𝑣𝑎𝑙𝑢𝑒), see Eq. (80). The 

probability value is taken from the normalized probability distribution of the predicted RUL. 

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡𝜆) = p(𝑅𝑈𝐿𝜆) (80) 

Parameters Description 

𝑃𝑣𝑎𝑙𝑢𝑒 The probability of predicting the measured Remaining Useful Life. 

𝑡𝜆 The time instant that starts the prediction. 

𝑅𝑈𝐿 The measured Remaining Useful Life. 

Table 121: The probability of predicting the real RUL 

Besides, thanks to the 𝑃𝑣𝑎𝑙𝑢𝑒, we can know if the uncertainty has been underestimated or not. When 

the probability of predicting the real RUL is near 0, the uncertainty can be considered 

underestimated. 

Once the accuracy of the algorithm is properly quantified, the precision (the spread of the predicted 

distribution) needs to be addressed. Consequently, this work proposes to use the relative probability 

distribution width (PDF width (𝑃𝑤𝑖𝑑𝑡ℎ) [121] or confidence interval [123]) shown in Eq. (81). This 

metric determines the relative number of time-instants that are in between the time-instants that 

delimit a certain central mass probability of the estimated RUL probability distribution. 
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𝑃𝑤𝑖𝑑𝑡ℎ(𝑡𝜆) = |
𝑅𝑈𝐿̂𝜆[𝑝𝜆 = (1 − 𝜀)] − 𝑅𝑈𝐿̂𝜆[𝑝𝜆 = 𝜀]

𝑅𝑈𝐿𝜆
| , 𝜀 = 16% (81) 

Parameters Description 

𝑃𝑤𝑖𝑑𝑡ℎ The relative probability distribution width. 

𝑡𝜆 The time instant that starts the prediction. 

𝑅𝑈𝐿̂[𝑝𝜆 = 𝜀] The estimated Remaining Useful Life with a probability 𝑝𝜆 equal to 𝜀. 

𝑅𝑈𝐿 The measured Remaining Useful Life. 

Table 122: The PDF width 

Timeliness 
Timeliness refers to the time aspects related to availability and usability of predictions. The metrics 

that evaluates this attribute measure how quickly a prediction algorithm produces its outputs, in 

comparison to the effects that it is mitigating [57]. For this aim, the proposed metrics to measure the 

timeliness are the Prognosis Horizon (PH) and the Convergence of the Relative Accuracy (CRA) 

(Table 123). 

Metric Description 

PH The Prognosis Horizon (PH) defines from which time-instant of interest the accuracy of 
the algorithm reaches a certain threshold β (minimum acceptable probability mass) 
[120]. 

CRA The convergence of the relative accuracy (CRA) quantifies the rate at which the RA 
improves with time [120]. 

Table 123: Set of metrics that quantifies the timeliness 

The PH defines the first time when the prediction satisfies a certain criterion (generally defined by a 

predefined β threshold, Eq. (82)) and uses this time to calculate the time interval between this event 

and the event that wants to be predicted (EOL event). Thanks to this, the availability aspect of the 

timeliness attribute is put under evaluation: the greater the PH is, the better the timeliness 

performance of the algorithm is (faster availability). To standardize this metric, the relative of this 

metric is proposed in this work, see Eq. (83). 

𝑡𝑒 = 𝑚𝑖𝑛 { 𝑡𝜆: 𝜋[𝑅𝑈𝐿(𝑡𝜆)]|𝛼1−
𝛼1
+

≥ 𝛽} (82) 

Parameters Description 

𝑡𝑒 The first time instant that the prediction satisfies a certain criterion. 

𝑡𝜆 The time instant that starts the prediction. 

𝜋 The probability mass. 

𝑅𝑈𝐿 The estimated Remaining Useful Life distribution.  

𝛼1
+ The upper α bound of the Prognosis Horizon criterion 

𝛼1
− The lower α bound of the Prognosis Horizon criterion 

𝛽 The minimum acceptable probability mass. 

Table 124: The Prognosis Horizon fulfilment criterion 

Where  𝜋[𝑅𝑈𝐿(𝑡𝜆)]|𝛼1+
𝛼1
+

 is the probability mass of the prediction PDF within the α bounds that are given 

by 𝛼1
+ = (1 + 𝛼)𝑅𝑈𝐿(𝑡1) and 𝛼1

− = (1 − 𝛼)𝑅𝑈𝐿(𝑡1), see Figure 105. 

𝑃𝐻 =
𝑡𝐸𝑂𝐿 − 𝑡𝑒

𝑅𝑈𝐿(𝑡1)
 (83) 

Parameters Description 

𝑃𝐻 The Prognosis Horizon. 

𝑡𝐸𝑂𝐿 The time instant of the event that wants to be predicted. 

𝑡𝑒 The first time instant that the prediction satisfies the Prognosis Horizon criterion. 

𝑅𝑈𝐿(𝑡1) The measured Remaining Useful Life at the first prediction time instant. 

Table 125: The Prognosis Horizon 
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Thanks to the PH, the most important aspect of timeliness (the availability of predictions) is properly 

described. However, another aspect of the timeliness is found to be interesting when evaluating and 

comparing prognostic algorithms: the improvement rate of accuracy and precision metrics with time 

(the convergence). The Convergence of the Relative Accuracy measures how quickly the error on 

the predictions is reduced. For that, the centroid of the area under the curve for the Relative 

Accuracy is calculated in the same way as in [120], see Eq. (84), (85) and (86).  

𝐶𝑅𝐴 = √(𝑥𝑐 − 𝑡1)
2 + 𝑦𝑐

2 (84) 

𝑥𝑐 =

1
2
∑ (𝑡𝜆+1

2 − 𝑡𝜆
2)𝐸𝑜𝐿−1

𝜆=1 𝑅𝐴(𝑡𝜆)

∑ (𝑡𝜆+1 − 𝑡𝜆)
𝐸𝑜𝐿−1
𝜆=1 𝑅𝐴(𝑡𝜆)

 (85) 

𝑦𝑐 =

1
2
∑ (𝑡𝜆+1 − 𝑡𝜆)
𝐸𝑜𝐿−1
𝜆=1 𝑅𝐴(𝑡𝜆)

2

∑ (𝑡𝜆+1 − 𝑡𝜆)
𝐸𝑜𝐿−1
𝜆=1 𝑅𝐴(𝑡𝜆)

 (86) 

Parameters Description 

𝐶𝑅𝐴 The centroid of the area under the curve for the RA. 

𝑥𝑐 , 𝑦𝑐  The centre of the mass of the area under the curve for the RA between 𝑡1 and 𝑡𝐸𝜆 . 

𝑡1 The first time prediction. 

𝐸𝑜𝐿 The amount of prediction time instants until the event that wants to be predicted. 

𝑅𝐴 The Relative Accuracy of the Remaining Useful Life being the perfect score 0. 

Table 126: The Convergence of the Relative Accuracy 

Computational performance 
Computational performance quantification is required to meet the resource constrains of user 

application [57]. For this aim, the proposed metric to measure the computational performance is the 

count of floating-point operations (FLOP) (Table 127). This metric quantifies the amount of numerical 

operation (both basic and complex) are done when running the algorithm. 

Metric Description 

FLOP counts The number of operations executed in an algorithm computed by Floating-point 
operations (FLOP) [111]. 

Table 127: Set of metrics that quantifies the computational performance 

 Qualitative method 
The proposed qualitative method focuses on describing the correctness and timeliness attributes of 

the prognosis algorithm in a more visual way. For this, a figure that combines an alternative version 

of the α-λ accuracy [120] and the Prognosis Horizon is displayed. This illustration can represent both 

attributes in a synthesized manner and give enough clues when discussing the obtained metrics. 

In case the discussion needs extra information, a second graphical aid is proposed: the graphical 

representation of all the estimations done by the algorithm for a specific trial at a specific evaluation 

time (called trial-instant figure in this work) [119]. This figure shows each and every detail of the 

performance of the algorithm at the evaluation time instant. However, the lack of synthesis on this 

representation leads us only to propose the use of this graphical aid when there is a mayor doubt on 

the understanding of the metrics. 

PH and α-λ accuracy 
The PH is already defined as a metric itself, which quantifies the timeliness of the prediction 

algorithm. However, the illustration of PH boundary fulfilment gives information of the correctness of 

the prediction algorithm as well. The fulfilment of the PH boundary determines that a β mass of the 

estimated probability distribution is inside the defined precision boundaries 𝛼1
+ and 𝛼1

− (Eq. (87)). 

As for the α-λ accuracy boundary fulfilment, the precision boundaries that delimit the acceptable β 

mass of the estimated probability distribution are 𝛼+ and 𝛼−, Eq. (87) [120]. 



CHAPTER 5: Model Accuracy Improvement 

138 

𝛼 − 𝜆 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = {
1      𝑖𝑓    𝜋[𝑅𝑈𝐿(𝑡𝜆)]𝛼−

𝛼+ ≥ 𝛽
0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 (87) 

Parameters Description 

𝛼 − 𝜆 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 The binary variable that determines if the α-λ accuracy is fulfilled or not. 

𝑡𝜆 The time instant that starts the prediction. 

𝜋 The probability mass. 

𝑅𝑈𝐿 The estimated Remaining Useful Life distribution.  

𝛼 + The upper α bound of the α-λ accuracy fulfilment criterion 

𝛼 − The lower α bound of the α-λ accuracy fulfilment criterion 

𝛽 The minimum acceptable probability mass. 

Table 128: The α-λ accuracy boundary fulfilment criterion 

Where 𝜋[𝑅𝑈𝐿(𝑡𝜆)]−𝛼
+𝛼 is the probability mass of the prediction PDF within the α bounds that are given 

by 𝛼+ = (1 + 𝛼)𝑅𝑈𝐿(𝑡𝜆) and 𝛼− = (1 − 𝛼)𝑅𝑈𝐿(𝑡𝜆). 

Taking advantage that the output of these two metrics is binary, a colour code on the PH and α-λ 

accuracy figure is set, Figure 105. The black line represents the ground truth; the red lines represent 

the α boundaries of PH (𝛼1
+ and 𝛼1

−); the blue lines represent the α boundaries of the α-λ accuracy 

(𝛼+ and 𝛼−); the empty circle represents a prediction with a probability mass within 𝛼+ and 𝛼− lower 

than 𝛽; the blue point represents a prediction with a probability mass within 𝛼+ and 𝛼− equal or 

greater than 𝛽; the red point represents a prediction with a probability mass within 𝛼+ and 𝛼− less 

than 𝛽 but with a probability mass within 𝛼1
+ and 𝛼1

− equal or greater than 𝛽. 

 

Figure 105: Qualitative response 

Trial-instant 
The trial-instant figure shows the response of the algorithm on the whole test data set (training and 

prediction). This figure displays the training, prediction and EOL thresholds, the inputs (data and prior 

knowledge) and the output (the response of the algorithm on the whole data set and the RUL 

distribution). Thanks to this, cases where metrics have estranged values can be further evaluated. 

This will certainly enrich the discussion, see Figure 106. Figure 106 is an example of the trial-instant 

figure with a training data set of 71 samples from which the last 6 samples compose the validation 

data set (the vertical green line represents the learning threshold and the blue line represents the 

validation threshold). The prior knowledge is composed by a linear model (yellow line) and data from 

the battery B0005 (blue dots). The time-instant of interest is defined by the EOL threshold (the 

horizontal red line), which is the capacity value at the 146 sample. The prediction probability density 
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is displayed by the dark blue area called PDF. The algorithm response on the learning data set is the 

orange line (named “filtered observation” in Figure 106). The purple line represents the prediction 

given by the algorithm on the rest of the data set. 

 
Figure 106: Example of the trial-instant figure 

 Reference features 
This work develops a standardized language using a unified set of metrics that describe the key 

attributes of the algorithm, but in order to find the “best”, the attributes of study need to be ranked. 

For this, some reference values for the proposed metrics are gathered in Table 129. 

Metrics “Worst” “Best” 

Prediction RMSE ∞ 0 
RA 0 1 
P value 0 1 
PDF width ∞ or 0 When it quantifies the true uncertainty of the prediction (should 

be between 0 and 1). 
PH 0 1 
CRA ∞ 0 
FLOP counts ∞ 0 

Table 129: Reference values of the unified set of metrics 

5.2.1.2 Trial matrix design methodology 
The design of the trials needs to keep in mind that many of the sources of uncertainty on the RUL 

estimation are “inputs” to the prognostic algorithm [114]. This uncertainty can penalize the algorithm 

if the information regarding the “inputs” themselves is incorrect; it would not be reasonable to 

penalize or accept an algorithm according to the fitness of the prediction respect to the ground truth 

data in case the algorithm did not have access to accurate prior knowledge and/or an accurate 

measurement of the future conditions of the component/system. That is why it is necessary to 

develop a rigorous comparison approach to separate: 

 The evaluation of correctness of information regarding these “inputs”. 

 The evaluation of the prognostic algorithm itself. 

This proposal aims to somehow control the uncertainty of the “inputs” (data and prior knowledge) 

when designing the trials, which will allow evaluating the prognosis algorithm itself. The idea is to 

apply cases with different level of uncertainty, leading to the illusive “control” of this uncertainty. 

Firstly, the trial matrix considers data of at least two systems that have different level of noise 

contribution; and secondly, the trial matrix considers two prior models describing the behaviour of the 

system with different level of accuracy. In this way, the correctness of the “inputs” for each algorithm 
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can be discriminate in a certain degree and the evaluation of the prognostic algorithms themselves is 

improved. This work proposes a minimum of a 4 cases trial matrix, shown in Table 130.  

 Data Prior knowledge 

Low uncertainty High uncertainty Low accuracy High accuracy 

Algorithm X Trial 1 Trial 2 Trial 3 Trial 4 

Table 130: Proposed trial matrix to separate input uncertainty effect on algorithm’s evaluation. 

5.2.1.3 Universal parameterization criterion 
The performance level of an algorithm is determined by many factors, but the parameterization is one 

of the key factors. The chosen parameters will define the algorithm’s performance level on a given 

context and goal. However, each algorithm usually has integrated on it its own parametrization 

method, which does not take into account the context and the goal with which the algorithm needs to 

work. This leads to evaluate algorithms that are optimized to work on a context different to the 

interesting one. A universal (applicable to any algorithm) parameterization criterion is proposed 

corresponding to the context and goals of interest: a RUL prognostic problem context within user 

specifications with the goal of developing and implementing robust performance assessment 

algorithms with desired performance levels. 

Firstly, the key aspect of the context of interest needs to be defined, which would be “predict a future 

unknown event”. Next, the parameterization criterion that shares the same key aspect needs to be 

set. In case of doing a literal interpretation of the key aspect, the parameterization must focus on the 

future event, but this would go against the purpose of the algorithm since that future event needs to 

be predicted (needs to be unknown). 

In this scenario, some assumptions need to be done. It is assumed that accurate predictions come 

when the algorithm tracks accurately the future behaviour of the system. The key aspect of the 

context of interest is reformulated as “the tracking of the future behaviour of the system”. Thanks to 

this, the focus of the key aspect that needs to fulfil the algorithm changes from a specific future event 

data point to future data in general. 

This work proposes a parametrization criterion based on quantifying the accuracy of the future 

behaviour of the system by a cross validation of a part of the training data set. Since a cross 

validation is implemented, the part designed for cross validation need to be removed from the 

training data set, reducing the amount of data available for training the algorithm. However, thanks to 

this criterion, a universal parameterization related with its context is achieved. 

The validity of the proposed universal parametrization criterion is supported by the statement that the 

parameterization depends on the performance of the algorithm doing predictions (the key aspect of 

the context is prediction) and by the statement that this criterion can be applied to every algorithm 

designed for RUL prediction. 

5.2.1.4 Uncertainty propagation method 
The uncertainty management is embedded on the stochastic algorithms, which means that each 

stochastic algorithm has its own way of taking into account the uncertainty [124]. This intrinsic part of 

the algorithm will impact the precision level that the algorithm achieves. 

The proposed evaluation framework has been built on the context of predicting the RUL of the 

system. This means that the proposed precision evaluation is quantified from the precision on 

predicting the RUL. Consequently, the managed uncertainty on the training section needs to be 

propagated to unknown estimations (to the RUL prediction). However, there are stochastic 

algorithms that don’t have, as an intrinsic characteristic, a way of quantifying the uncertainty on 

unknown estimations (interpolation or extrapolation), even though being stochastic algorithms (such 

as stochastic filters). In this scenario, an uncertainty propagation method is proposed in order to 

cover this deficiency and in order to standardize the uncertainty propagation method under the 

proposed evaluation framework. 
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Among the huge variety of uncertainty propagation methods available in the literature [57] [116] 

[123], the proposed one is a sampling based method called Monte Carlo prediction. In Monte Carlo 

prediction, samples from the input distributions are drawn randomly and simulated until the desired 

event (EOL event), making predictions of the RUL of each sample. The resultant predicted RUL 

values are weighted depending on the prior probability that each sample had on the input distribution, 

generating like this a statistic distribution of the predicted RUL. The pseudo-code is available in 

Algorithm 7. 

{𝒕𝑬
(𝒊)
}
𝒊=𝟏

𝝆
= 𝑴𝑪(𝒑(𝒙(𝒕𝑷), 𝜽(𝒕𝑷|𝒚(𝒕𝟎: 𝒕𝑷))) , 𝒑(𝚯𝒕𝑷), 𝒑(𝑼𝒕𝑷), 𝒑(𝑽𝒕𝑷), 𝝆)  

1:   for 𝒊 = 𝟏 to 𝝆 do 

2:       (𝒙(𝒊)(𝒕𝑷), 𝜽
(𝒊)(𝒕𝑷))~𝒑 (𝒙(𝒕𝑷), 𝜽(𝒕𝑷|𝒚(𝒕𝟎: 𝒕𝑷))) 

3:       𝚯𝒕𝑷
(𝒊)
~𝒑(𝚯𝒕𝑷) 

4:       𝐔𝒕𝑷
(𝒊)
~𝒑(𝑼𝒕𝑷) 

5:       𝐕𝒕𝑷
(𝒊)
~𝒑(𝑽𝒕𝑷) 

6:       𝒕𝑬
(𝒊)
← 𝑭(𝒙(𝒊)(𝒕𝑷), 𝚯𝒕𝑷

(𝒊)
, 𝐔𝒕𝑷

(𝒊)
, 𝐕𝒕𝑷

(𝒊)
) 

7:   end for 
Where 

𝝆 = The total number of Monte Carlo samples. 

𝒕𝑬
(𝒊)

 = The event time instant of 𝒊th Monte Carlo sample. 

𝒙(𝒕𝑷) = The state at prediction time (𝒕𝑷). 

𝜽(𝒕𝑷|𝒚(𝒕𝟎: 𝒕𝑷)) = The parameter at prediction time knowing the system outputs (𝒚) at 𝒕𝟎: 𝒕𝑷. 

𝚯 = Parameter trajectory. 

𝑼 = Input trajectory. 

𝐕 = Process noise trajectory. 

𝑭 = the function to compute 𝒕𝑬. 

Algorithm 7: Monte Carlo Prediction [57]. 

Monte Carlo predictions get exact approaches when the numbers of samples is infinite. This 

suggests that the higher the number of samples is, the better the approximation will be but the higher 

the computational burden will be [57]. Therefore, a trade-off between accuracy and computational 

burden need to be considered when selecting the number of samples. 

5.2.2 Stochastic algorithms 

The stochastic algorithms that are more frequently applied on lithium ion battery Remaining Useful 

Life prognosis studies are algorithms based on the Particle Filter [93][92][121][123][125] and 

algorithms based on the Gaussian Process [126][127][128][129][46]. Nonetheless, there are more 

stochastic algorithms that could be applied on a lithium ion battery remaining useful life prognostic 

problem such as the Extended Kalman Filter and the Unscented Kalman Filter. 

These four algorithms are analyzed in detail, highlighting the free elements (or variables) that affect 

the most their performance. 

5.2.2.1 Particle Filter 
Particle Filter (PF) is a sequential Monte Carlo method [8]. It is based on the idea of Monte Carlo 

method to solve the integral operation in the Bayes estimators. It estimates the state Probability 

Density Function (PDF) from a set of “particles” and their associated weights [112]. The use of weight 

adjusts the state PDF to its most likely form. Thanks to the use of state PDF, an appropriate 

management of inherent estimation uncertainty is allowed [8]. This provides non-linear projection in 

forecasting [43]. 

The particles are inferred recursively by two alternate phases, see Algorithm 8. The first phase is the 

prediction where the value of each particle for the next step is estimated by previous step 

information. No measurement or observation is involved in this step. The second phase is the update 

where the value of each particle estimated in the prediction phase is compared with measurements 

and updated accordingly [8]. As an initialization step (𝑘 = 1), the particles are commonly generated 
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from a Gaussian distribution (𝒩(0, 𝜎𝑖𝑛𝑖)) and the weights are commonly calculated from a uniform 

distribution (𝒰(0, 1 𝜌⁄ )) [130].  

[{𝒙𝒌
𝒊 , 𝒘𝒌

𝒊 }
𝒊=𝟏

𝝆
, 𝒙𝒌] = 𝑷𝑭𝒔𝒕𝒆𝒑 ({𝒙𝒌−𝟏

𝒊 , 𝒘𝒌−𝟏
𝒊 }

𝒊=𝟏

𝝆
, 𝒖𝒌−𝟏, 𝒗𝒌, 𝒚𝒌)  

1:   for 𝒊 = 𝟏 to 𝝆 do 

2:       𝒙𝒌
𝒊~𝒑(𝒙𝒌|𝒙𝒌−𝟏

𝒊 , 𝒖𝒌−𝟏) 

3:       𝒘𝒌
𝒊 ← 𝒑(𝒚𝒌|𝒙𝒌

𝒊 , 𝒗𝒌) 

4:   end for 

5:   𝑾 ← ∑ 𝒘𝒌
𝒊𝝆

𝒊=𝟏  

6:   for 𝒊 = 𝟏 to 𝝆 do 

7:       𝒘𝒌
𝒊 ← 𝒘𝒌

𝒊 𝑾⁄  

8:   end for 

9:   𝑵̂𝒆𝒇𝒇 ←
𝝆

∑ (𝒘𝒌
𝒊 )
𝟐𝝆

𝒊=𝟏

 

10: If 𝑵̂𝒆𝒇𝒇 < 𝑵𝑻 then 

11:     {𝒙𝒌
𝒊 , 𝒘𝒌

𝒊 }
𝒊=𝟏

𝝆
← 𝑹𝑬𝑺𝑨𝑴𝑷𝑳𝑬 ({𝒙𝒌

𝒊 , 𝒘𝒌
𝒊 }
𝒊=𝟏

𝝆
) 

12: end if 

13: 𝒙𝒌 ← ∑ 𝒙𝒌
𝒊 ∙ 𝒘𝒌

𝒊𝝆
𝒊=𝟏  

Where 

𝝆 = Amount of particles. 

𝒙𝒌 = The most probable variables of the defined state space model at 𝒌th time. 

𝒙𝒌
𝒊  = The variables of the defined state space model of 𝒊th particle at 𝒌th time. 

𝒚𝒌 = The output at 𝒌th time. 

𝒖𝒌 = The state space model noise factor at 𝒌th time. 

𝒗𝒌 = The measurement noise factor at 𝒌th time. 

𝒘𝒌
𝒊  = The weight of 𝒊th particle at 𝒌th time. 

𝑾 = Cumulative weight. 

𝑵̂𝒆𝒇𝒇 = Effective number of particles. 

𝑵𝑻 = User defined threshold of effective number of particles. 

Algorithm 8: Sample Importance Resampling Particle Filter [130]. 

However, PF has two main problems: Particle degradation and sample impoverishment. To tackle 

these issues, code that improves the prior distribution and the final particles is further developed.  

 Proposal Distribution Methods 
In a standard PF algorithm, lack of information on the latest observation model corrective action can 

lead to particle degradation [112]. A method that selects a reasonable distribution is an effective 

method to alleviate this phenomenon of particle degradation, such as the use of an unscented 

transformation onto the degraded particle distribution. 

The Particle Filter algorithm that uses an unscented transformation to generate the proposal 

distribution is called Unscented Particle Filter (UPF). The Unscented Kalman Filter is typically used to 

generate this proposal distribution [121]. In this way, the PF’s posterior probability is obtained taking 

into account the latest observation [112], see Algorithm 9. Consequently, the prediction results can 

better fit the true situation. 

[{𝒙𝒌
𝒊 , 𝒘𝒌

𝒊 }
𝒊=𝟏

𝝆
, 𝒙𝒌] = 𝑼𝑷𝑭𝒔𝒕𝒆𝒑 ({𝒙𝒌−𝟏

𝒊 , 𝒘𝒌−𝟏
𝒊 }

𝒊=𝟏

𝝆
, 𝒙𝒌−𝟏, 𝑷𝒌−𝟏|𝒌−𝟏, 𝒖𝒌−𝟏, 𝒗𝒌, 𝒚𝒌)  

1:   𝒙𝒌|𝒌, 𝑷𝒌|𝒌 ← 𝑼𝑲𝑭𝑺𝒕𝒆𝒑(𝒖𝒌−𝟏, 𝒚𝒌, 𝒙𝒌−𝟏, 𝑷𝒌−𝟏|𝒌−𝟏) 

2:   for 𝒊 = 𝟏 to 𝝆 do 

3:       𝒙𝒌
𝒊~𝒑(𝒙𝒌|𝒙𝒌|𝒌, 𝑷𝒌|𝒌) 

4:       𝒘𝒌
𝒊 ← 𝒑(𝒚𝒌|𝒙𝒌

𝒊 , 𝒗𝒌) 

5:   end for 

6:   𝑾 ← ∑ 𝒘𝒌
𝒊𝝆

𝒊=𝟏  

7:   for 𝒊 = 𝟏 to 𝝆 do 

8:       𝒘𝒌
𝒊 ← 𝒘𝒌

𝒊 𝑾⁄  

9:   end for 

10: 𝑵̂𝒆𝒇𝒇 ←
𝝆

∑ (𝒘𝒌
𝒊 )
𝟐𝝆

𝒊=𝟏
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11: If 𝑵̂𝒆𝒇𝒇 < 𝑵𝑻 then 

12:     {𝒙𝒌
𝒊 , 𝒘𝒌

𝒊 }
𝒊=𝟏

𝝆
← 𝑹𝑬𝑺𝑨𝑴𝑷𝑳𝑬 ({𝒙𝒌

𝒊 , 𝒘𝒌
𝒊 }
𝒊=𝟏

𝝆
) 

13: end if 

14: 𝒙𝒌 ← ∑ 𝒙𝒌
𝒊 ∙ 𝒘𝒌

𝒊𝝆
𝒊=𝟏  

Where 

𝝆 = Amount of particles. 

𝒙𝒌
𝒊  = The variables of the defined state space model of 𝒊th particle at 𝒌th time. 

𝒙𝒌 = The most probable variables of the defined state space model at 𝒌th time. 

𝒚𝒌 = The output at 𝒌th time. 

𝒖𝒌 = The measurement noise factor at 𝒌th time. 

𝒘𝒌
𝒊  = The weight of 𝒊th particle at 𝒌th time. 

𝑾 = Cumulative weight. 

𝑵̂𝒆𝒇𝒇 = Effective number of particles. 

𝑵𝑻 = User defined threshold of effective number of particles. 

Algorithm 9: Unscented Particle Filter pseudo-code. 

The main merit of the UPF is that it can alleviate the impact of particle degeneration due to the 

generation of a better proposal distribution. Consequently, the prediction results with the PF can 

better fit the true situation. However, the UPF cannot solve the problem of sample impoverishment or 

particle diversity lack caused by the basic resampling process [112]. 

Zhang et al. [112] proposes an improved unscented particle filter (IUPF) method for Lithium ion 

Battery Remaining Useful Life (RUL) prediction based on Markov Chain Monte Carlo (MCMC), which 

uses the MCMC method to maintain the diversity of particles. At the same time, since the IUPF is on 

the basis of UPF, it can also suppress the particle degradation existing in the standard PF [112]. 

 Resampling methods 
So as to lessen the impact of particle degradation, system importance resampling of the particles is 

carried out on certain iterations (the iterations that don’t reach the pre-set resampling threshold “𝑁𝑇”). 

This helps in maintaining the track of the state vector even under the presence of disruptive effects 

like un-modelled operational conditions [131]. 

Among the possibilities on system importance resampling methods, the most basic and used ones 

are the multinomial, the systematic, the stratified and the residual resampling methods [132]. There 

are many more resampling methods [133], which are in continuous improvement. Lately, two 

interesting resampling methods approaches have been developed: the Linear Optimizing 

Combination Resampling (LOCR) [93] or the Heuristic Kalman Algorithm (HKA) [92]. 

Basic Resampling methods 
The multinomial resampling method is based on the idea of generating independently N random 

numbers from the uniform distribution. The selected particles for replication are based on the 

cumulative sum of the normalized weights [115]. 

The stratified resampling divides the whole particle set into N equal subsets. The random number is 

drawn independently form each subset where the selected particles for replication are based as well 

on the cumulative sum of the normalized weights [115]. 

The systematic resampling is similar to the stratified resampling method. The difference is that 

samples drawn are no longer independent since only one random number is drawn in the whole 

resampling step [115], see Algorithm 10. 

[{𝒙𝒌
𝒋
, 𝒘𝒌

𝒋
}
𝒋=𝟏

𝝆
] ← 𝑺𝑰𝑺𝑻𝑬𝑴𝑨𝑻𝑰𝑪_𝑹𝑬𝑺𝑨𝑴𝑷𝑳𝑬 ({𝒙𝒌

𝒊 , 𝒘𝒌
𝒊 }
𝒊=𝟏

𝝆
)  

1:   𝒄𝟏 ← 𝒘𝒌
𝟏 

2:   for 𝒊 = 𝟐 to 𝝆 do 

3:       𝒄𝒊 ← 𝒄𝒊−𝟏 +𝒘𝒌
𝒊  

4:   end for 
5:   𝒊 ← 𝟏 
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6:   𝒖𝟏~𝓤(𝟎, 𝟏 𝝆⁄ ) 
7:   for 𝒋 = 𝟏 to 𝝆 do 
8:       𝒖 ← 𝒖𝟏 + (𝒋 − 𝟏) 𝝆⁄  

9:       while 𝒖 > 𝒄𝒊 do 

10:         𝒊 ← 𝒊 + 𝟏 
11:     end while 

12:     𝒙𝒌
𝒋
← 𝒙𝒌

𝒊  

13:     𝒘𝒌
𝒋
← 𝟏 𝝆⁄  

14: end for 
Where 

𝒙𝒌
𝒊  = The variables of the defined state space model of 𝒊th particle at 𝒌th time. 

𝒘𝒌
𝒊  = The weight of 𝒊th particle at 𝒌th time. 

𝝆 = Amount of particles. 

𝓤 = Uniform distribution. 

Algorithm 10: Systematic Resampling [133]. 

The residual resampling method is an efficient means to decrease the variance due to resampling. It 

consists of two stages. Firstly, particles weights greater than 1 𝜌⁄  are deterministically replicated 

without any draws. For these particles, the input weights are reduced by a multiple of 1 𝜌⁄ . Secondly, 

particles are randomly sampled using the remaining of the weights (referred to as residuals) and a 

random sampling method (it can be one of the described above) [115]. 

In a previous work [119], it was proved that the developed PF algorithm with the multinomial, the 

systematic and the residual systematic resampling methods don’t have a quantifiable difference 

when propagating the uncertainty and predicting the Remaining Useful Life (RUL), being 𝜌 = 500 

and 𝑁𝑇 = 50%. 

Linear Optimizing Combination Resampling 
In systematic resampling, the resampling procedure removes small weight particles and copies large 

weight particles, which results in the loss of diversity in particles. The Linear Optimizing Combination 

Resampling (LOCR) method is developed to generate new particles by combining the selected 

particles and abandoned particles, which partly overcome the loss of diversity in particles, and 

improves the precision of PF [93]. The linear combination is described in Eq. (88) and (89). 

𝑥𝑛 = 𝑥𝑠 + 𝐿𝐾(𝑥𝑎 − 𝑥𝑠) (88) 

𝐿 = [
1

𝑁𝑝(𝑥)
]
1 𝑚⁄

= [
1

𝑁𝜔
]
1 𝑚⁄

 (89) 

Parameters Description 

𝑥𝑛 The new sampling particles obtained by linear combination. 

𝑥𝑎 The repeated particles. 

𝑥𝑠 The discarded particles. 

𝐾 The step coefficient (adjusted to eliminate the influence of the Euclidean distance. 

𝐿 The rational step for the Euclidean distance (𝑥𝑎 − 𝑥𝑠). 

Table 131: The Linear Optimizing Combination Resampling method 

The LOCR algorithm is composed by three stages (see Algorithm 11): 

 Classification 

 Discard those particles with too small weight. 

 Combination resampling. 

[{𝒙𝒌
𝒋
, 𝒘𝒌

𝒋
}
𝒋=𝟏

𝝆
] ← 𝑳𝑶𝑪𝑹({𝒙𝒌

𝒊 , 𝒘𝒌
𝒊 }
𝒊=𝟏

𝝆
, 𝒖𝒌)  

1:   𝒄𝟏 ← 𝒘𝒌
𝟏 

2:   for 𝒊 = 𝟐 to 𝝆 do 
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3:        𝒄𝒊 ← 𝒄𝒊−𝟏 +𝒘𝒌
𝒊  

4:   end for 
5:   𝒊 ← 𝟏 

6:   𝒖𝟏~𝓤(𝟎, 𝟏 𝝆⁄ ) 
7:   for 𝒋 = 𝟏 to 𝝆 do 

Classification 
8:        𝒖 ← 𝒖𝟏 + (𝒋 − 𝟏) 𝝆⁄  

9:        while 𝒖 > 𝒄𝒊 do 

10:           𝒊 ← 𝒊 + 𝟏 
11:     end while 

12:     𝒙𝒂𝒌
𝒋
← 𝒙𝒌

𝒊  

13:     if 𝒙𝒂𝒌
𝒋
= 𝒙𝒂𝒌

𝒋−𝟏
 

14:          𝒙𝒔𝒌
𝒋
← 𝒙𝒌

𝒊  

15:          𝒘𝒔𝒌
𝒋
← 𝒘𝒌

𝒊  

16:     end if 
Discard those particles with too small weight 

17:     for 𝒊𝒏𝒅𝟏 = 𝟏 to 𝝆𝒔 do 

18:          𝒘𝒕𝒉 ← 𝑲 (𝝆 ∙ 𝒏𝒋𝒊𝒏𝒅𝟏)⁄  

19:          if 𝒘𝒔𝒌
𝒊𝒏𝒅𝟏 > 𝒘𝒕𝒉 do 

20:               𝒙𝒔𝒂𝒌
𝒊𝒏𝒅𝟐 ← 𝒙𝒔𝒌

𝒊𝒏𝒅𝟏 

21:          end if 
22:     end for 

Combination resampling 

23:     𝒙𝒌
𝒋
← 𝒙𝒔𝒂𝒌 + (𝑳 ∙ 𝑲 ∙ (𝒙𝒂𝒌 − 𝒙𝒔𝒂𝒌)) 

24:     𝒘𝒌
𝒋
← 𝒑(𝒚𝒌|𝒙𝒌

𝒋
, 𝒖𝒌) 

25: end for 
Where 

𝒙𝒌
𝒊  = The variables of the defined state space model of 𝒊th particle at 𝒌th time. 

𝒘𝒌
𝒊  = The weight of 𝒊th particle at 𝒌th time. 

𝝆 = Amount of particles. 

𝓤 = Uniform distribution. 

𝒙𝒂𝒌 = The repeated particles at 𝒌th time. 

𝒙𝒔𝒌 = The discarded particles at 𝒌th time. 

𝒘𝒔𝒌
𝒊  = The weight of 𝒊th discarded particle at 𝒌th time. 

𝒘𝒕𝒉 = The threshold weight used to accept or reject the discarded particles. 

𝑲 = The step coefficient. 

𝒏𝒋 = Repetition rate of each particle 𝒙𝒂𝒌 if doing systematic resampling. 

𝒙𝒔𝒂𝒌 = The accepted particles from the discarded particles at 𝒌th time. 

𝑳 = The rational step for the Euclidean distance. 

Algorithm 11: LOCR pseudo-code [93]. 

Heuristic Kalman Algorithm Resampling 
The typical resampling methods often generate only a small number of particles that tend to have 

exceedingly large weights. Thus, most of the recursive calculations in the transition and observation 

equations tend to get wasted on these abundant particles. If the sample size of the data set is small 

and a non-informative prior (with wide range) is used, then the particles may have very limited 

chance to cluster around the true state. When the likelihood lies in the tail of the prior distribution, the 

resampling step can lead to sample impoverishment whereby important samples are dropped and 

the unimportant ones are replicated [92]. To enhance the fraction of meaningful particles, the 

Heuristic Kalman Algorithm can be used to generate new superior sample sets, see Algorithm 12. 

After the posterior weight calculation, the Heuristic Kalman Algorithm is used to optimize the fitness 

function (𝑓𝑖𝑡 = 𝑝(𝑦𝑙|𝑥𝑙
(𝑖)
)). 

The Heuristic Kalman Algorithm will move the mean of the random number generator towards the 

region with significant fitness value (high likelihood value). The random generator of the Heuristic 

Kalman Algorithm spits a new sample set when the distance between the samples is below a defined 

threshold and/or a maximum number of iterations is exceeded. Then, a resampling step is executed 

to select and replicate particles with larger weights. The optimized particles tend to cluster around the 
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high likelihood regions conditioned on the recent observation; therefore, their weights are significant. 

As a result, the problem of impoverishment is avoided. On the other hand, the Heuristic Kalman 

Algorithm drives particles that are far away from true states to move towards the region where true 

states may be present with a higher probability. Thus, sample degeneracy is also avoided [92]. 

[{𝒙𝒌
𝒋
}
𝒋=𝟏

𝑵𝝃
] ← 𝑯𝑲𝑨({𝒙𝒌

𝒊 }
𝒊=𝟏

𝝆
, 𝒄𝒐𝒔𝒕𝒇, 𝒖𝒌, 𝝋𝒕𝒉, 𝜶, 𝑵𝝃)  

1:   𝝋 ← 𝒊𝒏𝒇 

2:   𝝁𝒌 ← (𝒙𝒌 + 𝒙𝒌) 𝟐⁄  

3:   𝑷𝒌
− ← (𝒙𝒌 + 𝒙𝒌) 𝟔⁄  

4:   while 𝝋 > 𝝋𝒕𝒉 

5:        𝒙𝒌 ←  𝓝(𝝁𝒌, 𝑷𝒌
−) 

6:        𝝃𝒌 ← 𝟏 𝑵𝝃⁄ ∙ ∑ 𝒄𝒐𝒔𝒕𝒇(𝒙𝒌
𝒊 , 𝒖𝒌)

𝑵𝝃
𝒊=𝟏

 

7:        𝑽𝒌 ← 𝒗𝒂𝒓 ({𝒄𝒐𝒔𝒕𝒇(𝒙𝒌
𝒊 , 𝒖𝒌)}𝒊=𝟏

𝑵𝝃
) 

8:        𝑳𝒌 ← 𝑷𝒌
− ∙ (𝑷𝒌

− + 𝒅𝒊𝒂𝒈(𝑽𝒌)) 

9:        𝒂𝒌 = 𝜶 ∙ 𝒎𝒊𝒏 (𝟏, (𝒎𝒆𝒂𝒏(√𝑽𝒌))
𝟐

) (𝒎𝒊𝒏(𝟏, (𝒎𝒆𝒂𝒏(√𝑽𝒌))
𝟐

) + (𝒎𝒂𝒙(√𝑷𝒌
+)

𝟐
))⁄  

10:      𝑷𝒌
+ = (𝑰 − 𝒂𝒌𝑳𝒌) ∙ 𝑷𝒌

− 

11:      𝝋 = 𝐦𝐚𝐱 ({√𝐦𝐚𝐱 ({𝒄𝒐𝒔𝒕𝒇(𝒙𝒌
𝒊 , 𝒖𝒌)}𝒊=𝟏

𝑵𝝃 ) − √𝒄𝒐𝒔𝒕𝒇(𝒙𝒌
𝒊 , 𝒖𝒌)}

𝒊=𝟏

𝑵𝝃

) 

12:      𝝁𝒌 ← 𝝁𝒌 + 𝑳𝒌 ∙ (𝒙𝒌 − 𝝁𝒌) 

13:      𝑷𝒌
− ← 𝑷𝒌

− + 𝒂𝒌 ∙ (√𝑷𝒌
+ − 𝑷𝒌

−) 

14: end while 
Where 

𝒙𝒌
𝒊  = The variables of the defined state space model of 𝒊th particle at 𝒌th time. 

𝒘𝒌
𝒊  = The weight of 𝒊th particle at 𝒌th time. 

𝒖𝒌 = The input at 𝒌th time. 

𝝆 = Amount of particles. 

𝝁𝒌 = The mean vector at 𝒌th time. 

𝑷𝒌
− = The variance vector at 𝒌th time. 

𝒙𝒌 = The upper bound of the search box. 

𝒙𝒌 = The lower bound of the search box. 

𝝃𝒌 = The perturbed knowledge of the optimum point. 

𝑵𝝃 = Number of best candidates. 

𝑽𝒌 = The variance vector (ignorance about the optimum point) at 𝒌th time. 

𝑳𝒌 = The Kalman gain at 𝒌th time. 

𝒂𝒌 = The slowdown factor at 𝒌th time. 

𝜶 = The slowdown coefficient. 

𝑷𝒌
+ = The variance vector of the posterior-estimation error at 𝒌th time. 

𝝋𝒕𝒉 = The threshold variable of the stopping rule. 

𝝋 = The stopping rule variable. 

Algorithm 12: Heuristic Kalman Algorithm's pseudo-code. 

5.2.2.2 Gaussian Process Regression 
The Gaussian Process (GP) is based on the statistical learning theory and adapts well to high 

dimensions, small samples, and nonlinear and other complex problems with a strong generalization 

ability [51], see Algorithm 13. 

In a GP, observations occur in a continuous domain (time or space) and every point is associated 

with a normally distributed random variable. This supposes that every finite collection of those 

random variables has a multivariate normal distribution and that every finite linear combination of 

them is normally distributed. Supported by those assumptions, a GP defines a probability distribution 

over functions (Eq. (90)) which are composed by a mean function (Eq. (91)) and a covariance 

function (Eq. (92)). In this way, the degradation trends are learnt from battery data sets with the 

combination of GP functions. 
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𝑓~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (90) 

𝑚(𝑥) = 𝐸(𝑓(𝑥)) (91) 

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) −𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] (92) 

Parameters Description 

𝑓 The function that describes the system behaviour. 

𝑚(𝑥) The mean function.  

𝑘(𝑥, 𝑥′) The covariance function. 

𝐸(𝑓(𝑥)) The most probable value of 𝑓(𝑥). 

Table 132: The Gaussian Process 

Typically a GP uses a mean function equal to zero with the aim of describing all the system by the 

covariance function since the covariance function is flexible enough to model the true mean arbitrarily 

well [134]. Nonetheless, if there is prior knowledge of the system, it is possible to express that prior 

information as the most probable result of the systems in form of the mean function. In this way, the 

covariance function of the GP is able to describe the behaviour of the system that the prior 

knowledge is not able to capture. 

There are many types of mathematical expressions that fulfil the requirements to be a covariance 

function of a GP. The most common covariance functions are the Squared Exponential (SE) 

covariance function (Eq. (93)) [126][135], the Matérn (Ma) covariance function (Eq. (94)) [129][135], 

the periodic covariance function (Eq. (95)) [126][129], the neural network covariance function (Eq. 

(96)) [128][136] and the combination of them [128][135]. 

𝑘𝑆𝐸(𝑥, 𝑥′) = 𝜎𝑆𝐸
2𝑒𝑥𝑝

(−
1
𝑙2
(𝑥−𝑥′)2)

 (93) 

𝑘𝑀𝑎(𝑥, 𝑥′) = 𝜎𝑀𝑎
2
21−𝑣

𝑇(𝑣)
(√2𝑣

(𝑥 − 𝑥′)

𝜌
)

𝑣

𝑅𝑣 (√2𝑣
(𝑥 − 𝑥′)

𝜌
) (94) 

𝑘𝑃𝑒(𝑥, 𝑥′) = 𝜎𝑃𝑒
2𝑒𝑥𝑝

(−
1
𝑙2
sin2[

𝜔
2𝜋
(𝑥−𝑥′)])

 (95) 

𝑘𝑁𝑁(𝑥, 𝑥′) = σ𝑁𝑁 ∙ sin
−1 (

2𝑥̃𝑇Σ𝑥̃′

√(1 + 2𝑥̃𝑇Σ𝑥̃)(1 + 2𝑥̃′𝑇Σ𝑥̃′)
) (96) 

Parameters Description 

𝑘𝑆𝐸 The Squared Exponential covariance function. 

𝑘𝑀𝑎 The Matérn covariance function. 

𝑘𝑃𝑒  The periodic covariance function. 

𝑘𝑁𝑁  The neural network covariance function. 

(𝑥 − 𝑥′) The difference between two input values. 

𝜎𝑆𝐸 , 𝑙, 𝜎𝑀𝑎, 𝜌, 
𝜎𝑃𝑒 , σ𝑁𝑁, 𝜔 

The hyper-parameters of the Squared Exponential, Matérn, periodic and Neural Network 
covariance functions. 

𝑣 The smoothness hyper-parameter, typically taken as constant (𝑣 = 3 2⁄  𝑜𝑟 5 2⁄ ). 

𝑇 The gamma function. 

𝑅𝑣 The modified Bessel function of the second kind. 

𝑥̃ A vector that contains the inputs. 

Σ The covariance matrix that emulates the weights of a Neural Network. 

Table 133: The covariance functions of the Gaussian Process 

The covariance function selection can be an important and difficult problem [137]. On a previous 

work [119], the characteristics of the Squared Exponential, Matérn and Neural Network covariance 
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functions have been analysed. The study has shown that the Squared Exponential covariance 

function can describe perfectly the system’s behaviour onto the observed operation window. 

Nonetheless, it is not interesting for prognosis since it tends to 0 on inputs out of the observed 

window. The Matérn covariance function can also describe perfectly the system’s behaviour onto the 

operation window. Nonetheless, it is not interesting in prognosis since it increases exponentially on 

inputs out of the observed window. The Neural Network covariance function shows limitations on 

describing the behaviour of the system on the observed operation window, at least with the tested 

hyper-parameter values. However, the captured system’s behaviour is kept in a linear way onto 

future predictions, which in lithium ion battery prognosis problems is interesting (it is assumed that 

the aging will not have a sudden change).  

The distribution over functions obtained by the GP is used as a prior for Bayesian inference (Eq. 

(97)). The calculated prior does not depend on the training data, but specifies some properties of the 

functions (the objective is to learn properties of the prior in the light of the training data) [134]. The 

calculation of the posterior will provide the predictions for unseen test cases. Then, the joint 

distribution of the desired test set is evaluated where the training set covariance (K), training-test set 

covariance (K∗) and the test set covariance (K∗∗) are calculated. 

Since the values for the training set 𝑓 are known, the conditional distribution of 𝑓∗ given 𝑓 can be 

calculated (this is the posterior distribution for a specific set of unseen test cases, see Eq. (98)). In 

the same way, the mean and the variance of the posterior can be deducted from here (Eq. (99) and 

Eq. (100)). 

[
𝑓

𝑓∗
] ~𝒩 ([

𝜇
𝜇∗
] , [

K K∗
K∗
𝑇 K∗∗

]) (97) 

𝑓∗|𝑓~𝑁(𝜇∗ + K∗
𝑇𝐾−1(𝑓 − 𝜇), K∗∗ − K∗

𝑇𝐾−1𝐾∗) (98) 

𝑚𝑝(𝑥) = 𝑚(𝑥) + K∗
𝑇K−1(𝑓 − 𝜇) (99) 

𝑘𝑝(𝑥, 𝑥
′) = K∗∗ − K∗

𝑇K−1𝐾∗ (100) 

Parameters Description 

𝑓 The function that describes the system’s behaviour on the training data set. 

𝑓∗ The function that describes the system’s behaviour on the test data set. 

𝜇 The prior knowledge of the system on the training data set. 

𝜇∗ The prior knowledge of the system on the test data set. 

𝒩 Normal distribution. 

K The training set covariance. 

K∗ The training-test set covariance. 

K∗∗ The test set covariance. 

𝑚𝑝(𝑥) The mean of the posterior at 𝑥. 

𝑚(𝑥) The prior knowledge at 𝑥. 

𝑘𝑝(𝑥, 𝑥
′) The covariance of the posterior at 𝑥. 

Table 134: The Bayesian inference on a Gaussian Process 

The estimation attained with this Bayesian inference is noiseless but it is something common to have 

noise in the observations of many applications of regression. In the GP models, such noise is easily 

taken into account. The easiest way of adding the noise effect in the observation is to assume that 

the noise is Gaussian and independent. In this scenario, the noise variance is added to the 

covariance values of each test point respect to the same test point (𝑘𝑝(𝑥, 𝑥′);   𝑥 = 𝑥′) (see Eq. (101), 

Eq. (102) and Eq. (103)). 

K𝑦 = 𝐾 + 𝜎𝑦𝐼 (101) 
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𝑚𝑝(𝑥) = 𝑚(𝑥) + K∗
𝑇K𝑦

−1(𝑓 − 𝜇) (102) 

𝑘𝑝(𝑥, 𝑥
′) = K∗∗ − K∗

𝑇K𝑦
−1𝐾∗ (103) 

Parameters Description 

K𝑦 The noisy training set covariance. 

K The training set covariance. 

𝜎𝑦 The variance of the observation noise. 

𝐼 The identity matrix. 

𝑓 The function that describes the system’s behaviour on the training data set. 

𝜇 The prior knowledge on the training data set. 

K∗ The training-test set covariance. 

K∗∗ The test set covariance. 

𝑚𝑝(𝑥) The mean of the posterior at 𝑥. 

𝑚(𝑥) The prior knowledge at 𝑥. 

𝑘𝑝(𝑥, 𝑥
′) The covariance of the posterior at 𝑥. 

Table 135: The Bayesian Inference on a Gaussian Process considering a Gaussian noise on the 

measurements 

[𝒚̂𝑻, 𝝈𝑻] = 𝑮𝑷(𝒖𝑳, 𝒚𝑳, 𝒖𝑻, 𝝁, 𝝈)  

1:   𝑲 ← [𝒌(𝒖𝒊, 𝒖𝒋, 𝝈)]𝒊=𝟏..𝑳,𝒋=𝟏..𝑳
 

2:   𝐊𝒚 ← 𝑲+ 𝝈𝒚𝑰 

3:   for 𝒊 = 𝟏 to 𝑻 do 

4:        𝑲∗ ← [𝒌(𝒖𝒊, 𝒖𝒋, 𝝈)]𝒋=𝟏..𝑳
 

5:        𝑲∗∗ ← 𝒌(𝒖𝒊, 𝒖𝒊, 𝝈) 

6:        𝒚̂𝒊 ← 𝝁𝒊 +𝐊∗
𝑻𝐊𝒚

−𝟏(𝒚𝑳 − 𝝁𝑳) 

7:        𝝈𝒊 ← 𝐊∗∗ − 𝐊∗
𝑻𝐊𝒚

−𝟏𝑲∗ 

8:   end for 
Where 

𝒖𝑳 = The input variable of the training data set. 

𝒚𝑳 = Observations of the training data set. 

𝒖𝑻 = The input variable of the test data set. 

𝝁 = The prior knowledge about the output on the whole evaluated data set. 

𝝈 = The variance of the covariance function. 

𝒚̂𝑻 = The most probable prediction. 

𝝈𝑻 = The variance of the Gaussian distribution of the prediction. 

𝑲 = The covariance matrix. 

𝒌(𝒙, 𝒙′, 𝝈) = The covariance function. 

𝐊𝒚 = The noisy covariance matrix. 

𝑲∗ = The training-test set covariance. 

𝑲∗∗ = The test set covariance. 

Algorithm 13: Gaussian Process Regression. 

5.2.2.3 Extended Kalman Filter 
The Kalman Filter framework is based on Bayesian parameter estimation (A Bayes estimator allows 

to estimate parameters based on prior knowledge about the parameter distribution) [138] that 

requires the use of recursive equations. The taken main assumption is that the measuring noise and 

process noise are Gaussian, independent of each other and have a zero mean [44]. The Kalman 

Filter framework uses a series of measurements observed over time to estimate the more probable 

output variables. This method is composed by two steps: first a prediction state is required and then 

the estimation is updated (see Eq. (104) and (105)) [20]. Thanks to this, the Kalman Filter provides a 

theoretically well designed and time proven method to filter measurements of system input and 

output by producing an intelligent estimation of a dynamic system’s state [44]. 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑎𝑘 (104) 
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𝑧𝑘+1 = 𝐶𝑥𝑘+1 + 𝑏𝑘+1 (105) 

Parameters Description 

𝑥 The system’s state variable. 

𝑢 The control input. 

𝑧 A comparison vector. 

𝑘, 𝑘 + 1 The actual state and the next state respectively. 

𝐴,𝐵, 𝐶 The covariance matrix that links 𝑥𝑘 to 𝑥𝑘+1, 𝑥𝑘+1 to 𝑢𝑘 and 𝑥𝑘+1 to 𝑧𝑘+1 respectively. 

𝑎, 𝑏 The process noise and measurement noise respectively. 

Table 136: Space Model used in Kalman Filter [44] 

The Extended Kalman Filter linearizes the model at each step and then applies the Kalman Filter [57] 

by using partial derivatives and Taylor series expansion [8], see Algorithm 14. 

Unlike the Kalman Filter, the Extended Kalman Filter is not an optimal estimator due to the first-order 

linearization (it ignores the high order Taylor expansion terms) [57]. This leads to errors becoming 

larger [51] and therefore the Extended Kalman Filter cannot deal with systems with highly non-linear 

characteristics (first order Taylor series approximation cannot give enough accuracy in a highly non-

linear case [8]). Another limitation is that a matrix operation is needed where the size of the matrix 

correspond directly to the number of states of the battery model [20]. 

𝒙𝒌|𝒌, 𝑷𝒌|𝒌 ← 𝑬𝑲𝑭𝑺𝒕𝒆𝒑(𝒖𝒌−𝟏, 𝒚𝒌, 𝒙𝒌−𝟏|𝒌−𝟏, 𝑷𝒌−𝟏|𝒌−𝟏)  

1:   𝒙𝒌|𝒌−𝟏 ← 𝒇(𝒙𝒌−𝟏|𝒌−𝟏, 𝒖𝒌−𝟏, ) 

2:   𝒚̂𝒌|𝒌−𝟏 ← 𝒉(𝒙𝒌|𝒌−𝟏) 

3:   𝑷𝒌|𝒌−𝟏 ← 𝑭𝒌−𝟏𝑷𝒌−𝟏|𝒌−𝟏𝑭𝒌−𝟏
𝑻 + 𝑸 

4:   𝑷𝒚𝒚 ← 𝑯𝒌𝑷𝒌|𝒌−𝟏𝑯𝒌
𝑻 + 𝑹 

5:   𝑷𝒙𝒚 ← 𝑷𝒌|𝒌−𝟏𝑯𝒌
𝑻 + 𝑹 

6:   𝑲𝒌 ← 𝑷𝒙𝒚𝑷𝒚𝒚
−𝟏 

7:   𝒙𝒌|𝒌 ← 𝒙𝒌|𝒌−𝟏 + 𝑲𝒌(𝒚𝒌 − 𝒚̂𝒌|𝒌−𝟏) 

8:   𝑷𝒌|𝒌 ← (𝑰 − 𝑲𝒌𝑯𝒌)𝑷𝒌|𝒌−𝟏 

Where 

𝒙𝒌|𝒌−𝟏 = Inner state at time instant 𝒌 knowing the inner state at time instant 𝒌 − 𝟏. 

𝒚̂𝒌|𝒌−𝟏 = observation estimation at time instant 𝒌 knowing the observation estimation at time instant 𝒌 − 𝟏. 

𝑷𝒌|𝒌−𝟏 = The covariance matrix at time instant 𝒌 knowing the covariance matrix at time instant 𝒌 − 𝟏. 

𝒖𝒌−𝟏 = The input vector at time instant 𝒌 − 𝟏. 

𝒚𝒌 = The (measured) system output vector at time instant 𝒌. 

𝑭𝒌−𝟏 = The Jacobian transformation of the space state equations (𝒇). 

𝑯𝒌 = The Jacobian transformation of the observation equations (𝒉). 

𝑷𝒚𝒚 = The covariance of the outputs. 

𝑷𝒙𝒚 = The cross variance. 

𝑲𝒌 = The Kalman gain at time instant 𝒌. 

𝑸 = The assumed process noise covariance. 

𝑹 = The assumed sensor noise covariance. 

Algorithm 14: Extended Kalman Filter pseudo code [57]. 

The state estimation uncertainty propagation is done analytically by calculating the state estimation 

covariance matrix (where its diagonal is the variance) at the defined End of Life time instant knowing 

the estate at the last filtered time instant. However, computing the uncertainty of the observation is 

not trivial from an analytical point of view [138]. There is also no information that suggests that the 

observation at the EOL time instant will be Normal distributed. In this scenario, the probability density 

function of the observation at the EOL time instant is approximated using computational statistics 

methods such as the one described previously in the “Uncertainty propagation method” section. 

5.2.2.4 Unscented Kalman Filter 
The Unscented Kalman Filter is a version of the Kalman Filter that approximates the state distribution 

using the unscented transform. This procedure maintains the nonlinear functions exactly as they are, 

eliminating the need to calculate Jacobians as in Extended Kalman Filter [57]. Instead, 
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deterministically selected weighted samples, called sigma points, are generated. These sigma points 

capture the mean and covariance of the state distribution, which can be propagated to calculate the 

posterior mean and covariance of the state distribution [54]. 

There are several methods to select the sigma points, such as the symmetric unscented transform, 

the minimal skew simplex transform and the spherical simplex unscented transform, from which the 

commonly used method is the symmetric unscented transform [57], see Eq. (106) and Eq. (107). 

𝑤𝑖 =

{
 

 
𝑘𝑖

𝑛𝑥 + 𝑘𝑖
,                            𝑖 = 0

𝑘𝑖

2(𝑛𝑥 + 𝑘𝑖)
, 𝑖 = 1, … ,2𝑛𝑥

 (106) 

𝒳𝑖 =

{
 

 
𝑥̅,                                                                      𝑖 = 0

𝑥̅ + (√(𝑛𝑥 + 𝑘𝑖)𝑃𝑥𝑥) ,                     𝑖 = 1, . . , 𝑛𝑥

𝑥̅ − (√(𝑛𝑥 + 𝑘𝑖)𝑃𝑥𝑥) , 𝑖 = 𝑛𝑥 + 1, . . ,2𝑛𝑥

 (107) 

Parameters Description 

𝑘𝑖 It is a free parameter that can be used to tune the higher order moments of the distribution 
[57]. 

𝑤𝑖  The weight of the 𝑖th sigma point. 

𝑛𝑥 Amount of states. 

𝑃𝑥𝑥 The covariance of the original distribution. 

𝒳𝑖 The mean of the 𝑖th sigma point. 

Table 137: Sigma point calculation by Symmetric Unscented Transformation 

The main merit of the Unscented Kalman Filter comparing with the Extended Kalman Filter is that the 

Unscented Kalman Filter is accurate to the third-order Taylor series expansion for any nonlinearity. 

Some other merits are that the Unscented Kalman Filter is robust to noise because it takes the 

measurement and process uncertainties into account and that it has the ability to self-correct [54]. 

The main limitation of the Unscented Kalman Filter is that the use of the it alone can lead to poor 

prediction performance if the initial state estimation is modelled incorrectly [139]. 

𝒙𝒌|𝒌, 𝑷𝒌|𝒌 ← 𝑼𝑲𝑭𝑺𝒕𝒆𝒑 (𝒖𝒌−𝟏, 𝒚𝒌, {𝓧̂𝒌−𝟏|𝒌−𝟏
𝒊 , 𝒘𝒊}

𝒊=𝟏

𝒏𝒔
, 𝑷𝒌−𝟏|𝒌−𝟏)  

1:   𝓧̂𝒌|𝒌−𝟏
𝒊 ← 𝒇(𝓧̂𝒌−𝟏|𝒌−𝟏

𝒊 , 𝒖𝒌−𝟏), 𝒊 = 𝟏,⋯ , 𝒏𝒔 

2:   𝓨̂𝒌|𝒌−𝟏
𝒊 ← 𝒉(𝓧̂𝒌|𝒌−𝟏

𝒊 ), 𝒊 = 𝟏,⋯ , 𝒏𝒔 

3:   𝒙𝒌|𝒌−𝟏 ← ∑ 𝒘𝒊𝓧𝒌|𝒌−𝟏
𝒊𝒏𝒔

𝒊  

4:   𝒚̂𝒌|𝒌−𝟏 ← ∑ 𝒘𝒊𝓨𝒌|𝒌−𝟏
𝒊𝒏𝒔

𝒊  

5:   𝑷𝒌|𝒌−𝟏 ← 𝑸+ ∑ 𝒘𝒊(𝓧𝒌|𝒌−𝟏
𝒊 − 𝒙𝒌|𝒌−𝟏)(𝓧𝒌|𝒌−𝟏

𝒊 − 𝒙𝒌|𝒌−𝟏)
𝑻𝒏𝒔

𝒊  

6:   𝑷𝒚𝒚 ← 𝑹+ ∑ 𝒘𝒊(𝓨𝒌|𝒌−𝟏
𝒊 − 𝒚̂𝒌|𝒌−𝟏)(𝓨𝒌|𝒌−𝟏

𝒊 − 𝒚̂𝒌|𝒌−𝟏)
𝑻𝒏𝒔

𝒊  

7:   𝑷𝒙𝒚 ← ∑ 𝒘𝒊(𝓧𝒌|𝒌−𝟏
𝒊 − 𝒙𝒌|𝒌−𝟏)(𝓨𝒌|𝒌−𝟏

𝒊 − 𝒚̂𝒌|𝒌−𝟏)
𝑻𝒏𝒔

𝒊  

8:   𝑲𝒌 ← 𝑷𝒙𝒚𝑷𝒚𝒚
−𝟏 

9:   𝒙𝒌|𝒌 ← 𝒙𝒌|𝒌−𝟏 + 𝑲𝒌(𝒚𝒌 − 𝒚̂𝒌|𝒌−𝟏) 

10: 𝑷𝒌|𝒌 ← 𝑷𝒌|𝒌−𝟏 − 𝑲𝒌𝑷𝒚𝒚𝑲𝒌
𝑻 

Where 

𝓧̂𝒌|𝒌−𝟏
𝒊  = The 𝒊th sigma point at time instant 𝒌 knowing the 𝒊th sigma points at time instant 𝒌 − 𝟏. 

𝓨̂𝒌|𝒌−𝟏
𝒊  = The estimated observation with the 𝒊th sigma point at time instant 𝒌 knowing the 𝒊th sigma points at 

time instant 𝒌 − 𝟏. 

𝒏𝒔 = The amount of sigma points. 

𝒙𝒌|𝒌−𝟏 = Inner state at time instant 𝒌 knowing the inner state at time instant 𝒌 − 𝟏. 

𝒚̂𝒌|𝒌−𝟏 = observation estimation at time instant 𝒌 knowing the observation estimation at time instant 𝒌 − 𝟏. 

𝑷𝒌|𝒌−𝟏 = The covariance matrix at time instant 𝒌 knowing the covariance matrix at time instant 𝒌 − 𝟏. 

𝒖𝒌−𝟏 = The input vector at time instant 𝒌 − 𝟏. 
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𝒚𝒌 = The (measured) system output vector at time instant 𝒌. 

𝒘𝒊 = The weight of the 𝒊th sigma point. 

𝑸 = The assumed process noise covariance. 

𝑹 = The assumed sensor noise covariance. 

𝑷𝒚𝒚 = The covariance of the outputs. 

𝑷𝒙𝒚 = The cross variance. 

𝑲𝒌 = The Kalman gain at time instant 𝒌. 

Algorithm 15: The Unscented Kalman Filter pseudo-code [57]. 

As in the Extended Kalman Filter, the state estimation uncertainty propagation is done analytically by 

calculating the estate estimation covariance matrix (where its diagonal is the variance) at the defined 

End of Life time instant knowing the estate at the last filtered time instant. However, computing the 

uncertainty of the observation is not trivial from an analytical point of view [138]. To overcome this 

difficulty, the probability density function of the observation at the EOL time instant is approximated 

using computational statistics methods, such as the one described previously in “Uncertainty 

propagation method” section. 

5.2.3 Evaluation 

Several prediction stochastic algorithms are evaluated. For that, firstly, it is necessary to determine 

the inputs of the algorithms used on the evaluation exercises. These inputs consist on the data and 

on the prior knowledge about the performance of the system. Secondly, it is necessary to define the 

characteristics of the analysed algorithms. There are many elements that affect significantly the 

performance rate of these algorithms, so their performance evaluation cannot be done without the 

proper definition of the selected algorithm configuration. Thirdly, it is necessary to determine the used 

hyper-parameters. The hyper-parameters are the tuning elements and affect greatly the performance 

of the algorithm under evaluation. In this case, the hyper-parameters are not fixed by expertise, but 

estimated with a parametrization algorithm based on the defined “Universal parameterization 

criterion”. Therefore, the inputs of the applied parametrization algorithm need to be defined instead of 

the hyper-parameters themselves. 

Once all the variables of the defined algorithm are properly defined, the simulations are run and the 

evaluation results are obtained. 

5.2.3.1 Input 
In this proposal, the input of the algorithm refers to the information of the system that is under 

evaluation. In other words, the information about the lithium ion battery that is introduced on the 

stochastic algorithm to predict the event of interest: the data used on the prognosis and the prior 

knowledge that models the behavioural trends of the data. As a result of the available input 

combinations, a trial matrix has been designed, see Table 139. 

 Data 
The selected data for the evaluation of the prognosis tools consists on the dischargeable capacity of 

a lithium ion battery at different state of health defined by the evolution of the applied cycles. The 

data set has been taken from NASA’s data repository [140], a repetitively used public data source on 

evaluating lithium ion battery RUL prognosis algorithms. The selected NASA’s data sets consist on 

rechargeable 18650 Gen 2 Li-ion cells with a rated capacity of 2Ah. The experiment was conducted 

through three different operational profiles (charge, discharge and impedance) at room temperature. 

Charging was performed in a constant current at 1.5A until the battery voltage reached 4.2V and 

continued in constant voltage mode until the charge current dropped to 20mA. The discharge runs 

were stopped at 2.7V. The experiments were conducted until the capacity decreased to the specified 

EOL criteria of 1.4Ah [141]. 

Among the different data sets available on the selected NASA’s data repository, the proposed 

evaluation framework requires using two data sets with different uncertainty levels on the data itself. 

For that, it is considered that the uncertainty on the input data comes from the effects that the 

proposed models on the prior knowledge section (next section) cannot describe, such as the capacity 
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recovery events. The selected data set with high uncertainty is “B0018” and the selected data set 

with low uncertainty is “B0007”, see Figure 107. 

  
Figure 107: The input data of the evaluated stochastic algorithm. 

 Prior knowledge 
The behavioural aspect that needs to be modelled by the prior knowledge would be the 

dischargeable capacity evolution of the battery until, at least, the defined EOL event. The 

dischargeable capacity of the battery suffers a decreasing evolution or a decay. This thesis proposes 

to use two semi-empirical capacity decrease models that have different uncertainty levels on 

describing the system’s behaviour. In the literature, it has been proved that the capacity decay is not 

linear [142] and that a double exponential expression is able to describe it with a high level of 

confidence [93][92][47]. Therefore, a double exponential model is taken as the prior knowledge with 

low uncertainty (Eq. (108)), and a linear model is taken as the prior knowledge with high uncertainty 

(Eq. (109)). 

𝑐𝑎𝑝(𝑡) = 𝑎 ∙ 𝑒𝑥𝑝𝑏∙𝑡 + 𝑐 ∙ 𝑒𝑥𝑝𝑑∙𝑡 (108) 

𝑐𝑎𝑝(𝑡) = 𝑎 ∙ t + b (109) 

𝑥𝑘+1 = 𝑥𝑘 + 𝑢𝑘 , 𝑥𝜖[𝑎, 𝑏, 𝑐, 𝑑] (110) 

Parameters Description 

𝑐𝑎𝑝(𝑡) The function that describes the dischargeable capacity evolution at the input 𝑡. 
𝑎, 𝑏, 𝑐, 𝑑 The free variables. 

𝑥𝑘  The hidden state at time instant 𝑘. 

𝑢𝑘 The state space model’s noise at time instant 𝑘. 

Table 138: The proposed capacity decay models 

The defined prior knowledge can be also used to build the state space model required by the 

stochastic filters. An state space model is a model that uses state variables to describe a system by 

a set of first-order differential or difference equations [143]. It also describes an observed process 

with a hidden state process [41]. On one hand, the observation of the applicable state space model 

can be defined as the dischargeable capacity. The observation equations are already defined as the 

prior knowledge: Eq. (108) and Eq. (109). On the other hand, the hidden states can be defined as the 

variables 𝑎, 𝑏, 𝑐, 𝑑 used on Eq. (108) and Eq. (109). The hidden state process is unknown, but it can 

be claimed that the hidden state process is kept constant (when the observation equations are able 

to capture correctly the dischargeable capacity evolution trend, the hidden states remain constant in 

time). Therefore, a linear stochastic process is proposed as the state transition model (also referred 

as the hidden state process), see Eq. (110). 

Test nº Stochastic tool Aging model Cell 

1 
Particle Filter Eq. (108)  

“B0007” 

2 “B0018” 
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3 
Eq. (109) 

“B0007” 

4 “B0018” 

5 

Gaussian Process 

Eq. (108) 
“B0007” 

6 “B0018” 

7 
Eq. (109) 

“B0007” 

8 “B0018” 

9 

Extended Kalman FIlter 

Eq. (108)  
“B0007” 

10 “B0018” 

11 
Eq. (109) 

“B0007” 

12 “B0018” 

13 

Unscented Kalman FIlter 

Eq. (108)  
“B0007” 

14 “B0018” 

15 
Eq. (109) 

“B0007” 

16 “B0018” 

Table 139: Trial matrix definition for every algorithm under evaluation 

5.2.3.2 Algorithm configuration 
The selected Particle Filter configuration consists on a simple Particle Filter with a proposal 

distribution method based on the previous iteration’s distribution and a systematic resampling 

method. An initial parameter definition step has been done based on experience and on the literature 

[144]. The defined parameters are resumed in Table 140. 

Parameters Value Description 

𝜌 500 Particle quantity [144]. 

𝑁𝑇 50 Resampling threshold % respect to the particle quantity. 

Table 140: Affecting parameters on the Particle Filter 

The selected Gaussian Process configuration consists on a Gaussian Process algorithm that uses 

the results obtained from the aging model as the prior knowledge. The selected covariance function 

is the neural network covariance function, a covariance function that emulates the behaviour of a 

Neural Network algorithm (Eq. (96)). 

The Extended Kalman Filter and the Unscented Kalman Filter are completely defined by themselves; 

they do not require any further definition. These two algorithms are particular configurations of a 

general Kalman Filter. 

5.2.3.3 Parametrization 
The algorithms under evaluation have some variables that need to be determined, especially the so 

called hyper-parameters. The proper definition and fitting of these variables affects greatly the 

performance level that the stochastic algorithms have. This is why, it has been proposed a 

parametrization exercise that mixes literature research, use case experience and the parametrization 

criterion described on “Universal parameterization criterion”. 

 Particle Filter 
The parameterization of the hyper-parameters of the Particle Filter is performed based on Algorithm 

16. It starts initializing the inner states at each time instant. For that, a “least squares optimization” of 

the training data and the capacity decay model is conducted using MATLAB’s “lsqcurvefit” function. 

Once this is done, the algorithm’s hyper-parameters at each time step (Table 141) are achieved by 

grid search optimization. 

Parameters Description 

σ𝑢 The variance of the state model’s Gaussian noise. 

σ𝑣 The variance of the observation model’s Gaussian noise. 

𝜎𝑖𝑛𝑖 The variance of the initial Gaussian distribution of the particles. 

Table 141: Hyper-parameters on the Particle Filter with basic resampling methods 

The grid for each hyper-parameter is designed based on the rule of delimiting as much as possible 

the tested values without losing interesting options. For that, a sensibility analysis would be required, 

but in this case, the design of the grid is based on previous engineering experience. The obtained 
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results have led to define the limits of the grids as well as defining the grid delta values. The created 

grid is shown in Table 142. 

Parameters High limit Intervals Low limit 

σ𝑢 1.5 0.6, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001 0.0005 

σ𝑣 1.5 0.6, 0.1, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001 0.0005 

𝜎𝑖𝑛𝑖 0.1 0.05 0.01 

Table 142: Grid Search Optimization grid on the Particle Filter with basic resampling methods 

The results obtained with every configuration on the grid are evaluated to find the optimal hyper-

parameters. This is done running 𝐶𝑉 times each grid configuration and finding the case with the 

lowest variation among the run cases with the lowest Root Mean Squared Error, which in this case it 

has been set to 10. 

[{𝜽𝑶𝒑𝒕𝒊𝒎𝒖𝒎
𝝀 }

𝝀=𝟏

𝑬𝝀
] ← 𝑷𝑨𝑹𝑨𝑴𝑬𝑻𝑬𝑹𝑰𝒁𝑨𝑻𝑰𝑶𝑵 ({𝒙𝝀

𝟎, 𝒚𝝀, 𝒖𝝀, 𝑵𝝀}𝝀=𝟏
𝑬𝝀
, 𝜽)  

1:   for 𝝀 = 𝟏 to 𝑬𝝀 
2:       for 𝒋 = 𝟏 to 𝑪𝑽 do 

3:           for 𝒔 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝒖) do 

4:               for 𝒓 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝒗) do 

5:                   for 𝒒 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝒊𝒏𝒊) do 

6:                       𝛔𝒖 ← 𝝑𝒖
𝒔  

7:                       𝛔𝒗 ← 𝝑𝒗
𝒓 

8:                       𝛔𝒊𝒏𝒊 ← 𝝑𝒊𝒏𝒊
𝒒

 

9:                       𝒙𝟏 ←𝓝(𝒙𝝀
𝟎, 𝝈𝒊𝒏𝒊) 

10:                     𝒘𝟏 ← 𝓤(𝟎, 𝟏 𝝆⁄ ) 
11:                     for 𝒌 = 𝟐 to 𝑵𝝀 do  

12:                           [{𝒙𝒌
𝒊 , 𝒘𝒌

𝒊 }
𝒊=𝟏

𝝆
, 𝒙𝒌] ← 𝑷𝑭𝒔𝒕𝒆𝒑 ({𝒙𝒌−𝟏

𝒊 , 𝒘𝒌−𝟏
𝒊 }

𝒊=𝟏

𝝆
, 𝛔𝒖, 𝛔𝒗, 𝒚𝒌

𝒕 ) 

13:                     end for 

14:                     𝒚̂𝝀 ← 𝒇({𝒙𝒌}𝒌=𝟏
𝑵𝝀 , 𝒖𝝀) 

15:                     𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓,𝒒 ← 𝑹𝑴𝑺𝑬(𝒚𝝀, 𝒚̂𝝀) 
16:                 end for 
17:             end for 
18:         end for 
19:     end for 

20:     𝝑𝒕𝒐𝒑𝟏𝟎
𝒋,𝝀

← {𝒎𝒊𝒏(𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓,𝒒)}𝒋=𝟏
𝑪𝑽  

21:     𝝑𝒐𝒑𝒕𝒊𝒎𝒖𝒎
𝝀 ← 𝒎𝒊𝒏 (𝒗𝒂𝒓(𝝑𝒕𝒐𝒑𝟏𝟎

𝒋,𝝀
)) 

22: end for 
Where 

𝑬𝝀 = Amount of prediction time instants. 

𝒙𝝀
𝟎 = The initialization of the hidden states at prediction time instant 𝝀. 

𝒚𝝀 = Observations at prediction time instant 𝝀. 

𝒖𝝀 = The inputs of the observation equation on the test data set 𝒇 at prediction time instant 𝝀. 

𝑵𝝀 = Amount of learning points at prediction time instant 𝝀. 

𝜽 = The entire hyper-parameter grid. 

𝑪𝑽 = Amount of repetitions of each configuration on the grid. 

𝛔𝒖 = The variance of the state model’s Gaussian noise. 

𝛔𝒗 = The variance of the observation model’s Gaussian noise. 

𝛔𝒊𝒏𝒊 = The variance of the initial Gaussian distribution of the particles. 

𝝑𝒙 = The grid of the hyper-parameter 𝝈𝒙. 

𝒙𝒌
𝒊  = The hidden state of 𝒊 particle at time instant 𝒌. 

𝒘𝒌
𝒊  = The weight of the hidden state of 𝒊 particle at time instant 𝒌. 

𝒙𝒌 = most probable hidden state at time instant 𝒌. 

𝒚̂𝝀 = prediction of the system’s output at prediction time instant 𝝀 on the validation data set. 

𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓,𝒒 = Root Mean Square Error in each iteration of the grid search optimization. 

𝑹𝑴𝑺𝑬 = Root Mean Square Error equation. 

𝝑𝒕𝒐𝒑𝟏𝟎
𝒋,𝝀

 = The top ten hyper-parameters at prediction time instant 𝝀 in each repetition 𝒋. 

𝝑𝒐𝒑𝒕𝒊𝒎𝒖𝒎
𝝀  = The optimum hyper-parameters at prediction time instant 𝝀. 

Algorithm 16: Parametrization of the PF. 
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 Gaussian Process 
The parameterization of the hyper-parameters of the Gaussian Process is performed based on 

Algorithm 17. The algorithm’s hyper-parameters at each time step (Table 143) are achieved by grid 

search optimization. 

Parameters Description 

σ𝑁𝑁 The signal variance. 

Σ The covariance matrix that emulates the weight matrix on a Neural Network system. 

𝜎𝑦 The noise variance. 

Table 143: Hyper-parameters on the Gaussian Process with Neural Network covariance function 

The grid for each hyper-parameter is designed based on the rule of delimiting as much as possible 

the tested values without losing interesting options. For that, a sensibility analysis would be required, 

but in this case, the design of the grid is based on previous engineering experience. The obtained 

results have led to define the limits of the grids as well as defining the intermediate values of the grid. 

The created grid is shown in Table 144. 

Parameters High limit Intervals Low limit 

σ𝑁𝑁 10 1,0.5,0.1,0.05,0.02,0.01,0.005,0.001 0.0001 

Σ(1) 10 1,0.5,0.1,0.05,0.02,0.01,0.005,0.001 0.0001 

Σ(2) 10 1,0.5,0.1,0.05,0.02,0.01,0.005,0.001 0.0001 

𝜎𝑦 1 0.1 0.01 

Table 144: Grid Search Optimization grid on the Gaussian Process with a Neural Network covariance 

function 

The results obtained with every configuration on the grid are evaluated to find the optimal hyper-

parameters. This is done running just one time each grid configuration. The results obtained with the 

Gaussian Process are stable so there is no need of doing extra effort on finding the most stable 

option. The hyper-parameter combination that achieves the lowest Root Mean Squared Error is 

determined the optimum set of hyper-parameters. 

[{𝜽𝑶𝒑𝒕𝒊𝒎𝒖𝒎
𝝀 }

𝝀=𝟏

𝑬𝝀
] ← 𝑷𝑨𝑹𝑨𝑴𝑬𝑻𝑬𝑹𝑰𝒁𝑨𝑻𝑰𝑶𝑵 ({𝒖𝑳

𝝀, 𝒚𝑳
𝝀, 𝒖𝑻

𝝀 , 𝒚𝑻
𝝀 , 𝝁𝑳,𝑻

𝝀 }
𝝀=𝟏

𝑬𝝀
, 𝜽)  

1:   for 𝝀 = 𝟏 to 𝑬𝝀 
2:       for 𝒋 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝑵𝑵) do 

3:           for 𝒔 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝚺𝟏) do 

4:               for 𝒓 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝚺𝟐) do 

5:                   for 𝒒 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝒚) do 

6:                        𝝈𝑵𝑵 ← 𝝑𝑵𝑵
𝒋

 

7:                        𝚺(𝟏) ← 𝝑𝚺𝟏
𝒔  

8:                        𝚺(𝟐) ← 𝝑𝚺𝟐
𝒓  

9:                        𝛔𝒚 ← 𝝑𝒚
𝒒
 

10:                     [𝒚̂𝑻
𝝀 , 𝝈𝑻

𝝀] ← 𝑮𝑷(𝒖𝑳
𝝀, 𝒚𝑳

𝝀, 𝒖𝑻
𝝀 , 𝝁𝑳,𝑻

𝝀 , 𝝈𝑵𝑵, 𝚺, 𝛔𝒚) 

11:                     𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓,𝒒 ← 𝑹𝑴𝑺𝑬(𝒚𝑻
𝝀 , 𝒚̂𝑻

𝝀) 

12:                 end for 
13:             end for 
14:         end for 
15:     end for 

16:     𝝑𝑶𝒑𝒕𝒊𝒎𝒖𝒎
𝝀 ← 𝒎𝒊𝒏(𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓,𝒒) 

17: end for 
Where 

𝑬𝝀 = Amount of prediction time instants. 

𝒖𝑳
𝝀 = The input variable of the training data set at prediction time instant 𝝀. 

𝒚𝑳
𝝀 = Observations of the training data set at prediction time instant 𝝀. 

𝒖𝑻
𝝀  = The input variable of the test data set at prediction time instant 𝝀. 

𝝁𝑳,𝑻
𝝀  = The prior knowledge about the output on the whole evaluated data set. 

𝒚𝑻
𝝀  = Observations of the test data set at prediction time instant 𝝀. 

𝜽 = The entire hyper-parameter grid. 

𝝑𝒙 = The grid of the hyper-parameter 𝝈𝒙. 
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𝑪𝑽 = Amount of repetitions of each configuration on the grid. 

𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓,𝒒 = Root Mean Square Error in each iteration of the grid search optimization. 

𝑹𝑴𝑺𝑬 = Root Mean Square Error equation. 

𝒚̂𝑻
𝝀  = prediction of the system’s output at prediction time instant 𝝀 on the test data set. 

𝝈𝑻
𝝀  = variance of the Gaussian distribution of the predictions of the system’s output at prediction time instant 𝝀 

on the test data set. 

𝝑𝒐𝒑𝒕𝒊𝒎𝒖𝒎
𝝀  = The optimum hyper-parameters at prediction time instant 𝝀. 

Algorithm 17: Parametrization of the Gaussian Process. 

 Extended Kalman Filter 
The parameterization of the hyper-parameters of the Extended Kalman Filter is performed based on 

Algorithm 18. It starts initializing the inner states at each time instant. For that, a “least squares 

optimization” of the training data and the capacity decay model is conducted using MATLAB’s 

“lsqcurvefit” function. Once done this, the algorithm’s hyper-parameters at each time step (Table 145) 

are achieved by grid search optimization. 

Parameters Description 

𝑞 Covariance of the process. 

𝑟 Covariance of the measurement. 

Table 145: Hyper-parameters on the Extended Kalman Filter 

The grid for each hyper-parameter is designed based on the rule of delimiting as much as possible 

the tested values without losing interesting options. For that, a sensibility analysis would be required, 

but in this case, the design of the grid is based on previous engineering experience. The obtained 

results have led to define the limits of the grids as well as defining the intermediate values of the grid. 

The created grid is shown in Table 146. 

Parameters High limit Intervals Low limit 

𝑞 0.1 0.01,0.001,0.0001,0.00001,0.000001,0.0000001,0.00000001 0.000000001 

𝑟 0.1 0.01,0.001,0.0001,0.00001,0.000001,0.0000001,0.00000001 0.000000001 

Table 146: Grid Search Optimization grid on the Extended Kalman Filter 

The results obtained with every configuration on the grid are evaluated to find the optimal hyper-

parameters. The results obtained with the Extended Kalman Filter didn’t use to be stable. The 

response of this algorithm typically needs a multi-result evaluation step like the Particle Filter. 

However, this is done running just one time each grid configuration because the state model noise 

and the measurement noises are set to zero. This means that the results obtained with the Extended 

Kalman Filter becomes stable and reproducible. There is no need of doing an extra effort on finding 

the most stable option. As a result, the hyper-parameter combination that achieves the lowest Root 

Mean Squared Error is determined the optimum set of hyper-parameters. 

[{𝜽𝑶𝒑𝒕𝒊𝒎𝒖𝒎
𝝀 }

𝝀=𝟏

𝑬𝝀
] ← 𝑷𝑨𝑹𝑨𝑴𝑬𝑻𝑬𝑹𝑰𝒁𝑨𝑻𝑰𝑶𝑵 ({𝒙𝝀

𝟎, 𝒚𝝀, 𝒖𝝀, 𝑵𝝀}𝝀=𝟏
𝑬𝝀
, 𝜽)  

1:   for 𝝀 = 𝟏 to 𝑬𝝀 

2:       for 𝒋 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝒒) do 

3:           for 𝒔 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝒓) do 
4:                  𝐪 ← 𝝑𝒖

𝒔  

5:                  𝒓 ← 𝝑𝒓
𝒕  

6:                  𝒙𝟏 ← 𝒙𝝀
𝟎 

7:                  𝑷𝟏 ← {𝑰 ∙ 𝒒, 𝒓} 
8:                  for 𝒌 = 𝟐 to 𝑵𝝀 do  

9:                        [𝒙𝒌, 𝑷𝒌] ← 𝑬𝑲𝑭𝒔𝒕𝒆𝒑(𝒖𝒌−𝟏, 𝒚𝒌, 𝒙𝒌−𝟏, 𝑷𝒌−𝟏) 
10:                end for 

11:                𝒚̂𝝀 ← 𝒇({𝒙𝒌}𝒌=𝟏
𝑵𝝀 , 𝒖𝝀) 

12:                𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓 ← 𝑹𝑴𝑺𝑬(𝒚𝝀, 𝒚̂𝝀) 
13:        end for 
14:    end for 

15:    𝝑𝒐𝒑𝒕𝒊𝒎𝒖𝒎
𝝀 ← 𝒎𝒊𝒏(𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓) 

16: end for 
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Where 

𝑬𝝀 = Amount of prediction time instants. 

𝒙𝝀
𝟎 = The initialization of the hidden states at prediction time instant 𝝀. 

𝒚𝝀 = Observations at prediction time instant 𝝀. 

𝒖𝝀 = The inputs of the observation equation on the test data set 𝒇 at prediction time instant 𝝀. 

𝑵𝝀 = Amount of learning points at prediction time instant 𝝀. 

𝜽 = The entire hyper-parameter grid. 

𝐪 = Covariance of the process. 

𝐫 = Covariance of the measurement. 

𝑷𝒌 = The covariance matrix at time instant 𝒌. 

𝝑𝒙 = The grid of the hyper-parameter 𝝈𝒙. 

𝒙𝒌
𝒊  = The hidden state of 𝒊 particle at time instant 𝒌. 

𝒘𝒌
𝒊  = The weight of the hidden state of 𝒊 particle at time instant 𝒌. 

𝒙𝒌 = most probable hidden state at time instant 𝒌. 

𝒚̂𝝀 = prediction of the system’s output at prediction time instant 𝝀 on the validation data set. 

𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓 = Root Mean Square Error in each iteration of the grid search optimization. 

𝑹𝑴𝑺𝑬 = Root Mean Square Error equation. 

𝝑𝒐𝒑𝒕𝒊𝒎𝒖𝒎
𝝀  = The optimum hyper-parameters at prediction time instant 𝝀. 

Algorithm 18: Parametrization of the Extended Kalman Filter. 

 Unscented Kalman Filter 
The parameterization of the hyper-parameters of the Extended Kalman Filter is performed based on 

Algorithm 19. It starts initializing the inner states at each time instant. For that, a “least squares 

optimization” of the training data and the capacity decay model is conducted using MATLAB’s 

“lsqcurvefit” function. Once done this, the algorithm’s hyper-parameters at each time step (Table 147) 

are achieved by grid search optimization. 

Parameters Description 

𝑞 Covariance of the process. 

𝑟 Covariance of the measurement. 

𝑘𝑖 A free variable that determines the scaling factor. 

Table 147: Hyper-parameters on the Unscented Kalman Filter 

The grid for each hyper-parameter is designed based on the rule of delimiting as much as possible 

the tested values without losing interesting options. For that, a sensibility analysis would be required, 

but in this case, the design of the grid is based on previous engineering experience. The obtained 

results have led to define the limits of the grids as well as defining the intermediate values of the grid. 

The created grid is shown in Table 148. 

Parameters High limit Intervals Low limit 

𝑞 0.01 0.001,0.0001,0.00001,0.000001,0.0000001,0.00000001 0.000000001 

𝑟 0.01 0.001,0.0001,0.00001,0.000001,0.0000001,0.00000001 0.000000001 

𝑘𝑖 10 2,1,0.1,0.01,0.001,0.0001 0.0000001 

Table 148: Grid Search Optimization grid on the Unscented Kalman Filter 

The results obtained with every configuration on the grid are evaluated to find the optimal hyper-

parameters. The results obtained with the Unscented Kalman Filter didn’t use to be stable. The 

response of this algorithm typically needs a multi-result evaluation step like the Particle Filter. 

However, this is done running just one time each grid configuration because the state model noise 

and the measurement noises are set to zero. This means that the results obtained with the 

Unscented Kalman Filter becomes stable and reproducible. There is no need of doing an extra effort 

on finding the most stable option. As a result, the hyper-parameter combination that achieves the 

lowest Root Mean Squared Error is determined the optimum set of hyper-parameters. 

[{𝜽𝑶𝒑𝒕𝒊𝒎𝒖𝒎
𝝀 }

𝝀=𝟏

𝑬𝝀
] ← 𝑷𝑨𝑹𝑨𝑴𝑬𝑻𝑬𝑹𝑰𝒁𝑨𝑻𝑰𝑶𝑵 ({𝒙𝝀

𝟎, 𝒏𝒔, 𝒚𝝀, 𝒖𝝀, 𝑵𝝀}𝝀=𝟏
𝑬𝝀
, 𝜽)  

1:   for 𝝀 = 𝟏 to 𝑬𝝀 

2:       for 𝒋 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝒒) do 

3:           for 𝒔 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝒓) do 

4:               for 𝒕 = 𝟏 to 𝒔𝒊𝒛𝒆(𝝑𝒌𝒊) do 
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5:                       𝒒 ← 𝝑𝒖
𝒋
 

6:                       𝒓 ← 𝝑𝒓
𝒔 

7:                       𝒌𝒊 ← 𝝑𝒌𝒊
𝒕  

8:                       𝑷𝟏 ← {𝑰 ∙ 𝒒, 𝒓} 
9:                       𝒙𝟏 ← 𝒙𝝀

𝟎 

10:                     𝒏𝒙 ← (𝒏𝒔 𝟐⁄ ) − 𝟏 

11:                     {𝒘𝒊}
𝒊=𝟏
𝒏𝒔 ← {

𝒌𝒊

𝒏𝒙+𝒌𝒊
,                            𝒊 = 𝟎

𝒌𝒊

𝟐(𝒏𝒙+𝒌𝒊)
,           𝒊 = 𝟏,… , 𝟐𝒏𝒙

 

12:                     for 𝒌 = 𝟐 to 𝑵𝝀 do  

13:                           {𝓧̂𝒌−𝟏
𝒊 }

𝒊=𝟏

𝒏𝒔
← {

𝒙𝒌−𝟏,                                                                        𝒊 = 𝟎

𝒙𝒌−𝟏 + (√(𝒏𝒙 + 𝒌𝒊)𝑷𝒌−𝟏),                     𝒊 = 𝟏, . . , 𝒏𝒙

𝒙𝒌−𝟏 − (√(𝒏𝒙 + 𝒌𝒊)𝑷𝒌−𝟏),         𝒊 = 𝒏𝒙 + 𝟏, . . , 𝟐𝒏𝒙

 

14:                           [𝒙𝒌, 𝑷𝒌] ← 𝑬𝑲𝑭𝒔𝒕𝒆𝒑 (𝒖𝒌−𝟏, 𝒚𝒌, {𝓧̂𝒌−𝟏
𝒊 , 𝒘𝒊}

𝒊=𝟏

𝒏𝒔
, 𝑷𝒌−𝟏) 

15:                     end for 

16:                     𝒚̂𝝀 ← 𝒇({𝒙𝒌}𝒌=𝟏
𝑵𝝀 , 𝒖𝝀) 

17:                     𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓,𝒒 ← 𝑹𝑴𝑺𝑬(𝒚𝝀, 𝒚̂𝝀) 
19:            end for 
20:         end for 
19:     end for 

21:     𝝑𝒐𝒑𝒕𝒊𝒎𝒖𝒎
𝝀 ← 𝒎𝒊𝒏(𝑹𝑴𝑺𝑬𝒋,𝒔,𝒕) 

22: end for 
Where 

𝑬𝝀 = Amount of prediction time instants. 

𝒙𝝀
𝟎 = The initialization of the hidden states at prediction time instant 𝝀. 

𝒚𝝀 = Observations at prediction time instant 𝝀. 

𝒖𝝀 = The inputs of the observation equation on the test data set 𝒇 at prediction time instant 𝝀. 

𝑵𝝀 = Amount of learning points at prediction time instant 𝝀. 

𝜽 = The entire hyper-parameter grid. 

𝐪 = Covariance of the process. 

𝐫 = Covariance of the measurement. 

𝒌𝒊 = A free variable that determines the scaling factor. 

𝒏𝒔 = The amount of sigma points. 

𝓧̂𝒌
𝒊  = The 𝒊th sigma point at time instant 𝒌. 

𝒘𝒊 = The weight of the 𝒊th sigma point. 

𝑷𝒌 = The covariance matrix at time instant 𝒌. 

𝝑𝒙 = The grid of the hyper-parameter 𝝈𝒙. 

𝒙𝒌
𝒊  = The hidden state of 𝒊 particle at time instant 𝒌. 

𝒘𝒌
𝒊  = The weight of the hidden state of 𝒊 particle at time instant 𝒌. 

𝒙𝒌 = most probable hidden state at time instant 𝒌. 

𝒚̂𝝀 = prediction of the system’s output at prediction time instant 𝝀 on the validation data set. 

𝑹𝑴𝑺𝑬𝒋,𝒔,𝒓 = Root Mean Square Error in each iteration of the grid search optimization. 

𝝑𝒐𝒑𝒕𝒊𝒎𝒖𝒎
𝝀  = The optimum hyper-parameters at prediction time instant 𝝀. 

Algorithm 19: Parametrization of the Unscented Kalman Filter. 

5.2.3.4 Results 
The trials described in Table 139 are simulated. For that, some common simulation variables are 

defined based on experience and on the literature [115][117], see Table 149. 

Parameters Value Description 

𝑇𝑚𝑖𝑛 10% Minimum training data set (𝑁(1) + 𝐿). 

𝛽 50% The minimum acceptable probability mass [117].  

𝛼 5% The relative error [115]. 

𝐿 4% Validation data set. 

𝐸𝑂𝐿 7/8 End of Life time instant situation on the data set. 

∆𝜆 1 The delta from one time instant to the next one. 

Table 149: Simulation variables 
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The achieved prognosis results in all the trials are summarized thanks to tables that gather the 

obtained evaluation metrics and the figures that assist the qualitative evaluation of the obtained 

metrics. On one hand, Table 150 synthetizes just on three metrics the timeliness, precision, accuracy 

and the computational burden thanks to the Prognosis Horizon (PH), Convergence of the Relative 

Accuracy (CRA) and FLOP count. On the other hand, the Table 164, Table 165, Table 166 and Table 

167 placed on “Annex 1” gathers all the details about the accuracy, precision and timeliness of the 

algorithm response at each tested prediction-time-instant. Those tables are considered as additional 

documentation because of the lack of synthesis (there are too many values that hinder the 

evaluation). In this scenario, a qualitative aid was proposed in form of a figure that displays the PH 

and α-λ accuracy, see Figure 108. 
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Test PH CRA FLOP counts 

1 129 65.2671 54 59 580 

2 103 71.0676 4 289 670 

3 128 84.1564 2 379 860 

4 102 69.7007 1 869 890 

Average 115.5 72.54 3 499 750 

Table 150: The obtained evaluation metrics of Particle Filter on all training data sets 

Test 1 

 

Test 2 

 
Test 3 

 

Test 4 

 
Figure 108: PH and α-λ accuracy visualization of the evaluated Particle Filter 
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Test PH CRA FLOP counts 

5 94 57.6241 933 408 615 

6 45 77.9644 360 141 100 

7 94 74.8617 933 408 615 

8 99 72.9784 360 141 100 

Average 83 70.85 646 774 857 

Table 151: The obtained evaluation metrics of Gaussian Process on all training data sets 

Test 5 

 

Test 6 

 
Test 7 

 

Test 8 

 
Figure 109: PH and α-λ accuracy visualization of the evaluated Gaussian Process 
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Test PH CRA FLOP counts 

9 78 42.2972 75 600 

10 97 66.8369 59 400 

11 76 32.2774 10 360 

12 100 68.8150 8 140 

Average 87.75 52.55 38 375 

Table 152: The obtained evaluation metrics of Extended Kalman Filter on all training data sets 

Test 9 

 

Test 10 

 
Test 11 

 

Test 12 

 
Figure 110: PH and α-λ accuracy visualization of the evaluated Extended Kalman Filter 
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Test PH CRA FLOP counts 

13 78 60.5296 1 209 600 

14 68 66.9505 950 400 

15 73 29.5973 165 760 

16 103 70.4614 130 240 

Average 80.5 56.88 614 000 

Table 153: The obtained evaluation metrics of Unscented Kalman Filter on all the training data sets 

Test 13 

 

Test 14 

 
Test 15 

 

Test 16 

 
Figure 111: PH and α-λ accuracy visualization of the evaluated stochastic Unscented Kalman Filter 
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5.2.4 Comparison 

The average values of the evaluated stochastic algorithms applied on a lithium ion battery prognosis 

problem with different levels of uncertainty are gathered in Table 155. 

Test PH CRA FLOP counts 

Particle Filter 115.5 72.54 3 499 750 

Gaussian Process 83 70.85 646 774 857 

Extended Kalman Filter 87.75 52.55 38 375 

Unscented Kalman Filter 80.5 56.88 614 000 

Table 154: The average evaluation metrics of the evaluated 4 stochastic algorithms 

In average, the Particle Filter has the highest Prognosis Horizon and the Extended Kalman Filter has 

the lowest Convergence of the Relative Accuracy and the lowest FLOP counts. This means that in an 

average sense: 

 The Particle Filter is the stochastic algorithm among the evaluated ones that can predict 

accurately the earliest. The minimum data points that the Particle Filter requires for accurate 

estimations is the lowest among the tested stochastic algorithms. 

 The Extended Kalman Filter is the stochastic algorithm among the evaluated ones that has 

the greatest accuracy improvement potential. The increase rate on the accuracy level that 

the Extended Kalman Filter achieves respect to the increase of the training data points is the 

greatest among the evaluated algorithms. 

 The Extended Kalman Filter is the stochastic algorithm among the evaluated ones that has 

the lowest computational cost. 

In an average sense, the most interesting prognosis stochastic algorithm at early prognosis is the 

evaluated Particle Filter configuration when there is no computational restriction. The evaluated 

Particle Filter configuration needs to do 3 million simple numerical operations to get just one 

prediction. This amount of numerical operations could be critical on On-board prognosis solutions but 

it is not on off-board applications. On the other hand, at late predictions would be the Extended 

Kalman Filter since it shows the greatest accuracy improvement when increasing the training data 

points. Besides, the Extended Kalman Filter has the lowest computational cost among all the 

evaluated algorithms, which makes it interesting for on-board applications. 

Checking on the best cases, the highest Prognosis Horizon value is obtained with the Particle Filter, 

the low uncertain data set and the low uncertain prior knowledge; the lowest Convergence of the 

Relative Accuracy is obtained with the Unscented Kalman Filter (close to the minimum value 

obtained with the Extended Kalman Filter with the trial configuration), the low uncertain data set and 

the high uncertain prior knowledge (simplest model); and the lowest FLOP count is obtained with the 

Extended Kalman Filter, the high uncertain data (shorter data set) set and the high uncertain prior 

knowledge (simplest model). The results show that the highest timeliness is obtained with the 

Particle Filter, the highest correctness improvement is obtained with the Unscented Kalman Filter 

close to the values obtained with the Extended Kalman Filter and the lowest computational cost has 

the Extended Kalman Filter. These results are aligned with the ones obtained in an average sense. 

The Prognosis Horizon is delimited by the initial remaining useful life; this is why the highest value is 

obtained with the larger data set (the low uncertain data set). On the Extended Kalman Filter, the 

maximum prognosis horizons are obtained with the smaller data set (the high uncertain data set), but 

the maximum obtainable Prognosis Horizon resides on the larger data set, as shown in the Particle 

Filter. 

On the same hand, the convergence of the relative accuracy depends on the evolution of the 

obtained accuracy. Initial low accuracy and final high accuracy leads to have a low convergence 

value. The lower Convergence of Relative Accuracy values are obtained on the tests 11 and 15, 

which shows real high initial errors and low final errors, see Figure 112. The contrary increases the 

convergence. There could be cases with high accuracy estimations at every prediction-time-instants 

and have low convergence values, since they do not experience an improvement with the time. The 
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maximum Convergence of Relative Accuracy is obtained on test 3, which in a first glance it is the test 

with the most uniform and stable predictions (it has the lowest maximum errors on the lowly accurate 

predictions) and the one with the lowest initial errors (it has the highest Prognosis Horizon). However, 

test 3 has not as many highly accurate values as test 1 (the accuracy is kept similar all the prediction 

time instants). This means that the actual accuracy level is not shown by this metric, but rather the 

relative difference between the initially obtained accuracy values and the ones obtained lastly. 

Therefore, this metric does not defines the correctness but rather the improvement potential. 

Test 11 

 

Test 15 

 
Figure 112: Illustrative example of the Remaining Useful Life predictions that are out of the displayed 

window. 

As for the flop counting on the evaluated Stochastic Filters, the simplest prior knowledge and the 

smaller data set leads to the lower value (low uncertain data set and low uncertain prior knowledge). 

In case of the evaluated stochastic process (Gaussian Process), the complexity of the prior 

knowledge does not affect the computational burden of the algorithm. The prior knowledge is 

counted as 1 numerical operation indifferently to the used expression (exponential and lineal 

equations are considered as a unique numerical operation). This is why the FLOP count is kept the 

same on tests 6-8 and tests 5-7. 

Checking on the qualitative figures in general, firstly, it can be seen that there is a clear effect on the 

uncertainty of the utilized data set. All the tests with the low uncertain data set gather more remaining 

useful life estimations inside the Prognosis Horizon boundaries than the tests run with the high 

uncertain data set. This means that the quality of the data determines greatly the accuracy level the 

evaluated prognosis algorithms will be able to obtain. 

Secondly, it can be seen that in general the Prognosis Horizon is not determining what theoretically it 

determines, at least on most of the run tests. There are tests with high Prognosis Horizon values but 

with huge prediction errors from this point onwards. This metric should indicate the prediction-time-

instant from which the predictions are done inside the boundaries of the Prognosis Horizon, but the 

figures show that this is only happening on the tests 11 and 15, where the accuracy of the predictions 

is kept almost always inside the Prognosis Horizon from the calculated Prognosis Horizon onwards. 

The rest have punctual accurate predictions with huge amount of continuous inaccurate predictions, 

especially on the tests run with the high uncertain data set. 
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Thirdly, it can be seen that the evaluated stochastic Filters (the Particle Filter, the Extended Kalman 

Filter and the Unscented Kalman Filter) shows a lower dispersion of the obtained remaining useful 

life estimations respect to the real remaining useful life with the simplest aging model (high uncertain 

model). The estimations done with the linear model shows less maximum errors than the estimations 

done with the double exponential model (low uncertain prior knowledge). This is attributed to the 

sensibility of the filtered hidden states. A slight change on the filtered hidden states of the double 

exponential equation has a great effect on the final remaining useful life estimation, what could lead 

to have punctual increased estimation errors. 

And fourthly, the figures of the tests from 5 to 16 show some prediction-time-periods without 

visualization of the realized remaining useful life estimations. This issue is checked on the un-

synthetized metrics. It has been detected two possible cases. On the first cases, there are some 

remaining useful life estimations that are out of the defined visualization window. It is especially 

appreciable on the tests 11 and 15, see Figure 112. On the second cases, the generated 

extrapolations show a growing behavior. On those cases, the end of life threshold is not crossed and 

therefore there is not a mathematical result for the remaining useful life prediction. These cases are 

put on black on the un-synthetized tables and the prediction-time-instants with no result are 

displayed on Figure 113. These results show how odd events that happen at the initial observations 

or odd events that generate a huge change on the evolution of the observed system could lead to 

incongruities on the evaluated stochastic algorithms. 

  
Figure 113: Conflictive points 

To sum up, the best candidate for early predictions is the Particle Filter; the best candidate to 

achieve a uniform accuracy level is the Particle Filter used with a simple mathematical expression; 

the best candidate for late predictions is the Unscented Kalman Filter; and the best candidate for on-

board prediction is the Extended Kalman Filter. 

5.2.5 Validation 

The prediction algorithm will solve the loss of reliability of the constructed aging models. The 

proposal consists on correcting and improving the constructed aging models with data obtained from 

the real life application. 

The selected case scenario is the test 8, which has mixed operation conditions. The aging paths of 

the health indicators of the test 8 have been already modelled using the data from the tests 5, 6 and 

7 on the validation section of the “Sizing Energy Storage Systems” chapter. Explicitly, the prediction 

algorithm is applied on the pure ohmic resistance evolution. The pure ohmic resistance on test 8 

suffers an unexpected decrease on the second check-up, which cannot be described by the 

constructed aging model. The proposed pure ohmic resistance increase aging model has a 

monotonic characteristic, so it cannot describe a resistance decrease event (an odd event in the 

point of view of the proposed model). As a consequence, it ends committing huge prediction errors. 

This thesis proposes to apply a prognosis algorithm to eliminate, or at least reduce, the effect of 

those odd events on describing the aging behaviour of the system. 

The best applicable algorithm on this case would be an algorithm that obtains early accurate 

predictions since the odd event happens in between the first and second observations. On the same 
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hand, the prediction algorithm is applied off-board, so there is not a computational restriction. On this 

scenario, the most appropriate stochastic algorithm among the evaluated ones would be the 

evaluated Particle Filter configuration. 

Once the prediction algorithm is selected, how this algorithm is applied must be determined. For that, 

the input, the algorithm configuration and the parametrization of the algorithm are analysed. 

The input is composed by data and prior knowledge. The data, on this use case, consists on the pure 

ohmic resistance observations done on test 8. The prior knowledge consists on the knowledge that 

describes the evolution of the observations. For this study, this knowledge has been defined as the 

calculated aging path of test 8 on the “Sizing Energy Storage Systems” chapter instead of the 

constructed aging model itself. The calculated aging path has been selected above the aging model 

in order to prove that the calculated aging path would have been able to describe the aging observed 

on test 8 if there were not an odd event. 

In addition to this, due to the characteristics of the Particle Filter, a state space model needs to be 

constructed as part of the prior knowledge. On this case, the calculated aging path is used instead of 

the aging model itself. This means that there are not variables that can be used as the hidden 

variables required on a state space model such as the used on the evaluation section. The prior 

knowledge on this case is given in form of data. On this scenario, the aging variables are not 

modified. Instead, the improvement is believed to come from the correction of the initial value. The 

initial pure ohmic resistance value is left as the free variable on the prediction environment. The 

approach is described by Eq. (112). 

𝑅 = 𝑅𝑖𝑛𝑖 + 𝑅𝑝𝑎𝑡ℎ (111) 

𝑅𝑖𝑛𝑖,𝑘+1 = 𝑅𝑖𝑛𝑖,𝑘 + 𝑢𝑘 (112) 

Parameters Description 

𝑅 The most probable pure ohmic resistance. 

𝑅𝑖𝑛𝑖 The initial value of the pure ohmic resistance. 

𝑅𝑝𝑎𝑡ℎ The calculated pure ohmic resistance evolution of test 8. 

𝑢𝑘 The state space model’s noise at time instant 𝑘. 

Table 155: The mathematical framework to apply the Particle Filter on test 8 

The algorithm configuration would be the same as the one determined on this evaluation section: a 

simple Particle Filter used along with a Systematic resampling method. An initial parameter definition 

step has been done based on experience and on the literature [144]. The defined parameters are 

resumed in Table 156. 

Parameters Value Description 

𝜌 500 Particle quantity [144]. 

𝑁𝑇 50 Resampling threshold % respect to the particle quantity. 

Table 156: Affecting parameters on the Particle Filter 

The odd event happens between the first and second observations. The odd event has already 

happened for the third observation and the evolution of the pure ohmic resistance from the second 

and third observations is aligned with the calculated aging path. Therefore, the third observation has 

been selected as the prediction time instant. 

On this case, the amounts of observations used for the selected prediction time instant are only 

three. There are not enough data points to apply the proposed parametrization method (it requires 

having some data points for the selection of the hyper-parameters). The algorithm is parametrized 

based on the gathered experience with the application of the proposed parametrization method on 

NASA’s data sets, see Table 157. On one hand, we have the initial and posterior variances of the 

state model’s Gaussian noise. Those two variances can be related with the amplitude of the error on 

the estimations; the proposed expression can be transformed into a linear stochastic expression 
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where the uncertainty is expressed by the hidden variable; its variance could be assumed to be the 

variance of the error. There is an error below 10 between the estimated and observed second 

relative pure ohmic resistance value. Therefore, their variance is set between 1 and 2. On the other 

hand, we have the variance of the observation model’s Gaussian noise. The observations are 

supposed to be accurate. Therefore, this hyper-parameter is set to a much lower value than the 

observed values. 

Parameters Value Description 

σ𝑢 1.54 The variance of the posterior state model’s Gaussian noise. 

σ𝑣 0.0370 The variance of the observation model’s Gaussian noise. 

𝜎𝑖𝑛𝑖 1.73 The variance of the initial state model’s Gaussian noise. 

Table 157: Hyper-parameters on the Particle Filter applied on the validation 

The algorithm has been applied on the defined framework and the prediction has been done, see 

Figure 114. 

 
Figure 114: Correction of the calculated aging path of the pure ohmic resistance evolution of test 8 with 

a Particle Filter prognosis algorithm 

The results show that the estimated aging path accuracy increases significantly with the addition of a 

prediction algorithm and that the effect of odd events can be practically erased from the real aging 

path. On the same hand, the results prove that the response of the constructed aging model is able 

to describe the aging behaviour of the pure ohmic resistance evolution and therefore, the second 

hypothesis on the “Sizing Energy Storage Systems” chapter is validated. 

5.3 Sudden performance decay prediction 

The proposed aging model assumes that the aging mechanisms behind the evolution of the modelled 

health indicators don’t change in the future. The proposed aging models can only extrapolate the 

same trends observed on the training data sets. They cannot guess unobserved performances. 

However, many studies point to the incorrectness of this assumption [145][146]. The extrapolation of 

the observed aging trends on the validation section of “Sizing Energy Storage Systems” chapter has 

exhibited this phenomenon. There are cases that aging trend changes appear. 

The aging trend is physically produced by many different aging mechanisms that coexist inside the 

cell, see Figure 115. The proper determination and modelling of these aging mechanisms is complex 

and their effect cannot be de-convoluted at will. Besides, the effect of some aging mechanisms are 

not observable until certain condition is met (their effect is hidden until a cumulative deterioration 

surpasses some threshold [27]). In this scenario, there is no easy way to properly determine the 

contribution of each aging mechanism on the performance decay of the cell. 

A complex electrochemical model that describes all the chemical reactions that generate the 

performance decay of the cell would solve any problem related with extrapolations, but this is out of 

the scope of this thesis. Instead, this thesis proposes to fill the data sets with enough data to avoid 

extrapolations. This way, there will not be any unobserved aging trends and the error will be 

decreased significantly. There are two options to achieve this. The first option consists on increasing 

the data sets by lengthening the testing time. This is the ideal case. The data sets are increased to 

levels where the extrapolation is not demanded. Nonetheless, there are cases where the time 

required to get that data could be unaffordable, such as in the case of the data gathered from the 
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evaluated High-Power battery (after testing them for 3 years, the degradation is less than 5% on all 

the cases). For those cases, a second option is proposed, which consists on filling artificially the data 

sets. 

 
Figure 115: The different degradation modes of a lithium ion cell [31]. 

Electrode level data, also referred as Half-cell data, is used to generate the data required to fill the 

training data sets of the aging model. The data from the negative electrode is expected to be relevant 

enough to predict the change of the aging rate and to model it. For that, Half-cell data is required. 

However, the Half-cell data is obtained from building coin cells that contain samples of the selected 

battery and the data is obtained from destructive tests (the cell is opened and chopped), which 

means that Half-cell data cannot be obtained on the check-ups of an aging test. As a consequence, 

Half-cell data at a fresh state and the full-cell observations done at the check-ups need to be 

correlated. This is done by the fitting of the convoluted positive and negative OCV profiles. From the 

fitting, health indicators are recorded and modelled with which the artificial data is generated.  

5.3.1 Electrode level data acquisition 

Electrode level data cannot be obtained from the cell itself. The responses of the electrodes are 

convoluted on the response of the full cell and they cannot be separated intuitively. Besides, there is 

a destructive measurement methodology behind the acquisition of this kind of data, impeding the 

acquisition of this kind of data on intermediate checkups of the aging test. This is why this type of 

data is solely extracted from fresh cells (cells at the SOH delivered by the battery supplier) or dead 

cells (cells that have already finished an aging test). This thesis focuses on obtaining electrode level 

data at a fresh state and assumes that the main characteristics of the electrode are kept invariant. 

The proposed electrode level data acquisition methodology consists on constructing a testable one 

electrode level cell from which that electrode level data can be obtained. In this scenario, coin format 

small cells are built by facing samples of each electrode against lithium. In this way, the effect of 

each electrode is isolated. For that, firstly, the battery is opened in a safety environment (destructive 

measurement process) [147][148]; secondly, samples of the electrodes are extracted and processed 

[148]; and thirdly, the coin cells are mounted [149][150]. The know-how of the whole process 

required to build coin cells with samples of electrodes taken from a commercial cell is described by 

chemists on the literature [147][148][149][150] (the construction of coin cells is systematic and well-

known by CIDETEC). The main steps are the following ones: 

- Cut the part of the holder of the battery that has no contact with the electrodes. 

- Retire the excess of electrolyte. 

- Retire completely the holder by twisting it. 

- Chop the electrodes. 

- Wash the chopped parts with typical electrolyte solvents such as DMC [148]. 
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- Dry the chopped electrodes. 

- Retire the active material on one side of the chopped electrodes. Depending on the solution, 

the active material needs to be removed with water or with a dissolvent (NMP) [151]. 

- Dry the chopped electrodes. 

- Die-cut cylindrical samples of the electrodes. 

- Die-cut cylindrical lithium samples. 

- Build the coin cells with the electrodes samples and the lithium samples. 

Once the coin cells are constructed, these coin cells are tested. A close to equilibrium OCV 

measurement test is performed to measure the OCV of each electrode. The voltage window defined 

on these tests are kept the same on each composition of electrode (every coin cell with graphite 

based negative electrode is tested from 2.5V to 0V). However, the current applied on these tests is 

chemistry and size dependent. The current density (or current rate) that experiences the electrode 

needs to be the same on both tests: the test done at commercial cell and the test that will be done at 

coin cell. The current rate applied to the commercial cell is 20 times smaller than the nominal current 

rate (C/20). The current rate applied on the coin cell must be the same, 20 times smaller than the 

nominal current rate, but in this case the current rate refers to the coin cell’s current rate.  This 

current rate needs to be calculated. This calculus is done by multiplying the mass and the theoretical 

specific capacity of the active material used on the coin cell.  

Then, the tests are performed. An example of an OCV profile of a commercial graphite-LMO cell and 

the OCV profiles that belong to the electrodes of that same commercial graphite-LMO cell is shown 

in Figure 116 and Figure 117. 

 
Figure 116: Charge full-cell and half-cell OCV profiles of a fresh SAMSUNG 18650 26F battery. 

 
Figure 117: Discharge full-cell and Half-cell OCV of a fresh SAMSUNG 18650 26F battery. 

5.3.2 Electrode level health indicator estimation 

The half-cell test is a destructive type test. Electrode level data cannot be obtained on middle 

checkups of an aging test. As a consequence, the tracking of the health indicators of the electrodes 

cannot be observed directly. Instead, it needs to be estimated based on observations done on the 

checkups. 
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This thesis proposes to use the observed full-cell OCV profiles to estimate the health indicators of the 

electrodes. For that, a quadratic optimization environment is developed where the error between the 

convolution of the electrode level OCV profiles and the observed full-cell OCV profile is minimized. 

The convolution of both electrode level OCV profiles requires a scaling factor (describes the 

proportion and dimension mismatch of electrodes by adjusting the stoichiometric window) and a 

balancing factor (describes the start and the end of the voltage window of each electrode) [152][153], 

see Eq. (113) and (114). These two convolution factors are used as the free variables on the 

optimization environment and as the health indicators of the electrodes. The evolution of these 

variables is faced against a health indicator of the full-cell: the decay of the dischargeable capacity. 

Thanks to this, the health indicators of the half-cells and the full-cell are correlated, see Figure 118. 

𝑂𝐶𝑉𝑐𝑒𝑙𝑙(𝑡) = 𝑂𝐶𝑉𝑀𝐴𝑛𝑜(𝑡) − 𝑂𝐶𝑉𝑀𝐶𝑎𝑡(𝑡) (113) 

𝐴𝐻𝑀𝑥(𝑡) = 𝑠𝑐𝑎𝑙𝑒𝑥 ∙ 𝐴𝐻𝑥(𝑡 + 𝑜𝑓𝑓𝑥) (114) 

Parameters Description 

𝑂𝐶𝑉𝑐𝑒𝑙𝑙(𝑡) The Open Circuit Voltage of the full cell at time instant 𝑡. 
𝑂𝐶𝑉𝑀𝑥 The modified Open circuit Voltage of the electrode 𝑥, being 𝑥 anode (𝐴𝑛𝑜) or cathode (𝐶𝑎𝑡). 

𝐴𝐻𝑀𝑥(𝑡) The modified cumulative capacity at time instant 𝑡 of electrode 𝑥. 

𝑠𝑐𝑎𝑙𝑒𝑥  The shrink factor or scaling factor of the electrode 𝑥. 

𝑜𝑓𝑓𝑥  The offset or balancing factor of the electrode 𝑥. 

Table 158: Convolution of both electrode level OCV profiles 
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Figure 118: Evolution of the Electrode level Health Indicators. The blue line refers to Test 5, the red line 

refers to Test 6, the yellow line refers to Test 7 and the purple line refers to Test 8. 

5.3.3 Electrode level health indicator modelling 

The Mechanistic aging models are the typical models that employ Half-cell data as an input 

[154][155]. Mechanistic aging models are supported by half-cell information with the aim of identifying 

and quantifying the degradation mechanisms [35]. 

Dubarry et al. [35] proposed a mechanistic model composed of 2 layers: a sub-layer and a top layer. 

The sub-layer describes the electrode behavior by half-cell modules modelled by equivalent circuit 

approaches. It can handle electroactive ohmic resistance increase, faradic rate degradation and 

formation of parasitic phases. The top layer assemble the two electrodes into a full cell configuration 

taking into account the electrode composition and loading ratio matching (similar to the offset and 

scaling factors used on ‘Electrode level health indicator estimation) [35]. 

Marongiu et al. [156] developed a mechanistic model based on the online collection of information 

relative to the characteristics of the plateaus of the voltage curve to describe degradation modes [18]. 

The length of the plateau represents sufficient information in order to calculate the battery capacity. 

Birkl et al. [31] proposed a mechanistic degradation model based on a semi-empirical OCV model 

developed by Birkl et al. [78]. This degradation model aims to estimate the extent of the different 

degradation modes at any point in a cell’s life by fitting the cell’s OCV. For that, Birkl et al. assumed 

that the parameters of the OCV model remain unaltered and that the degradation does not impact 

the individual phases of the electrode materials in different ways. 

The mechanistic aging model approach offers unique high-fidelity simulation to address path 

dependency of the battery degradation [31]. However, the mechanistic model requires good 

understanding of battery degradation processes and failure mechanisms (out of the scope of the 

thesis to determine and quantify the contribution of each battery degradation process). 

In this scenario, this thesis proposal consists on modelling the trends of the extracted Health 

Indicators of the electrodes. In concrete, the health indicators that show a clear trend: the scaling 

factor of the anode OCV profile at discharge and the scaling factor of the cathode OCV profile at 

charge. The model is built following the methodology described in the ‘Aging: Testing and Modelling’ 

chapter, specifically the modelling methodology described on the phase 1. Some example results are 

displayed in Figure 119. 
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a) 

 

b) 

 
Figure 119: Models of the health indicators obtained from the Half-cell data. A) refers to the scaling 

factor of the anode at discharge and B) refers to the scaling factor of the cathode at charge. 

5.3.4 Artificial data generation 

The proposal of generating data in an artificial way consists on transposing the modelled trends of 

the half-cell health indicators to the trends of the full-cell health indicators. However, this is not a 

trivial task. In this scenario, this artificial data generation proposal has focused on developing the 

bridge of a specific case rather than finding a common rule. The case under evaluation is found on 

the tests 5 and 6, where a significant increase of the error on extrapolations in time appears. 

The results from modelling the scaling factors of the anode at discharge and the anode at charge 

show that is likely that test 5, 6 and 7 have the same behavior at electrode level. The trends 

observed on the negative electrode at discharging and on the positive electrode at the charging are 

practically identical, the longest observed case being the test 7. Based on this, it could be assumed 

that the aging behavior of the cells from the tests 5 and 6 will have the same trend changes at the 

same deterioration levels as the cell from the test 7. This could be translated to a common aging 

master curve [95] for those three tests based on the observation done on the test 7, see Figure 120. 

 
Figure 120: Aging master curve of tests 5, 6 and 7 taken from test 7. 

The data we lack is generated from this aging master curve. The changes of the aging rate will come 

at the same deterioration levels. Nonetheless, the required discharged energy to generate the same 

deterioration level is not the same. Each test has its degradation speed, which can be described by a 

scale factor and an initial offset between the different aging paths, see Eq.(115). The equation is 

placed on a quadratic optimization environment solved with the function “lsqcurvefit” of MATLAB. The 

obtained initial offsets and scale factors are gathered in Table 160. 

𝑌𝑖 = 𝑜𝑓𝑓𝑠𝑒𝑡𝑖 + 𝑌𝑀𝐴𝑆𝑇𝐸𝑅 

𝑋𝑖 = 𝑋𝑀𝐴𝑆𝑇𝐸𝑅 ∗ 𝑠𝑐𝑎𝑙𝑒𝑖 
(115) 

Parameters Description 

𝑌𝑖 The relative dischargeable capacity values of test 𝑖 obtained from the master curve. 

𝑋𝑖 The equivalent cycles of test 𝑖 corresponding to the calculated 𝑌𝑖. 
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𝑜𝑓𝑓𝑠𝑒𝑡𝑖 The initial offset of the test 𝑖. 
𝑠𝑐𝑎𝑙𝑒𝑖 The scaling factor that connects the aging master curve with the aging path of test 𝑖. 
𝑌𝑀𝐴𝑆𝑇𝐸𝑅 The relative dischargeable capacity values of the aging master curve of tests 5, 6 and 7. 

𝑋𝑀𝐴𝑆𝑇𝐸𝑅 The equivalent cycles of the aging master curve related with 𝑌𝑀𝐴𝑆𝑇𝐸𝑅. 

Table 159: Scaling equation 

 Scale factor Offset 

Test 5 1.78 -5.92 

Test 6 1.62 -6.68 

Table 160: Scaling variables of test 5 and 6 

Once the scale factors are obtained, the aging master curve is applied and the lacking data is 

obtained, see Figure 121. 

 
Figure 121: Lengthened data sets of test 5 and 6. 

5.3.5 Validation 

The correctness of the artificially generated data is studied in this case. The extrapolation errors 

generated with the constructed aging model on the validation section of the “Sizing Energy Storage 

Systems” chapter are corrected with the construction of aging models with the lengthened data sets 

of the tests 5 and 6. For that, the dischargeable capacity evolution and the discharged energy are 

modelled following the steps detailed on the first phase of the proposed aging modelling 

methodology. 

The first phase of the proposed modelling methodology consists on choosing the mathematical 

expression that fits better the dischargeable capacity. The tested mathematical expressions are 

shown in Table 161. 

Aging Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Cycling x x x x x 

Table 161: Selection of mathematical expressions that can be applied to describe the aging trend of the 

dischargeable capacity evolution 

The fitting accuracy is measured with the Root Mean Square Error (RMSE) metric between the 

measurements and the estimation done with the fitted mathematical expression. This metric has 

been calculated on the artificially lengthened tests 5 and 6 for the dischargeable capacity evolution, 

see Table 162. 

 Linear Exponential Logarithmic Power type 2
nd

 order polynomial 

Test 5 0,01345 0,02069 0,09611 0,01033 0,00867 

Test 6 0,01200 0,02172 0,09708 0,00972 0,00797 

Table 162: Fitting RMSE of the lengthened dischargeable capacity evolution data sets of the tests 5 and 6 

The fitting of the data of the dischargeable capacity evolution shows that the mathematical 

expression that fits better all the results is the 2
nd

 order polynomial. However, the power type 

equation has been selected because between the power type equation and the 2
nd

 order polynomial 

there is less than an increase of 50% and because the power type equation has been used on the 

rest constructed aging models. The reconstructed cycling aging models are added linearly in a 
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complete new aging model, see Eq. (74). The aging on test 12 is estimated and displayed in Figure 

122. 

𝑄 = 𝑄𝑖𝑛𝑖 − (1.16𝑒
−5 ∙ 𝑐𝑦𝑐1

1.23 + 2.12𝑒−5 ∙ 𝑐𝑦𝑐2
1.17 + 4.16𝑒−6 ∙ 𝑐𝑦𝑐3

1.44) (116) 

Parameters Description 

𝑄 The dischargeable capacity. 

𝑄𝑖𝑛𝑖 The dischargeable capacity value at Beginning of life (initial value). 

𝑐𝑦𝑐𝑖 The discharged energy in Ah related to the test 𝑖 + 4. 

𝑅 The pure ohmic resistance. 

𝑅𝑖𝑛𝑖 The pure ohmic resistance value at Beginning of life (initial value). 

Table 163: Parameters of the reconstructed complete aging model 

 
Figure 122: Comparison of the observed dischargeable capacity evolution in the test with dynamic 

operation conditions (dots) and the estimated one with the complete aging model (stars) with artifial data 

points. 

The results show an improvement of predictions on extrapolated values in time. The error on the last 

extrapolation in time has been reduced by 33%. Nonetheless, it is still far from perfection since there 

is still a huge estimation error (an error of 10%). 

5.4 Conclusions 

This chapter aims at increasing the accuracy of the constructed aging models. For that, two types of 

sources on the prediction error are evaluated. Firstly, the contribution on the prediction error of 

deviations on the expectations is evaluated. Specifically, the deviation on the monotonic performance 

expectation of the system is evaluated. The reduction of the pure ohmic resistance and the raise of 

the dischargeable capacity are events that the proposed aging model cannot describe. In this 

scenario, the solution is thought to come from updating the calculated aging path with data from the 

real application. Early measurements of the modelled health indicator are used to minimize the 

prediction error due to this kind of event. For that, a prognosis algorithm is required. There are many 

different prognosis algorithms, and there is no specific algorithm that overcomes the rest in 

performance. The algorithms need to be evaluated based on the adaptation rate of the algorithm to 

the application in order to determine the most appropriate algorithm. We need to select the best 

candidate for our application. This is why an evaluation framework is developed and afterwards 

applied to the identified most relevant prognosis algorithms on lithium ion battery remaining useful life 

problems: Particle Filter and Gaussian Process. In addition to these most relevant prognosis 

algorithms, the Extended Kalman Filter and the Unscented Kalman Filter are also evaluated. The 

evaluation framework consists on calculating 7 quantitative metrics and a qualitative diagram. The 

results have shown that the evaluated Particle Filter configuration gets the earliest accurate 

predictions, that the Particle Filter gets the most stable predictions, that the Unscented Kalman Filter 

has the greatest improvement rate on the achievable prediction accuracy and that the Extended 

Kalman Filter has the lowest computational cost. These results can be interpreted as being the 

algorithms based on Kalman Filter more appropriate for posterior estimations; and the Particle Filter 

more appropriate for prediction and prognosis. 

Secondly, the contribution of uncomplete aging data sets on the prediction error is evaluated. There 

is a significant prediction error when extrapolating in time an aging path that suffers an unobserved 

aging trend change.  On those cases, the gathered data is considered not enough to describe the 

aging behaviour of the system when extrapolating in time. Data that shows the change of the aging 
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trend is required. For that, a methodology that generates artificially the lacking data is introduced. 

The proposed methodology is based on the correlation of the state of health of the electrodes with 

the state of health of the full-cell. This approach uses the OCV profiles of fresh electrodes and the 

OCV profiles of the full-cell observed at different check-ups (at different state of healths). The trends 

detected on the health indicators of the electrodes are transposed to the health indicators of the full 

cell, generating like this the lacking data. The methodology has been applied to the data gathered on 

the aging tests 5 and 6. In particular, some dischargeable capacity values below 80% have been 

generated on those data sets. As a result, the constructed model achieves higher prediction 

accuracy on the last predicted value. 
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CHAPTER 6: 

6 Conclusion and Future Research 

Lines 
 

This chapter presents the main conclusions already drawn all along this thesis. After the conclusions, 

a section with the future research lines is developed. 
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6.1 Conclusion 

The main objective of this thesis consists on determining accurately the most profitable size of an 

Energy Storage System based on lithium ion batteries considering the lifespan of the batteries. In 

order to meet this objective, this thesis presents the development of all the necessary elements on a 

simulation environment where the levelized costs of a set of size values are calculated. The 

proposed methodology is shown in Figure 7. 

Firstly, the methodology to calculate the combinational value of some Health Indicators at which the 

battery stops fulfilling the requirements defined by the application is presented (the End of Life). In 

this case, the health indicators of interests are the dischargeable capacity decrease and the pure 

resistance increase It has been validated that the constructed End of Life map with the selected 

Health Indicators is able to determine accurately the real End of Life of the battery, showing that the 

most restrictive and significant health indicator is the dischargeable capacity decrease. Therefore the 

intuitive hypothesis that the End of Life of a battery is application dependent has also been validated. 

Secondly, the health indicators of interest, the dischargeable capacity decay and the pure ohmic 

resistance increase, are modelled based on the most relevant stress factors. The methodology to 

acquire the aging data and the construction of the posterior empirical models are presented. The 

whole methodology has been tested on a High-Power and on a High-energy application. 

On one hand, the methodology used to generate the aging test matrix has been evaluated. It has 

been seen that a proper aging analysis contains just too many testing cases. It is necessary to 

reduce the required amount of testing cases. As a consequence, hypotheses about the aging 

behaviour that allows to reduce the amount of testing cases needs to be adopted. The final sizing 

results will be conditioned by the assumed hypotheses. In case those are not correct, the constructed 

aging model will not give accurate results on the operation conditions. Therefore, those hypotheses 

need to be listed and validated as much as possible. 

On the other hand, the methodology used to generate the aging models is evaluated as we have 

seen on chapter 3. It has been found that the proposed aging modelling methodology is completely 

dependent to the aging testing matrix. The aging test matrix limits the applicable mathematical 

expressions as well as the operation window that the model will be able to describe. Besides, the 

quality of the obtained data will conditions greatly the response of the model and will determine the 

most appropriate mathematical expression. The worse the data is, the simpler the mathematical 

expression needs to be. Among the evaluated data sets, it has been found that the data sets 

containing the pure ohmic resistance evolution are susceptible to be noisy. 

Nonetheless, it has been discovered that the proposed aging modelling methodology is able to 

capture the effect of the stress factors on the trend of the selected health indicators even though 

having little data. It has been validated as well the correctness, interpolation ability and real life 

applicability of the developed aging models. In addition to this, it has been validated in chapter 3 that 

the cycling aging and the calendar aging can be linearly added. Thanks to this, it has been proved 

that it is possible to describe the degradation that the battery experiences on real life applications 

using a model constructed uniquely on data obtained from tests done at lab level with static operation 

conditions. 

Thirdly, the simulation environment for sizing exercises of lithium ion battery energy storage systems 

has been developed. The evaluated use cases have shown that the smaller sizing option doesn’t 

need to be the most profitable sizing option. The most profitable option could be a bigger one than 

the minimum applicable sizing. This confirms that the thought of adding the lifespan prediction to the 

sizing exercise was correct when calculating the most profitable one. 

In addition to this, firstly, the cumulative behaviour of the aging has been confirmed and secondly, 

the effect of short rest times on the aging has been presented, supporting like this the assumed 

hypotheses on the development of the simulation environment. 
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Fourthly, the error done by the constructed aging models is minimized (chapter 5). The error of the 

aging models is minimized by focusing on the errors done when extrapolating in time and when 

facing odd events. On one hand, electrode level data is analysed to generate data artificially and 

reduce the errors when extrapolating in time. On the other hand, a prognosis stochastic algorithm is 

selected and employed with real life data to deal with the effect that odd events have on the evolution 

of the health indicators. Both accuracy improvement methods require validation or real life data, 

which means that they are restricted to the data availability. Nonetheless, it has been seen that these 

methods have a great potential and that are interesting enough to spend resources researching 

them. 

6.2 Future work 

The development of this thesis has given place to the identification of the following future research 

lines: 

 It has been assumed that the resistance is increased uniformly at the whole SOC range. 

However, it has been found that this is not fully correct and in this work a 20% margin on the 

resistance increase has been added in order to add the uncertainty on the resistance values 

at different SOC from the one measured. This 20% has been given by considering the 

maximum difference on the evaluated cases. A study of the uncertainty on the resistance 

increase on different SOC would be of great interest. 

 The EOL map of the application has been defined with the cell level values. Testing this 

evaluation on a solution level where additional resistances appear due to the connections, 

the wires and the intermediate electronics is of great interest. 

 The dynamic behaviour of stress factor is a source of uncertainty. The validation of the 

correctness of using the mean stress factor simplifying the dynamic behaviour of it is of great 

interest. 

 The use of physical and electrochemical knowledge on the definition and selection of the 

mathematical expression that describe the effect the stress factor have on the trend of the 

health indicators is of high interest. 

 The developed aging test matrix design methodology uses experiences from already 

developed aging models. Further implementation of the proposed methodology and 

feedback from real-life application of the constructed aging models is of high interest. 

 The observed operation conditions used to generate the aging models have been scarce. 

The constructed aging models have limitations on the operation conditions that those 

models can describe. More data about unobserved operation conditions is of high interest. 

 Further development of the use of electrode level data to predict changes on the aging trend 

is of high interest. 

 There are key prediction time instants on the used data sets that could lead to more 

synthetized and significant results. The definition of the criteria to select the prediction time 

instants of interest when evaluating these kinds of algorithms is of high interest. 

 The evaluated algorithm configurations have been conditioned by their design and the 

applied parametrization. There are many design and parametrization aspects that could 

change completely the obtainable prediction accuracy level on each prediction time instant. 

The evaluation of different configurations of these algorithms is of high interest. 

 The creation of a reliable prognosis algorithm which could give accurate prediction on each 

prediction time instant is of great interest. 

 The evaluated prognosis algorithms can be applied on real applications. The implementation 

of the evaluated Particle Filter configuration on an on-board Electric Vehicle application as 

an on-board prognosis tool is of high interest. 

 The whole sizing methodology is focused on lithium ion batteries because of the expertise of 

CIDETEC. Nonetheless, the developed methodologies are applicable to any Energy Storage 

System that shows a monotonic deterioration over time. The validation of the whole 

proposed methodology on a different Energy Storage System is of high interest. 
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 The developed methodologies have been implemented on MATLAB’s scripts. The 

consolidation of all the created simulation and visualization scripts on a user-friendly 

executable is of high interest. 

 The operation of lithium ion batteries on energy balancing applications has multiple variables 

that affect the income-cost balance (weather uncertainty, price changes on the market of the 

electricity, etc.). The further development of the proposed simulation environment to 

evaluate the effect of those variables is of high interest. 

 The implementation of the defined control of lithium ion batteries on real life energy 

balancing applications is of high interest. 
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Annex 1: Un-synthesized evaluation metrics. 

Test Prediction 
RMSE 

RA P value PDF 
width 

Test Prediction 
RMSE 

RA P value PDF 
width 

Test Prediction 
RMSE 

RA P value PDF 
width 

Test Prediction 
RMSE 

RA P value PDF 
width 

1 0.18903 0.54615 0.00000 6 2 0.04144 0.98058 0.00105 0 3 0.07651 0.81538 0.00000 11 4 0.04402 0.90291 0.00249 22 

0.03283 0.97674 0.00134 62 0.10362 0.68627 0.00002 15 0.04310 0.83721 0.00000 0 0.04434 0.98039 0.00171 127 

0.03260 0.89063 0.00006 15 0.26402 0.39604 0.00000 0 0.03183 0.99219 0.08875 0 0.07933 0.76238 0.00143 133 

0.12141 0.69291 0.00000 6 0.03800 0.97000 0.00136 209 0.04102 0.84252 0.00029 23 0.15366 0.63000 0.00076 122 

0.09438 0.76190 0.00000 2 0.04146 0.98990 0.00165 155 0.03082 0.92063 0.00070 26 0.05634 0.83838 0.00084 146 

0.04915 0.92000 0.00000 0 0.06685 0.77551 0.00113 86 0.09853 0.75200 0.00000 1 0.13677 0.64286 0.00079 92 

0.03338 0.99194 0.00104 12 0.13092 0.60825 0.00062 56 0.06162 0.84677 0.00000 0 0.22149 0.52577 0.00038 49 

0.28560 0.35772 0.00000 16 0.09162 0.69792 0.00149 48 0.03270 0.93496 0.00000 0 0.18804 0.56250 0.00090 44 

0.53898 -0.00820 0.00000 0 0.07158 0.75789 0.00132 116 0.03771 0.86885 0.00000 10 0.27706 0.45263 0.00056 113 

0.37721 0.19835 0.00000 0 0.09401 0.69149 0.00104 114 0.02734 0.95041 0.00000 0 0.20890 0.53191 0.00055 34 

0.02929 0.89167 0.00132 341 0.12387 0.61290 0.00111 83 0.03290 0.93333 0.00118 266 0.14331 0.61290 0.00089 146 

0.02723 0.95798 0.00152 189 0.12738 0.59783 0.00117 82 0.15103 0.63866 0.00059 116 0.29348 0.43478 0.00074 55 

0.06436 0.83051 0.00082 161 0.10869 0.64835 0.00119 81 0.20274 0.58475 0.00008 46 0.30807 0.41758 0.00044 46 

0.03516 0.92308 0.00152 204 0.07542 0.73333 0.00000 3 0.03223 0.93162 0.00141 187 0.13383 0.62222 0.00000 4 

0.05018 0.85345 0.00183 126 0.09240 0.67416 0.00094 169 0.02754 0.98276 0.00160 104 0.10429 0.68539 0.00122 126 

0.02913 0.89565 0.00145 240 0.13436 0.56818 0.00000 0 0.02540 1.00000 0.00142 250 0.14087 0.60227 0.00146 77 

0.02125 0.97368 0.00170 209 0.41363 0.18391 0.00000 0 0.12481 0.68421 0.00056 41 0.22787 0.47126 0.00067 79 

0.04005 0.92035 0.00193 170 0.15520 0.52326 0.00083 52 0.05252 0.83186 0.00108 309 0.29181 0.40698 0.00000 3 

0.03283 0.87500 0.00174 232 0.07957 0.70588 0.00151 75 0.02770 0.94643 0.00136 246 0.09386 0.69412 0.00088 69 

0.02091 0.98198 0.00173 164 0.10240 0.64286 0.00145 66 0.03896 0.89189 0.00651 27 0.27418 0.42857 0.00079 73 

0.04324 0.80909 0.00158 222 0.10099 0.65060 0.00075 58 0.02728 0.95455 0.00149 238 0.24231 0.45783 0.00073 90 

0.04944 0.88073 0.00117 759 0.13130 0.57317 0.00113 44 0.03173 0.88991 0.00134 357 0.28622 0.40244 0.00055 62 

0.47981 0.11111 0.00000 0 0.08045 0.69136 0.00087 92 0.08892 0.75000 0.00087 1168 0.18240 0.50617 0.00085 251 

0.09623 0.70093 0.00180 249 0.07931 0.70000 0.00105 101 0.02847 1.00000 0.00172 159 0.13387 0.58750 0.00105 0 

0.20460 0.45283 0.00000 0 0.10734 0.60759 0.00013 24 0.03315 0.94340 0.00133 286 0.18568 0.49367 0.00062 41 

0.04214 0.82857 0.00176 157 0.09417 0.64103 0.00117 158 0.04227 0.87619 0.00187 172 0.24337 0.42308 0.00104 69 

0.03728 0.79808 0.00003 57 0.08904 0.63636 0.00081 36 0.03191 0.95192 0.00248 125 0.22182 0.44156 0.00093 75 

0.02550 0.96117 0.00086 117 0.17056 0.46053 0.00023 31 0.04936 0.86408 0.00187 107 0.16841 0.50000 0.00120 85 

0.03600 0.79412 0.00134 581 0.09908 0.61333 0.00000 1 0.05786 0.83333 0.00166 104 0.11944 0.60000 0.00086 35 

0.03784 0.79208 0.00127 0 0.11191 0.56757 0.00000 3 0.04394 0.87129 0.00270 81 0.22218 0.40541 0.00000 14 

0.03411 0.81000 0.00124 976 0.14527 0.46575 0.00000 0 0.04704 0.86000 0.00207 96 0.20057 0.43836 0.00005 28 

0.02885 0.86869 0.00141 243 0.12077 0.52778 0.00000 11 0.03861 0.89899 0.00228 103 0.25787 0.34722 0.00099 54 

0.03667 0.78571 0.00160 243 0.15006 0.46479 0.00085 42 0.03765 0.83673 0.00130 335 0.20035 0.42254 0.00000 11 

0.07714 0.75258 0.00058 30 0.07785 0.67143 0.00073 37 0.02951 0.88660 0.00163 314 0.13531 0.54286 0.00066 39 

0.03732 0.78125 0.00138 351 0.03835 0.91304 0.00000 2 0.03656 0.84375 0.00143 272 0.08337 0.68116 0.00053 22 

0.01896 0.94737 0.00108 19 0.06124 0.73529 0.00000 2 0.03055 0.87368 0.00139 319 0.10553 0.61765 0.00064 30 

0.02395 0.89362 0.00156 279 0.12540 0.52239 0.00062 51 0.02567 0.92553 0.00167 238 0.12104 0.56716 0.00068 27 

0.03812 0.78495 0.00174 211 0.13903 0.45455 0.00000 0 0.03312 0.86022 0.00134 353 0.19170 0.42424 0.00001 24 

0.23354 0.21739 0.00000 2 0.08115 0.64615 0.00000 6 0.03993 0.94565 0.00157 235 0.20025 0.38462 0.00000 0 

0.26693 0.26374 0.00000 0 0.05626 0.87500 0.00193 136 0.03608 0.97802 0.00161 212 0.05657 0.96875 0.00197 105 

0.02802 0.91111 0.00149 53 0.05201 1.00000 0.00178 128 0.04046 0.91111 0.00154 243 0.05710 0.90476 0.00292 43 
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0.19061 0.32584 0.00000 4 0.04837 0.85484 0.00218 91 0.04484 0.88764 0.00167 157 0.06055 0.91935 0.00252 90 

0.03631 0.80682 0.00146 231 0.05347 0.78689 0.00158 110 0.05468 0.84091 0.00163 157 0.04764 0.98361 0.00238 65 

0.02080 0.97701 0.00189 45 0.04576 0.81667 0.00168 132 0.05227 0.83908 0.00170 128 0.04891 0.88333 0.00246 59 

0.03927 0.76744 0.00130 553 0.16123 0.32203 0.00000 0 0.03717 0.93023 0.00193 189 0.06206 0.84746 0.00202 95 

0.03849 0.76471 0.00130 1312 0.05097 0.77586 0.00182 157 0.02654 0.90588 0.00156 243 0.05898 0.87931 0.00062 8 

0.03059 0.80952 0.00181 235 0.05241 0.70175 0.00130 772 0.03566 0.83333 0.00128 901 0.05942 0.87719 0.00284 43 

0.03203 0.80723 0.00157 333 0.03562 1.00000 0.00109 4 0.02849 0.96386 0.00139 280 0.05061 0.96429 0.00187 99 

0.03680 0.75610 0.00151 321 0.03854 0.92727 0.00088 10 0.08299 0.71951 0.00167 95 0.04614 0.98182 0.00192 97 

0.03731 0.75309 0.00123 2492 0.07902 0.74074 0.00217 118 0.04188 0.87654 0.00137 154 0.07500 0.83333 0.00050 60 

0.03548 0.76250 0.00173 223 0.05991 0.83019 0.00159 167 0.02816 0.96250 0.00164 231 0.06929 0.84906 0.00190 68 

0.02374 0.89873 0.00226 32 0.04100 0.84615 0.00211 105 0.02455 0.97468 0.00323 27 0.07346 0.71154 0.00207 25 

0.01758 0.94872 0.00046 12 0.04896 0.76471 0.00148 465 0.02337 0.93590 0.00475 31 0.10345 0.56863 0.00108 20 

0.03653 0.74026 0.00170 39 0.05384 0.72000 0.00119 106 0.02674 0.94805 0.00225 70 0.11822 0.56000 0.00291 52 

0.02708 0.82895 0.00162 35 0.07085 0.61224 0.00162 227 0.02111 0.94737 0.00035 5 0.07536 0.59184 0.00179 127 

0.01824 0.92000 0.00160 187 0.04633 0.72917 0.00167 84 0.02837 0.94667 0.00303 62 0.06262 0.68750 0.00001 13 

0.01808 0.90541 0.00219 30 0.04786 0.70213 0.00169 83 0.02500 0.86486 0.00009 7 0.06519 0.65957 0.00000 3 

0.01694 0.93151 0.00169 180 0.06347 0.58696 0.00150 42 0.03209 0.90411 0.00000 0 0.06130 0.69565 0.00015 9 

0.01633 0.95833 0.00249 27 0.03977 0.77778 0.00085 11 0.02858 0.93056 0.00000 3 0.09367 0.53333 0.00000 6 

0.01766 1.00000 0.00330 0 0.03721 0.77273 0.00161 161 0.02014 1.00000 0.00206 13 0.07368 0.59091 0.00117 32 

0.07340 0.70000 0.00204 45 0.03928 0.76744 0.00008 8 0.02293 0.97143 0.00270 22 0.07345 0.58140 0.00241 38 

0.01505 0.94203 0.00212 29 0.05225 0.64286 0.00038 13 0.02985 0.91304 0.00149 11 0.06964 0.59524 0.00248 57 

0.02583 0.92647 0.00270 59 0.05460 0.60976 0.00000 0 0.02660 0.92647 0.00191 14 0.09163 0.48780 0.00100 30 

0.02085 0.97015 0.00297 58 0.06131 0.57500 0.00000 4 0.04945 0.80597 0.00000 0 0.09216 0.45000 0.00000 9 

0.01986 0.96970 0.00230 26 0.08590 0.46154 0.00167 179 0.05605 0.77273 0.00000 0 0.06928 0.58974 0.00149 35 

0.04737 0.78462 0.00221 80 0.05848 0.60526 0.00242 53 0.04461 0.83077 0.00241 53 0.06926 0.57895 0.00269 40 

0.02698 0.92188 0.00152 0 0.06884 0.45946 0.00145 34 0.04922 0.79688 0.00253 72 0.08487 0.48649 0.00000 0 

0.02249 0.95238 0.00339 24 0.05329 0.61111 0.00037 14 0.04695 0.80952 0.00198 43 0.09276 0.44444 0.00000 1 

0.03335 0.87097 0.00231 99 0.06444 0.51429 0.00226 74 0.04946 0.79032 0.00185 36 0.09432 0.42857 0.00000 11 

0.02721 0.91803 0.00247 19 0.06917 0.44118 0.00214 40 0.04535 0.81967 0.00134 20 0.08483 0.44118 0.00000 0 

0.03934 0.83333 0.00250 85 0.06730 0.45455 0.00112 28 0.04856 0.78333 0.00000 2 0.09735 0.36364 0.00000 0 

0.03319 0.86441 0.00003 0 0.06643 0.46875 0.00171 32 0.06408 0.71186 0.00200 50 0.09636 0.37500 0.00000 3 

0.03315 0.86207 0.00210 22 0.07004 0.41935 0.00000 3 0.05168 0.77586 0.00006 9 0.11300 0.25806 0.00000 3 

0.03617 0.84211 0.00230 99 0.08450 0.30000 0.00000 1 0.04877 0.78947 0.00303 41 0.10596 0.26667 0.00235 36 

0.02393 0.94643 0.00148 5 0.06990 0.37931 0.00000 2 0.04074 0.82143 0.00000 4 0.09538 0.31034 0.00000 3 

0.03391 0.85455 0.00000 12 0.07497 0.35714 0.00004 4 0.08246 0.60000 0.00000 13 0.11798 0.17857 0.00356 33 

0.03326 0.85185 0.00104 42 0.07581 0.29630 0.00000 7 0.06554 0.68519 0.00028 14 0.16326 -0.07407 0.00000 0 

0.15602 0.24528 0.00000 12 0.12850 0.03846 0.00043 25 0.10178 0.50943 0.00000 9 0.13021 0.03846 0.00000 2 

0.19021 0.07692 0.00000 25 0.08793 0.16000 0.00056 0 0.06987 0.65385 0.00044 24 0.08371 0.36000 0.00000 0 

0.12535 0.35294 0.00170 46 0.06389 0.37500 0.00150 21 0.13760 0.45098 0.00000 23 0.08043 0.33333 0.00074 18 

0.02781 0.90000 0.00240 81 0.05678 0.43478 0.00331 44 0.05380 0.80000 0.00262 111 0.07327 0.39130 0.00146 26 

0.01597 0.89796 0.00468 48 0.05546 0.45455 0.00000 3 0.08374 0.63265 0.00234 57 0.07546 0.36364 0.00000 2 

0.02131 0.93750 0.00225 101 0.07813 0.23810 0.00147 21 0.04253 0.83333 0.00323 43 0.08040 0.28571 0.00306 32 

0.01598 1.00000 0.00298 20 0.04392 0.80000 0.00000 16 0.02916 0.89362 0.00024 6 0.06681 0.40000 0.00164 11 

0.01659 1.00000 0.00194 52 0.05723 0.36842 0.00385 35 0.03357 0.84783 0.00094 10 0.07649 0.26316 0.00330 51 

0.02181 0.93333 0.00223 22 0.07627 0.05556 0.00352 44 0.03382 0.84444 0.00052 8 0.07110 0.27778 0.00000 4 

0.02177 0.93182 0.00300 20 0.06612 0.17647 0.00016 10 0.03057 0.86364 0.00000 2 0.08398 0.11765 0.00000 0 
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0.01511 0.97674 0.00125 2 0.06950 0.12500 0.00011 10 0.02981 0.88372 0.00000 2 0.08085 0.12500 0.00004 9 

0.02426 0.90476 0.00003 4 0.07033 0.00000 0.00000 2 0.04704 0.76190 0.00000 0 0.08142 0.00000 0.00295 26 

0.01596 1.00000 0.00230 4 0.06955 0.00000 0.00226 0 0.03796 0.80488 0.00000 0 0.08543 -0.07143 0.00244 31 

0.02040 0.95000 0.00040 3 0.07260 -0.15385 0.00000 4 0.04672 0.75000 0.00000 2 0.08766 -0.15385 0.00000 1 

0.01435 0.97436 0.00108 28 0.06984 -0.25000 0.00000 1 0.06842 0.64103 0.00273 54 0.08799 -0.25000 0.00000 0 

0.01056 0.89474 0.00153 11 0.07692 -0.36364 0.00000 0 0.05599 0.68421 0.00280 63 0.08785 -0.36364 0.00000 0 

0.01523 0.94595 0.00250 97 0.08244 -0.60000 0.00000 0 0.03770 0.81081 0.00266 50 0.09386 -0.60000 0.00434 44 

0.02353 0.91667 0.00328 63 0.06719 -0.44444 0.00000 5 0.06228 0.63889 0.00282 67 0.08541 -0.55556 0.00000 0 

0.02349 0.91429 0.00202 209 0.09105 -1.25000 0.00000 0 0.03385 0.85714 0.00299 37 0.10990 -0.62500 0.00331 15 

0.01360 0.94118 0.00316 7 0.03434 0.71429 0.00122 18 0.03424 0.82353 0.00004 5 0.07482 -0.57143 0.00000 0 

0.01193 0.90909 0.00122 5 0.02769 0.83333 0.04382 0 0.04435 0.72727 0.00258 106 0.09657 -1.33333 0.00000 1 

0.02102 0.93750 0.00176 18 0.07637 -1.80000 0.00000 2 0.03648 0.81250 0.00226 17 0.10094 -1.80000 0.00347 143 

0.02000 0.96774 0.00270 91 0.01959 -0.75000 0.00332 63 0.03450 0.83871 0.00370 49 0.02045 0.00000 0.00478 49 

0.02090 0.93333 0.00240 9 0.02283 0.33333 0.00300 153 0.03428 0.80000 0.00127 8 0.02000 -0.66667 0.00474 28 

0.01496 0.96552 0.00196 10 0.01904 -1.50000 0.00364 82 0.04051 0.75862 0.00199 31 0.02225 -2.50000 0.00000 0 

0.02214 0.92857 0.00210 0 0.02192 -7.00000 0.00397 58 0.03312 0.82143 0.00000 2 0.02127 -5.00000 0.00000 3 

0.01179 0.85185 0.00095 5  0.02843 0.88889 0.00000 2  

0.02771 0.84615 0.00157 26 0.03129 0.84615 0.00000 0 

0.02900 0.84000 0.00531 7 0.06942 0.44000 0.00000 2 

0.02594 0.87500 0.00123 5 0.05975 0.54167 0.00000 4 

0.02958 0.82609 0.00179 38 0.09116 0.17391 0.00000 0 

0.02127 0.95455 0.00122 12 0.02107 0.90909 0.00281 92 

0.01375 0.80952 0.00339 80 0.02588 0.95238 0.00406 58 

0.01256 0.80000 0.00171 41 0.02192 0.95000 0.00281 49 

0.01449 0.78947 0.00271 128 0.02831 1.00000 0.00401 52 

0.01716 0.94444 0.00305 42 0.02310 1.00000 0.00361 36 

0.02386 0.88235 0.00316 85 0.02324 1.00000 0.00042 0 

0.02455 0.87500 0.00310 36 0.02238 1.00000 0.00258 3 

0.02767 0.80000 0.00243 16 0.02862 0.86667 0.00130 7 

0.01372 0.85714 0.00213 9 0.02541 0.92857 0.00048 1 

0.01776 0.92308 0.00162 5 0.02403 0.92308 0.00158 2 

0.01748 0.91667 0.00185 10 0.02633 0.91667 0.00041 2 

0.02143 1.00000 0.00106 4 0.03064 0.81818 0.00087 0 

0.02413 0.90000 0.00104 15 0.02399 1.00000 0.00163 2 

0.02000 -0.22222 0.00000 16 0.06642 -0.11111 0.00175 12 

0.01536 0.62500 0.00000 3 0.01917 0.75000 0.00194 7 

0.01773 0.71429 0.00403 101 0.01703 0.42857 0.00439 46 

0.01581 0.50000 0.00258 32 0.01447 0.00000 0.00007 7 

0.01587 0.40000 0.00345 95 0.01973 0.60000 0.00184 8 

0.01650 0.25000 0.00217 16 0.02261 0.75000 0.00227 15 

0.01735 0.00000 0.00387 89 0.01957 0.00000 0.00168 8 

0.01954 0.00000 0.00368 30 0.02036 -0.50000 0.00000 8 

0.02436 1.00000 0.00430 81 0.01919 -1.00000 0.00106 4 

Table 164: The obtained evaluation metrics on all the tests and training data sets with the evaluated Particle Filter configuration  
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T. Prediction 
RMSE 

RA P value PDF 
width 

T. Prediction 
RMSE 

RA P value PDF 
width 

T. Prediction 
RMSE 

RA P value PDF width T. Prediction 
RMSE 

RA P value PDF 
width 

5 0.13290 -0.20769 0.00110 511 6 0.07495 0.75728 0.00789 35 7 0.12546 0.06154 0.00158 378 8 0.06036 0.82524 0.00068 866 

0.12900 -0.15504 0.00092 639 0.04807 0.93137 0.01147 7 0.12135 0.10078 0.00137 456 0.06388 0.81373 0.00950 76 

0.10929 0.17969 0.00048 1204 0.04824 0.85149 0.00137 11 0.09811 0.39844 0.00098 655 0.09487 0.73267 0.00000 8 

0.10004 0.29921 0.00000 38 0.29863    0.09125 0.48819 0.00006 38 0.04303 0.93000 0.00000 1 

0.10488 0.27778 0.00000 4 0.30102    0.09138 0.50000 0.00000 4 0.04744 0.98990 0.48394 1 

0.10762 0.24000 0.00000 3 0.15200 0.01020 0.00015 66 0.09459 0.47200 0.00000 2 0.04915 0.97959 0.00886 1 

0.11224 0.19355 0.00000 3 0.04472 0.92784 0.00000 >65535 0.09991 0.42742 0.00000 3 0.04745 0.86598 0.00167 402 

0.10170 0.30081 0.00000 2 0.04700 0.84375 0.00073 789 0.08793 0.52033 0.00000 2 0.07750 0.75000 0.00237 301 

0.09847 0.32787 0.00000 3 0.08109 0.71579 0.00000 >65535 0.08429 0.54918 0.00000 2 0.11675 0.64211 0.00058 975 

0.09883 0.32231 0.00000 3 0.10526 0.63830 0.00000 >65535 0.08476 0.54545 0.00000 2 0.14423 0.57447 0.00071 819 

0.36211    0.10119 0.64516 0.00000 >65535 0.23550 -0.57500 0.00034 1606 0.14130 0.58065 0.00084 705 

0.32671    0.13194 0.56522 0.00000 >65535 0.23991 -1.10924 0.00084 499 0.17589 0.52174 0.00106 578 

0.30088    0.14945 0.52747 0.00000 >65535 0.22802 -1.64407 0.00000 104 0.19658 0.48352 0.00133 478 

0.29173    0.08519 0.70000 0.00136 20 0.22180 -1.97436 0.00000 30 0.12966 0.62222 0.00000 9 

0.29374    0.06976 0.75281 0.01563 44 0.22412 -2.43103 0.00053 597 0.12311 0.64045 0.00000 2 

0.29563    0.08304 0.70455 0.00000 0.00280 0.25601 -3.31304 0.00000 >65535 0.14427 0.60227 0.00000 1 

0.29617    0.09120 0.67816 0.00000 0.00258 0.24169 -3.15789 0.00022 2379 0.15539 0.57471 0.00000 0.00253 

0.29685    0.09678 0.66279 0.00000 0.00239 0.25480 -3.26549 0.00000 >65535 0.16262 0.55814 0.00000 0.00234 

0.29751    0.07968 0.70588 0.00000 0.00224 0.23804 -3.13393 0.00000 12 0.13666 0.60000 0.00000 0.0022 

0.26608    0.07095 0.73810 0.00000 0.00211 0.23002 -2.65766 0.00000 1.04E-08 0.07146 0.77381 0.00362 200 

0.24502    0.06886 0.73494 0.00000 1 0.19095 -1.77273 0.00026 1992 0.11499 0.63855 0.00000 0.00204 

0.30024    0.04566 0.84146 0.00001 6 0.24232 -3.63303 0.00000 21 0.11621 0.63415 0.00073 21 

0.30142    0.05067 0.80247 0.00000 5 0.24613 -3.94444 0.00000 21 0.11606 0.62963 0.00034 19 

0.27768    0.05481 0.78750 0.00000 4 0.24438 -3.72897 0.00000 20 0.11586 0.62500 0.00011 17 

0.24752    0.07178 0.72152 0.00000 4 0.24096 -3.38679 0.00000 18 0.11891 0.62025 0.00004 16 

0.15938 -3.00000 0.00000 >65535 0.07381 0.70513 0.00000 3 0.17620 -1.71429 0.00035 1463 0.12122 0.60256 0.00001 14 

0.11972 -0.99038 0.00000 >65535 0.07756 0.70130 0.00000 3 0.15655 -1.21154 0.00041 1231 0.12569 0.59740 0.00000 12 

0.05589 0.48544 0.00000 >65535 0.10357 0.60526 0.00000 >65535 0.05394 0.53398 0.00000 >65535 0.14106 0.55263 0.00000 65535 

0.01745 0.88235 0.00000 >65535 0.09422 0.62667 0.00000 >65535 0.01632 0.90196 0.00000 >65535 0.13673 0.56000 0.00087 650 

0.02897 0.91089 0.00000 >65535 0.08558 0.66216 0.00000 1 0.03184 0.89109 0.00000 >65535 0.13679 0.55405 0.00000 0.00119 

0.05652 0.78000 0.00000 >65535 0.08928 0.64384 0.00000 0.00116 0.06013 0.77000 0.00000 >65535 0.14335 0.53425 0.00000 1 

0.06883 0.72727 0.00000 >65535 0.09369 0.62500 0.00000 0.00111 0.07291 0.71717 0.00000 >65535 0.14899 0.52778 0.00000 0.00109 

0.07579 0.24490 0.00171 292 0.09811 0.60563 0.00000 0.00106 0.07099 0.36735 0.00225 228 0.15458 0.50704 0.00000 0.00104 

0.11503 -0.18557 0.00028 1832 0.08958 0.62857 0.00000 0.00102 0.10982 0.02062 0.00062 872 0.14167 0.52857 0.00000 0.00101 

0.10992 -0.10417 0.00034 1535 0.04955 0.82609 0.00000 >65535 0.10437 0.09375 0.00070 781 0.08204 0.69565 0.00134 435 

0.11786 -0.16842 0.00082 638 0.04333 0.89706 0.00000 >65535 0.11171 0.05263 0.00127 431 0.06969 0.75000 0.00141 412 

0.04096 0.95745 0.00000 >65535 0.04604 0.86567 0.00000 >65535 0.04018 0.97872 0.00000 >65535 0.07451 0.71642 0.00155 378 

0.03873 0.94624 0.00000 >65535 0.04934 0.83333 0.00000 >65535 0.11980 0.04301 0.00000 37 0.07926 0.69697 0.00171 348 

0.03864 1.00000 0.00000 >65535 0.06242 0.73846 0.00000 >65535 0.03917 0.97826 0.00000 >65535 0.09604 0.63077 0.00197 309 

0.02995 0.92308 0.00000 >65535 0.18861    0.03450 0.90110 0.00000 >65535 0.09810 0.54688 0.00141 386 

0.03805 0.71111 0.00000 >65535 0.33022    0.03294 0.78889 0.00000 >65535 0.21242 -0.33333 0.00114 438 

0.04645 0.64045 0.00000 >65535 0.25267    0.04090 0.73034 0.00000 >65535 0.27887 -0.93548 0.00101 463 

0.04561 0.64773 0.00000 >65535 0.18436    0.03993 0.73864 0.00065 820 0.10668 0.54098 0.00499 35 

0.04358 0.67816 0.00000 >65535 0.15670    0.03784 0.75862 0.00071 750 0.05916 0.88333 0.00885 78 

0.04070 0.70930 0.00000 >65535 0.17343    0.03498 0.79070 0.00078 684 0.19477 -1.79661 0.00000 >65535 
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0.03237 0.78824 0.00000 >65535 0.17505    0.02742 0.85882 0.00088 613 0.20483 -2.01724 0.00000 >65535 

0.02190 0.89286 0.00000 >65535 0.17139    0.02043 0.95238 0.00102 538 0.20129 -2.01754 0.00000 >65535 

0.01903 0.93976 0.00000 >65535 0.16247    0.02084 1.00000 0.00116 480 0.08567 0.66071 0.00525 113 

0.08156 0.69512 0.00000 >65535 0.15853    0.08979 0.68293 0.00000 >65535 0.06799 0.80000 0.01085 58 

0.09041 0.66667 0.00000 >65535 0.16632    0.09898 0.65432 0.00000 >65535 0.04769 0.98148 0.05976 13 

0.10548 0.62500 0.00000 >65535 0.16969    0.11445 0.61250 0.00000 >65535 0.04229 0.90566 0.03271 22 

0.11772 0.59494 0.00000 >65535 0.16860    0.12706 0.58228 0.00000 >65535 0.04183 0.88462 0.03807 17 

0.13351 0.56410 0.00000 >65535 0.16418    0.14327 0.55128 0.00000 >65535 0.04216 0.88235 0.03764 16 

0.14058 0.54545 0.00000 >65535 0.15947    0.15066 0.53247 0.00000 >65535 0.04251 0.88000 0.03764 16 

0.15188 0.51316 0.00000 >65535 0.15410    0.16233 0.50000 0.00000 >65535 0.04291 0.87755 0.03764 16 

0.15482 0.50667 0.00000 >65535 0.14609    0.16557 0.49333 0.00000 >65535 0.04351 0.85417 0.03654 15 

0.16230 0.48649 0.00000 >65535 0.12572 -3.21277 0.00000 3 0.17338 0.47297 0.00000 >65535 0.04425 0.85106 0.03457 14 

0.16870 0.46575 0.00000 >65535 0.06318 0.73913 0.00000 >65535 0.18009 0.46575 0.00000 >65535 0.04533 0.82609 0.02966 14 

0.17276 0.45833 0.00000 >65535 0.04650 0.91111 0.01354 52 0.09417 0.62500 0.01304 35 0.04666 0.80000 0.02610 13 

0.08460 0.63380 0.01492 39 0.05609 0.75000 0.03075 19 0.09861 0.60563 0.00916 29 0.04798 0.79545 0.02109 13 

0.08773 0.62857 0.01263 31 0.07319 0.62791 0.00225 11 0.10208 0.60000 0.00545 25 0.04956 0.76744 0.01658 12 

0.09071 0.60870 0.00832 26 0.09493 0.52381 0.00000 6 0.10538 0.57971 0.00175 20 0.12097 0.47619 0.00000 5 

0.09318 0.60294 0.00408 22 0.11406 0.46341 0.00000 4 0.10815 0.57353 0.00068 18 0.13863 0.41463 0.00000 4 

0.09507 0.59701 0.00224 20 0.15968 0.37500 0.00000 4 0.11031 0.55224 0.00017 16 0.18556 0.35000 0.00000 3 

0.09648 0.57576 0.00074 17 0.12436 0.41026 0.00000 4 0.08936 0.62121 0.00327 204 0.14674 0.35897 0.00000 3 

0.09775 0.56923 0.00016 15 0.12119 0.39474 0.00000 3 0.12302 0.52308 0.00000 >65535 0.14273 0.36842 0.00000 2 

0.11220 0.53125 0.00000 >65535 0.12562 0.37838 0.00000 2 0.09709 0.59375 0.00520 140 0.14627 0.35135 0.00000 2 

0.08158 0.61905 0.00204 297 0.13060 0.36111 0.00000 2 0.08394 0.63492 0.00000 4 0.15041 0.30556 0.00000 2 

0.08118 0.61290 0.00253 248 0.17826 0.28571 0.00000 2 0.08430 0.62903 0.00000 4 0.15512 0.28571 0.00000 2 

0.08209 0.60656 0.00333 197 0.18202 0.26471 0.00000 2 0.08591 0.62295 0.00000 4 0.15782 0.26471 0.00000 2 

0.06973 0.66667 0.00000 4 0.18565 0.24242 0.00000 1 0.08878 0.60000 0.00000 3 0.16052 0.24242 0.00000 2 

0.07215 0.64407 0.00000 3 0.14780 0.25000 0.00000 1 0.08430 0.62712 0.00000 2 0.16258 0.21875 0.00000 2 

0.06584 0.67241 0.00000 2 0.15095 0.19355 0.00000 1 0.08563 0.60345 0.00000 2 0.16562 0.19355 0.00000 1 

0.06653 0.66667 0.00000 2 0.15499 0.16667 0.00000 1 0.08645 0.59649 0.00000 2 0.16956 0.16667 0.00000 1 

0.03032 0.89286 0.00000 1 0.09639 0.31034 0.00000 1 0.04641 0.80357 0.00000 1 0.11393 0.27586 0.00000 0.00420 

0.02364 0.94545 0.08066 6 0.08128 0.35714 0.00000 1 0.03903 0.85455 0.00000 1 0.08688 0.39286 0.00048 10 

0.01846 0.98148 0.00000 0.00135 0.07617 0.40741 0.00225 11 0.03857 0.85185 0.00000 1 0.07609 0.40741 0.00003 8 

0.02401 0.96226 0.03612 22 0.07030 0.42308 0.00000 1 0.03011 0.90566 0.00000 1 0.07384 0.42308 0.00000 0.00079 

0.01747 0.94231 0.00000 0.00095 0.06304 0.44000 0.00000 4 0.02988 0.92308 0.00013 2 0.07486 0.40000 0.00000 2 

0.01726 0.94118 0.01748 3 0.05715 0.45833 0.00000 5 0.02914 0.92157 0.05794 10 0.07421 0.37500 0.00000 2 

0.02687 0.90000 0.00000 1 0.05986 0.43478 0.00000 0.00184 0.05218 0.76000 0.00000 65535 0.07449 0.34783 0.00000 2 

0.03170 0.85714 0.00899 85 0.06055 0.40909 0.00000 >65535 0.04531 0.79592 0.00000 3 0.07513 0.31818 0.00000 2 

0.03158 0.85417 0.00000 0.00211 0.05881 0.42857 0.00000 1 0.04978 0.75000 0.00000 0.00232 0.07638 0.28571 0.00000 2 

0.03197 0.85106 0.00000 0.00203 0.05815 0.40000 0.00000 0.00105 0.05017 0.74468 0.01773 43 0.07809 0.25000 0.00000 2 

0.03242 0.84783 0.00000 0.00196 0.06529 0.26316 0.00000 3 0.05082 0.73913 0.01876 40 0.07726 0.21053 0.00000 1 

0.03882 0.80000 0.00000 1 0.07375 0.22222 0.00000 1 0.05146 0.73333 0.01900 39 0.07786 0.22222 0.00000 1 

0.03358 0.84091 0.01210 65 0.07260 0.17647 0.00000 >65535 0.05032 0.75000 0.00000 3 0.08032 0.11765 0.00000 0.00088 

0.02915 0.86047 0.00000 1 0.07358 0.06250 0.00000 3 0.04520 0.76744 0.00000 0.00109 0.08145 0.06250 0.01767 19 

0.02592 0.90476 0.02700 4 0.08227 0.00000 0.00000 4 0.04230 0.78571 0.00000 0.00089 0.08429 0.00000 0.00000 0.00100 

0.02299 0.92683 0.00000 0.00110 0.08259 -0.07143 0.00000 4 0.03997 0.80488 0.00000 0.00072 0.08429 -0.07143 0.00000 1 

0.02370 0.92500 0.00000 0.00107 0.08387 -0.15385 0.00000 4 0.04007 0.80000 0.00000 0.00066 0.08601 -0.15385 0.00000 0.00044 
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0.02299 0.92308 0.06476 4 0.08499 -0.25000 0.00000 4 0.03907 0.82051 0.00000 2 0.08695 -0.25000 0.00000 1 

0.02344 0.92105 0.06476 4 0.08617 -0.36364 0.00000 3 0.03909 0.81579 0.00000 2 0.08807 -0.36364 0.00000 1 

0.02474 0.91892 0.00000 1 0.08811 -0.50000 0.00000 3 0.04123 0.78378 0.00000 0.00061 0.08999 -0.50000 0.00000 0.00079 

0.03846 0.77778 0.00000 1 0.06672 -0.33333 0.00000 0.00056 0.04756 0.75000 0.00000 0.00257 0.08859 -0.55556 0.00000 1 

0.03016 0.85714 0.00032 3 0.06840 -0.50000 0.00000 0.00055 0.05108 0.71429 0.00286 7 0.09037 -0.87500 0.00000 1 

0.03058 0.85294 0.00032 3 0.06993 -0.71429 0.00000 0.00053 0.04568 0.73529 0.00001 4 0.09186 -1.00000 0.00000 1 

0.03958 0.75758 0.00000 1 0.07153 -1.00000 0.00000 0.00047 0.04355 0.75758 0.03025 16 0.09349 -1.33333 0.00000 1 

0.02971 0.84375 0.00000 2 0.07342 -1.60000 0.00000 1 0.04380 0.75000 0.00000 0.00058 0.09552 -2.00000 0.00000 1 

0.03163 0.83871 0.00032 3 0.06943 -2.00000 0.00000 0.00049 0.02311 0.93548 0.12099 4 0.09051 -2.50000 0.00000 1 

0.03212 0.80000 0.00032 3 0.06600 -2.66667 0.00000 0.00048 0.02351 0.93333 0.12099 4 0.07349 -3.33333 0.00000 0.00124 

0.03106 0.82759 0.00000 2 0.05503 -4.50000 0.00000 1 0.04472 0.72414 0.00000 0.00051 0.05992 -5.00000 0.00000 1 

0.03151 0.82143 0.00000 2 0.04450 -9.00000 0.00000 0.00135 0.02451 0.92857 0.06632 3 0.04932 -9.00000 0.00000 0.00135 

0.01897 0.25926 0.00000 >65535  0.01201 0.59259 0.01295 20  

0.01837 0.26923 0.00000 >65535 0.01178 0.57692 0.01322 18 

0.01671 0.96000 0.00886 1 0.01128 0.60000 0.01619 16 

0.01540 0.91667 0.07598 9 0.01077 0.62500 0.01665 13 

0.01552 0.91304 0.00000 0.00025 0.01066 0.65217 0.01658 12 

0.01572 0.90909 0.00000 0.00024 0.01074 0.63636 0.01632 11 

0.01556 0.90476 0.00000 0.00024 0.01215 0.47619 0.00966 13 

0.01767 0.95000 0.24197 2 0.01576 0.25000 0.00350 15 

0.01937 1.00000 0.03970 20 0.02421 -9.68421 0.00000 >65535 

0.02115 1.00000 0.48394 1 0.01520 0.88889 0.05399 2 

0.02262 0.94118 0.25159 3 0.01487 0.88235 0.05399 2 

0.02281 0.93750 0.25159 3 0.01478 0.87500 0.05399 2 

0.02368 0.93333 0.00000 0.00041 0.01557 0.93333 0.02957 23 

0.00978 0.64286 0.00000 >65535 0.01530 0.85714 0.05399 2 

0.01006 0.53846 0.00000 2 0.02640 -15.07692 0.00042 1106 

0.03006 65535 0.00000 >65535 0.02572 -15.66667 0.00043 1083 

0.02885 65535 0.00000 >65535 0.02464 -15.90909 0.00000 >65535 

0.02816 65535 0.00000 >65535 0.02408 -16.60000 0.00000 >65535 

0.01571 -0.55556 0.00002 7 0.01170 -0.11111 0.00000 4 

0.01545 -0.75000 0.00000 6 0.01168 -0.25000 0.00000 4 

0.01710 0.57143 0.08832 7 0.01511 0.57143 0.00000 1 

0.01722 0.50000 0.00000 0.00020 0.01473 0.50000 0.00000 1 

0.01831 0.60000 0.00000 0.00023 0.01459 0.40000 0.00000 1 

0.01906 0.50000 0.00000 0.00027 0.01467 0.25000 0.00000 1 

0.02038 0.33333 0.00886 1 0.01272 -0.33333 0.04839 10 

0.02067 0.50000 0.08386 9 0.01276 -1.00000 0.04839 10 

0.02139 0.00000 0.00000 0.00014 0.01297 -3.00000 0.04839 10 

Table 165: The obtained evaluation metrics on all the tests and training data sets with the evaluated Gaussian Process configuration 
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Test Prediction 
RMSE 

RA P value PDF 
width 

Test Prediction 
RMSE 

RA P value PDF 
width 

Test Prediction 
RMSE 

RA P value PDF 
width 

Test Prediction 
RMSE 

RA P value PDF width 

9 229.574 0.53846 0.00040 2620 10 0.07827 0.73786 0.00042 1996 11 0.07204 0.64615 0.00000 2658 12 0.14279 0.64078 0.00017 2066 

1.50955 -0.00775 0.00000 7 0.04795 0.93137 0.00013 2071 0.06231 0.71318 0.00106 0 0.14221 0.63725 0.00005 2086 

49868 0.17188 0.00006 2641 0.04452 0.84158 0.00101 1478 0.08563 0.53906 0.00101 0 0.18329 0.57426 0.00014 2078 

103.526 0.34646 0.00050 262 0.06693 0.76000 0.00102 1468 0.09029 0.50394 0.00009 0 0.05299 0.98000 0.00044 2031 

1.12839 0.06349 0.00013 107 0.12462 0.61616 0.00030 2009 0.08961 0.50794 0.00000 2655 0.05174 0.86869 0.00011 0 

580466 0.02400 0.00007 56 0.13396 0.23469 0.00000 0 0.10675 0.35200 0.00030 2492 0.06241 0.81633 0.00048 2047 

7690.5 0.28226 0.00014 2625 0.03743 0.94845 0.00072 2035 0.11732 0.25000 0.00077 2548 0.10811 0.69072 0.00018 2063 

1.43508 -0.00813 0.00011 16 0.06261 0.78125 0.00104 0 0.07858 0.58537 0.00070 2545 0.11774 0.66667 0.00017 0 

1.51395 -0.02459 0.00000 4 0.05284 0.82105 0.00000 0 0.08410 0.54098 0.00059 0 0.10228 0.70526 0.00060 2035 

0.66490 0.22314 0.00030 2620 0.06642 0.76596 0.00106 0 0.09422 0.46281 0.00077 2575 0.12219 0.65957 0.00017 0 

0.39885    0.05783 0.79570 0.00104 1473 0.24297 -3.36667 0.00099 0 0.10840 0.68817 0.00020 2064 

0.39051    89.96647 0.11957 0.00035 74 0.23000 -2.48739 0.00089 1838 0.14892 0.59783 0.00025 2058 

0.37649    0.09082 0.69231 0.00108 0 0.21380 -1.79661 0.00000 0 0.15485 0.58242 0.00019 2074 

0.32453    0.06112 0.77778 0.00108 1473 0.22499 -2.32479 0.00127 2487 0.12529 0.63333 0.00072 980 

0.31884    0.07701 0.71910 0.00099 0 0.23351 -2.81897 0.00121 2341 0.12618 0.62921 0.00058 2040 

0.31939    0.10822 0.63636 0.00000 4 0.23612 -3.14783 0.00009 2636 0.17219 0.54545 0.00006 0 

0.27668    0.10551 0.63218 0.00000 6 0.23554 -2.92105 0.00011 2631 0.17355 0.54023 0.00010 2065 

0.29178 -125.5575 0.00000 0 0.10262 0.63953 0.00000 6 0.23262 -2.70796 0.00014 2634 0.17021 0.53488 0.00011 2060 

0.25342 -6.13393 0.00000 11 0.03728 0.94118 0.00003 2065 0.23573 -3.03571 0.00023 2631 0.08443 0.71765 0.00012 2065 

0.23979 -4.26126 0.00036 2481 0.05671 0.78571 0.00101 1421 0.21814 -1.93694 0.00159 2422 0.10876 0.65476 0.00076 2028 

0.22509 -2.97273 0.00011 2620 0.04634 0.84337 0.00000 0 0.21177 -1.67273 0.00092 2382 0.11355 0.63855 0.00015 2073 

0.27510 -16.60550 0.00082 2612 0.03645 0.93902 0.00000 0 0.24424 -3.40367 0.00139 0 0.09993 0.67073 0.00024 0 

0.27590 -16.37963 0.00090 2623 0.04765 0.82716 0.00000 0 0.24707 -3.60185 0.00090 1835 0.11959 0.62963 0.00040 0 

0.26812 -11.04673 0.00000 5 0.32305 0.33750 0.00077 0 0.18663 -0.74766 0.00000 2471 0.11896 0.62500 0.00022 2061 

0.22162 -2.66038 0.00078 2337 0.08304 0.68354 0.00113 1465 0.17551 -0.52830 0.00111 1846 0.13643 0.58228 0.00113 1452 

0.20559 -2.09524 0.00000 0 0.08228 0.67949 0.00112 0 0.14969 -0.13333 0.00113 2205 0.13467 0.57692 0.00018 2052 

0.18582 -1.18269 0.00094 2280 0.09394 0.63636 0.00114 0 0.15649 -0.23077 0.00114 0 0.14944 0.54545 0.00012 2060 

1.16470 0.02913 0.00041 107 0.09950 0.61842 0.00000 0 0.14598 -0.08738 0.00016 2508 0.15593 0.52632 0.00028 0 

1.72998 0.41176 0.00061 2591 0.08927 0.64000 0.00104 1423 0.12170 0.18627 0.00114 1848 0.14101 0.54667 0.00078 2020 

1.05116 0.04950 0.00041 69 0.06847 0.71622 0.00108 1433 0.11493 0.24752 0.00115 0 0.14977 0.52703 0.00082 2025 

0.70218 0.14000 0.00033 2610 0.08053 0.67123 0.00104 1402 0.10718 0.32000 0.00017 2602 0.16000 0.50685 0.00084 1230 

0.32125 0.38384 0.00046 2609 0.08563 0.65278 0.00101 0 0.11392 0.25253 0.00017 2586 0.16684 0.48611 0.00071 2026 

4.98e13 -0.05102 0.00000 2620 0.10731 0.56338 0.00000 8 0.12177 0.13265 0.00008 13 0.17329 0.46479 0.00075 2020 

3.76e8 -0.05155 0.00036 77 0.07635 0.68571 0.00116 1459 0.13943 -0.08247 0.00003 2578 0.12678 0.55714 0.00079 2028 

0.94636 0.06250 0.00047 103 0.03886 0.91304 0.00102 0 0.13326 -0.01042 0.00110 0 0.07973 0.69565 0.00109 900 

0.23763 0.47368 0.00089 636 0.03814 0.95588 0.00104 1385 0.13268 -0.02105 0.00113 2467 0.09745 0.63235 0.00109 766 

0.07070 0.79787 0.00046 2567 0.03984 1.00000 0.00108 0 0.14448 -0.17021 0.00007 2548 0.11849 0.56716 0.00098 2018 

0.60653 0.16129 0.00049 116 0.86246 0.03030 0.00066 2045 0.13495 -0.04301 0.00025 0 0.12333 0.54545 0.00072 2027 

1.20e8 -0.01087 0.00026 2588 0.61595 0.07692 0.00038 2050 0.13490 -0.06522 0.00037 2529 0.13382 0.52308 0.00086 2013 

1.19216 0.01099 0.00000 17 0.46591 0.21875 0.00047 2045 0.14847 -0.23077 0.00016 2567 0.08247 0.71875 0.00017 0 

1.15928 0.02222 0.00000 18 2.72e6 -0.06349 0.00042 2037 0.13535 -0.01111 0.00119 1838 0.05428 0.95238 0.00020 1944 

0.04949 0.82022 0.00061 2565 0.14873 -3.29032 0.00106 1450 0.11848 0.16854 0.00068 2551 0.06981 0.82258 0.00113 1997 

0.25228 0.43182 0.00091 681 0.62113    0.10155 0.32955 0.00052 0 0.04534 0.86885 0.00015 1999 

0.66075 0.13793 0.00062 82 0.51610    0.09610 0.37931 0.00017 2583 0.04440 0.90000 0.00031 2012 

0.18977 0.48837 0.00088 2554 0.47539    0.09073 0.41860 0.00009 45 0.04549 0.94915 0.00033 2020 



 

198 

0.91535 0.05882 0.00016 34 0.41767    0.07502 0.54118 0.00010 2580 0.05419 0.94828 0.00061 2 

0.03790 0.86905 0.00072 2545 0.05691 0.75439 0.00000 15 0.05948 0.65476 0.00008 35 0.05120 0.98246 0.00036 1978 

4.58112 0.18072 0.00059 2537 0.13026 -1.46429 0.00052 2016 0.06495 0.61446 0.00011 32 0.04644 0.91071 0.00011 1710 

1.05413 0.02439 0.00008 22 0.11553 -0.83636 0.00021 2024 0.06133 0.63415 0.00012 2583 0.04561 0.90909 0.00129 1815 

1.03630 0.02469 0.00005 26 0.45883    0.05625 0.67901 0.00000 3 0.04320 0.90741 0.00019 1991 

0.63097 0.37500 0.00034 2487 0.09019 0.45283 0.00116 0 0.04091 0.77500 0.00000 0 0.06663 0.86792 0.00024 1982 

1.27316 0.32911 0.00010 2342 0.07617 0.17308 0.00116 1408 0.03769 0.79747 0.00000 3 0.04847 0.92308 0.00029 2017 

0.02068 0.94872 0.00044 2580 0.05459 0.64706 0.00017 6 0.02675 0.88462 0.00000 5 0.05256 0.78431 0.00129 0 

0.03553 0.93506 0.00041 2500 0.03997 0.98000 0.00000 0 0.03091 0.84416 0.00000 3 0.05353 0.78000 0.00034 2008 

0.11019 0.64474 0.00051 2561 0.03849 0.97959 0.00001 25 0.02182 0.92105 0.00000 3 0.05530 0.75510 0.00027 2016 

0.12802 0.60000 0.00047 2548 0.03864 0.83333 0.00124 1435 0.02533 0.89333 0.00000 5 0.06624 0.66667 0.00008 110 

0.02696 0.79730 0.00000 3 0.04168 0.78723 0.00132 0 0.01976 0.97297 0.00114 3 0.07087 0.63830 0.00020 1942 

0.20451 0.58904 0.00048 0 0.04875 0.71739 0.00000 11 0.02008 1.00000 0.00000 0 0.08418 0.56522 0.00047 2010 

0.02091 0.84722 0.00000 0 0.05371 0.66667 0.00003 0 0.02091 0.98611 0.00000 3 0.08864 0.53333 0.00091 1997 

0.43023 0.47887 0.00029 2543 0.05036 0.68182 0.00000 8 0.02250 0.97183 0.00000 3 0.07981 0.56818 0.00128 1989 

0.01701 0.88571 0.00000 0 0.03172 0.86047 0.00002 13 0.02413 0.95714 0.00000 0 0.08292 0.53488 0.00037 0 

0.01528 0.91304 0.00000 0 0.04906 0.69048 0.00009 1961 0.02711 0.92754 0.00000 3 0.07099 0.59524 0.00126 1997 

0.01476 0.94118 0.00000 3 0.02786 0.92683 0.00037 1877 0.02973 0.91176 0.00238 3 0.07675 0.56098 0.00028 1775 

0.09851 0.62687 0.00052 2528 0.06730 0.62500 0.00008 25 0.03204 0.89552 0.00000 5 0.05938 0.67500 0.00105 2001 

0.13849 0.53030 0.00079 2558 0.05518 0.64103 0.00137 1879 0.03447 0.87879 0.00000 3 0.07574 0.56410 0.00117 2002 

0.14044 0.60000 0.00038 2528 0.28589 0.31579 0.00009 32 0.03752 0.86154 0.00000 3 0.07230 0.57895 0.00120 1995 

0.02142 0.96875 0.00088 2563 0.27115 0.29730 0.00027 1881 0.03695 0.85938 0.00000 16 0.08254 0.51351 0.00046 1999 

0.02170 0.95238 0.00000 3 0.27798 0.27778 0.00034 0 0.04423 0.82540 0.00000 0 0.08769 0.47222 0.00023 1612 

0.01415 0.91935 0.00116 1771 0.14056 0.25714 0.00119 1985 0.02689 0.91935 0.00048 21 0.09331 0.42857 0.00043 1993 

0.02156 0.96721 0.00066 2551 0.12099 0.29412 0.00112 1994 0.04187 0.83607 0.00000 3 0.09119 0.41176 0.00089 1986 

0.02849 0.90000 0.00000 37 0.06821 0.48485 0.00000 2 0.05210 0.76667 0.00000 0 0.09461 0.39394 0.00024 1792 

0.03066 0.88136 0.00000 0 0.06986 0.43750 0.00142 0 0.04389 0.81356 0.00011 21 0.09599 0.37500 0.00053 1972 

0.02774 0.91379 0.00000 0 0.07611 0.38710 0.00000 13 0.05063 0.77586 0.00000 3 0.10270 0.32258 0.00033 798 

0.01423 0.85965 0.00132 0 0.06936 0.36667 0.00119 1353 0.03632 0.85965 0.00013 0 0.10344 0.26667 0.00034 1767 

0.24656 0.26786 0.00042 0 0.02505 0.82759 0.00130 0 0.03339 0.87500 0.00135 2094 0.09507 0.31034 0.00033 1877 

1623 -0.09091 0.00058 2500 0.02939 0.85714 0.00127 0 0.03600 0.85455 0.00066 2540 0.08189 0.39286 0.00121 1989 

0.03010 0.62963 0.00126 1803 0.03546 0.70370 0.00138 0 0.03087 0.90741 0.00039 2532 0.07667 0.40741 0.00056 1974 

0.01683 0.98113 0.00121 1774 0.03775 0.65385 0.00129 1391 0.03268 0.88679 0.00095 0 0.10794 0.15385 0.00029 36 

0.01499 0.94231 0.00112 1699 0.04058 0.60000 0.00126 1378 0.03433 0.88462 0.00046 2535 0.10975 0.12000 0.00038 0 

0.01577 0.96078 0.00114 0 0.03764 0.62500 0.00124 1366 0.03606 0.86275 0.00090 2524 0.07853 0.37500 0.00028 27 

0.01168 0.90000 0.00110 0 0.02520 0.95652 0.00141 0 0.03211 0.88000 0.00101 2519 0.07401 0.39130 0.00011 27 

0.16739 0.38776 0.00070 2539 0.03469 0.59091 0.00133 1393 0.03089 0.87755 0.00038 2503 0.07470 0.36364 0.00009 11 

0.32559 0.33333 0.00056 0 0.03601 0.57143 0.00131 0 0.03054 0.87500 0.00033 2449 0.08279 0.23810 0.00019 36 

0.01329 0.95745 0.00000 3 0.06998 0.20000 0.00147 0 0.03017 0.89362 0.00000 3 0.08916 0.15000 0.00031 46 

0.01433 0.97826 0.00000 3 0.05285 0.31579 0.00007 0 0.03178 0.86957 0.00000 3 0.07971 0.21053 0.00046 1809 

0.01597 1.00000 0.00000 0 0.06493 0.22222 0.00006 0 0.03399 0.84444 0.00000 3 0.07898 0.22222 0.00140 1975 

0.01817 0.97727 0.00000 0 0.06389 0.17647 0.00011 23 0.03265 0.86364 0.00050 5 0.07977 0.17647 0.00155 1977 

0.00957 0.86047 0.00119 1725 0.06658 0.12500 0.00000 15 0.02616 0.90698 0.00090 2516 0.08051 0.12500 0.00146 1978 

0.01137 0.90476 0.00133 1795 0.07157 0.00000 0.00155 0 0.02848 0.88095 0.00105 2517 0.08487 0.00000 0.00170 1971 

0.01156 0.90244 0.00133 0 0.06906 0.00000 0.00152 1414 0.03621 0.82927 0.00056 2492 0.08072 0.00000 0.00177 1969 

0.01230 0.92500 0.00128 1779 0.07413 -0.15385 0.00147 0 0.03707 0.82500 0.00089 2513 0.08800 -0.15385 0.00189 1967 



199 

0.01225 0.92308 0.00128 0 0.07435 -0.25000 0.00000 2 0.03802 0.82051 0.00052 2508 0.08838 -0.25000 0.00031 15 

0.01303 0.94737 0.00123 1752 0.07558 -0.36364 0.00000 8 0.03844 0.81579 0.00092 2511 0.08916 -0.36364 0.00035 0 

0.01376 0.94595 0.00146 0 0.07629 -0.50000 0.00134 1368 0.03800 0.81081 0.00041 2441 0.09161 -0.50000 0.00032 1083 

0.01364 0.94444 0.00122 1728 0.03446 -0.77778 0.00138 1381 0.03559 0.83333 0.00051 2468 0.08671 -0.55556 0.00000 2 

0.13925 0.40000 0.00080 0 0.06718 -0.87500 0.00014 13 0.03527 0.82857 0.00071 0 0.09439 -0.87500 0.00045 0 

0.01889 0.97059 0.00000 65535 0.06819 -1.14286 0.00000 23 0.03472 0.82353 0.00000 3 0.09219 -1.00000 0.00000 0 

0.01511 0.96970 0.00128 0 0.06307 -1.66667 0.00006 0 0.03653 0.81818 0.00043 2388 0.09458 -1.33333 0.00035 0 

0.06067 0.62500 0.00114 2504 0.16876 -1.60000 0.00145 1957 0.03671 0.81250 0.00097 2503 0.09938 -2.00000 0.00048 1716 

0.01365 0.93548 0.00133 0 0.07069 1.00000 0.00145 1953 0.03653 0.80645 0.00036 2369 0.02440 -1.25000 0.00202 1956 

0.02262 0.93333 0.00000 3 0.07725 0.66667 0.00168 1955 0.03153 0.83333 0.00125 2507 0.02059 -1.00000 0.00196 1958 

0.01446 0.93103 0.00000 16 0.07898 1.00000 0.00155 0 0.03818 0.79310 0.00117 0 0.03286 0.50000 0.00039 61 

0.02063 0.96429 0.00149 1800 0.01927 -5.00000 0.00015 8 0.03236 0.82143 0.00115 2486 0.02761 0.00000 0.00021 34 

0.01261 0.88889 0.00144 1792  0.02810 0.88889 0.00134 2499  

0.01123 0.73077 0.00128 1744 0.02979 0.84615 0.00136 2493 

0.01128 0.72000 0.00135 0 0.03296 0.80000 0.00105 2499 

0.01219 0.83333 0.00135 1766 0.03436 0.79167 0.00129 2492 

0.01098 0.78261 0.00140 1776 0.03223 0.82609 0.00111 2506 

0.01117 0.77273 0.00129 1736 0.02868 0.86364 0.00118 2470 

0.18926 0.33333 0.00058 2432 0.01536 0.85714 0.00027 61 

0.01319 0.85000 0.00144 1784 0.01751 0.90000 0.00055 2358 

0.02261 0.94737 0.00138 2500 0.03070 0.84211 0.00080 0 

0.01250 0.77778 0.00000 65535 0.03000 0.83333 0.00132 2481 

13.9093 -0.29412 0.00086 2474 0.02973 0.82353 0.00087 2462 

0.04857 0.62500 0.00115 2478 0.02969 0.87500 0.00075 2433 

0.01734 0.93333 0.00000 5 0.02779 0.86667 0.00056 3 

0.01189 0.78571 0.00000 13 0.02490 0.92857 0.00115 2481 

0.01122 0.61538 0.00132 0 0.02413 1.00000 0.00141 0 

0.01196 0.58333 0.00135 0 0.02521 0.91667 0.00142 2480 

0.01268 0.63636 0.00137 1739 0.02666 0.90909 0.00132 2480 

0.01280 0.60000 0.00141 1750 0.02505 0.90000 0.00126 2479 

0.01262 0.55556 0.00143 1758 0.02765 0.88889 0.00097 2438 

0.01425 -0.62500 0.00000 32 0.02079 0.87500 0.00143 2479 

0.01152 0.28571 0.00159 1779 0.01856 0.71429 0.00130 2467 

0.01395 0.33333 0.00135 1707 0.01821 0.50000 0.00042 67 

0.02396 0.60000 0.00062 2415 0.02021 0.60000 0.00000 3 

0.02214 0.50000 0.00030 2228 0.02201 0.50000 0.00000 3 

0.01755 0.33333 0.00153 1763 0.02621 1.00000 0.00120 2433 

0.01611 -0.50000 0.00003 2017 0.02609 0.50000 0.00133 0 

0.01704 -2.00000 0.00151 0 0.02632 0.00000 0.00139 2448 

Table 166: The obtained evaluation metrics on all the tests and training data sets with the evaluated Extended Kalman Filter 
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Test Prediction 
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13 1.64205    14 1.37693 -0.04854 0.00018 2105 15 0.16886 -0.52308 0.00015 2658 16 0.04685 0.99029 0.00145 169 

1.64050    1.18810 0.00000 0.00022 2100 0.17927 -0.75969 0.00123 2491 0.04332 0.92157 0.00181 108 

1.63899    1.55035    0.12254 0.17969 0.00041 2545 0.07389 0.78218 0.00086 359 

1.63746    1.54787    0.11458 0.26772 0.00000 13 0.12129 0.53000 0.00004 2098 

1.63591    1.54551    0.14101 -0.07143 0.00085 556 0.07067 0.84848 0.00005 2094 

1.63433    0.49818 0.25510 0.00006 2096 0.15442 -0.28000 0.00075 685 0.05292 0.95918 0.00005 0 

1.63273    0.36628 0.38144 0.00009 2094 0.16015 -0.37903 0.00069 727 0.05508 0.83505 0.00016 0 

1.63119    1.53877    0.09137 0.48780 0.00099 2526 0.06803 0.79167 0.00009 2086 

0.96203 -0.04918 0.00000 2644 1.53652    0.08678 0.52459 0.00097 2521 0.05947 0.82105 0.00014 0 

1.62804    1.53432    0.12916 0.07438 0.00084 407 0.07996 0.75532 0.00021 0 

0.19487 0.55000 0.00007 2642 1.53211    0.26465 -6.64167 0.00100 2271 0.07088 0.77419 0.00015 2088 

2.01394    0.93215 -0.08696 0.00000 2084 0.23990 -3.24370 0.00000 118 0.11214 0.67391 0.00008 2084 

0.46904 0.27966 0.00030 72 0.18387 0.43956 0.00000 2075 0.22407 -2.34746 0.00080 2243 0.12135 0.64835 0.00036 0 

0.64154 0.17094 0.00016 0 0.63498 -0.07778 0.00000 2081 0.23514 -3.04274 0.00000 219 0.12427 0.63333 0.00000 0 

0.32371 0.40517 0.00010 2631 0.46402 0.00000 0.00000 0 0.23686 -3.33621 0.00078 2208 0.12618 0.62921 0.00000 4 

0.50245 0.24348 0.00040 2618 2.75e25    0.24667 -4.26087 0.00144 2337 0.16679 0.55682 0.00084 295 

0.49230 0.24561 0.00047 2612 0.14331 0.51724 0.00000 2058 0.24524 -4.00877 0.00002 788 0.16837 0.55172 0.00082 235 

0.46163 0.26549 0.00026 0 0.33664 0.08140 0.00012 2075 0.24514 -3.99115 0.00082 2081 0.16523 0.54651 0.00077 329 

0.25904 0.45536 0.00033 2615 1.23e23    0.23737 -3.08036 0.00000 165 0.07971 0.74118 0.00100 533 

0.23773 0.48649 0.00032 2615 6.01e25    0.22443 -2.28829 0.00000 104 0.10826 0.65476 0.00000 4 

0.35797 0.34545 0.00049 80 1.54e27    0.21755 -1.95455 0.00000 93 0.11332 0.63855 0.00124 0 

0.04443 0.82569 0.00104 0 0.44864 -0.06098 0.00057 2069 0.32693    0.08046 0.73171 0.00031 2065 

0.21283 0.50926 0.00033 2615 0.40850 -0.11111 0.00009 0 0.25780 -4.81481 0.00000 88 0.10007 0.66667 0.00005 2065 

0.11996 0.66355 0.00158 61 1.49857    0.22566 -2.34579 0.00000 41 0.10028 0.66250 0.00013 2067 

0.12008 0.66038 0.00019 21 0.09999 0.24051 0.00123 891 0.21208 -1.74528 0.00000 30 0.11830 0.62025 0.00019 2046 

0.08315 0.74286 0.00241 56 0.05320 0.79487 0.00215 169 0.18578 -0.95238 0.00000 18 0.11744 0.61538 0.00002 0 

0.09626 0.70192 0.00155 110 0.07926 0.68831 0.00205 47 0.18657 -0.94231 0.00000 19 0.13295 0.57143 0.00042 2041 

0.19712 -2.04854 0.00161 2350 0.06483 0.75000 0.00099 2010 0.17877 -0.78641 0.00016 2604 0.14030 0.55263 0.00022 2033 

0.08978 0.44118 0.00073 89 0.05058 0.82667 0.00113 1999 0.15262 -0.30392 0.00020 2519 0.14097 0.54667 0.00000 2 

0.08958 0.42574 0.00063 68 0.05410 0.81081 0.00107 2005 0.14411 -0.17822 0.00013 0 0.14979 0.52703 0.00000 2 

0.05985 0.69000 0.00293 70 0.06187 0.76712 0.00092 2010 0.13471 -0.05000 0.00006 2594 0.16009 0.50685 0.00000 0 

0.17760 0.53535 0.00098 585 0.06411 0.75000 0.00094 0 0.13379 -0.02020 0.00096 2485 0.16696 0.48611 0.00000 2 

0.07356 0.57143 0.00161 65 0.05982 0.69014 0.00122 0 0.13021 0.00000 0.00015 2508 0.17344 0.46479 0.00000 0 

1.34e21 -0.06186 0.00010 39 0.05771 0.77143 0.00118 1993 0.14297 -0.14433 0.00094 2484 0.12668 0.55714 0.00000 3 

2.33e8 -0.09375 0.00000 13 0.04385 0.91304 0.00117 1999 0.14428 -0.20833 0.00085 0 0.07489 0.71014 0.00000 3 

0.15051 0.56842 0.00140 75 0.04142 0.92647 0.00104 2005 0.13521 -0.06316 0.00000 18 0.09541 0.64706 0.00000 0 

0.14791 -0.42553 0.00107 443 0.10795 0.55224 0.00045 2041 0.14558 -0.18085 0.00098 461 0.11835 0.56716 0.00000 2 

0.13215 -0.15054 0.00102 294 0.05793 0.77273 0.00108 2008 0.13587 -0.05376 0.00102 440 0.12321 0.54545 0.00000 0 

0.09244 0.39130 0.00066 69 0.57678 0.18462 0.00000 6 0.13740 -0.10870 0.00113 763 0.13373 0.52308 0.00000 0 

0.28162 0.39560 0.00063 42 0.11711 0.57813 0.00152 59 0.14946 -0.25275 0.00091 570 0.08407 0.70313 0.00127 931 

0.21245 -5.93333 0.00195 2388 0.11159 0.60317 0.00143 268 0.15306 -0.34444 0.00010 2436 0.05445 0.93651 0.00170 151 

0.19128 0.49438 0.00004 27 0.05697 0.80645 0.00118 1015 0.13544 -0.08989 0.00008 0 0.07018 0.82258 0.00000 4 

0.11050 0.64773 0.00151 92 0.07730 0.67213 0.00132 317 0.11767 0.11364 0.00023 2524 0.04500 0.86885 0.00228 73 

0.16049 0.54023 0.00113 81 0.24105 0.88333 0.00141 15 0.11146 0.18391 0.00000 2121 0.04427 0.91667 0.00271 70 

0.21281 0.45349 0.00001 20 1.39651    0.10535 0.24419 0.00005 1803 0.04562 0.96610 0.00240 74 



201 

0.12599 -0.71765 0.00083 2492 0.39283 0.00000 0.00098 133 0.08875 0.40000 0.00013 2441 0.05584 0.91379 0.00000 1955 

0.04490 0.73810 0.00181 28 6.45586 0.24561 0.00000 1896 0.07220 0.53571 0.00020 2471 0.05122 0.98246 0.00196 147 

0.04813 0.83133 0.00227 0 0.08082 0.66071 0.00265 61 0.07655 0.49398 0.00122 2496 0.04643 0.92857 0.00180 118 

0.10194 -0.26829 0.00106 2511 0.71723 0.03636 0.00000 9 0.07279 0.52439 0.00009 1741 0.04553 0.90909 0.00237 67 

0.08487 0.04938 0.00093 0 0.07605 0.59259 0.00141 145 0.06714 0.56790 0.00023 2220 0.04305 0.92593 0.00270 55 

0.15824 0.51250 0.00201 72 0.16051 0.43396 0.00150 302 0.05093 0.68750 0.00002 2420 0.07179 0.79245 0.00000 0 

0.13973 0.54430 0.00166 96 0.17914 0.38462 0.00116 243 0.04719 0.70886 0.00024 13 0.04854 0.98077 0.00066 2 

0.01895 0.97436 0.00756 21 0.08575 0.58824 0.00212 71 0.03455 0.79487 0.00024 2420 0.04783 0.82353 0.00000 0 

0.02008 0.97403 0.00626 26 0.03295 0.92000 0.00105 0 0.03983 0.75325 0.00127 2489 0.04868 0.82000 0.00000 2 

0.02120 0.97368 0.00607 22 0.08096 0.57143 0.00127 1997 0.02717 0.85526 0.00009 2350 0.05016 0.79592 0.00000 0 

0.07419 0.70667 0.00282 54 0.35317 0.14583 0.00120 1051 0.03277 0.80000 0.00129 2506 0.05979 0.70833 0.00000 0 

0.02573 0.93243 0.00543 21 0.08598 0.51064 0.00136 1995 0.02175 0.90541 0.00000 11 0.06429 0.68085 0.00000 0 

0.02880 0.90411 0.00535 18 0.15474 0.34783 0.00201 55 0.01922 0.93151 0.00022 0 0.07729 0.58696 0.00000 3 

0.03022 0.90278 0.00461 20 0.12948 0.40000 0.00000 9 0.01847 0.94444 0.00048 1632 0.08186 0.55556 0.00000 0 

0.04275 0.83099 0.00057 2564 0.08799 0.50000 0.00207 116 0.01820 0.97183 0.00054 0 0.07882 0.56818 0.00000 0 

0.03420 0.87143 0.00480 19 0.03931 0.65116 0.00213 22 0.01862 0.98571 0.00013 0 0.08294 0.53488 0.00206 74 

0.07575 0.68116 0.00049 16 0.04272 0.78571 0.00302 43 0.02019 0.98551 0.00028 0 0.07053 0.59524 0.00000 4 

0.04507 0.80882 0.00213 126 0.06979 0.58537 0.00167 28 0.02209 0.97059 0.00023 0 0.07637 0.56098 0.00165 38 

0.06983 0.70149 0.00055 17 0.07566 0.55000 0.00111 21 0.02402 0.95522 0.00031 2129 0.05859 0.67500 0.00014 11 

0.07770 0.66667 0.00045 17 0.11106 0.41026 0.00204 31 0.02619 0.93939 0.00000 0 0.07531 0.56410 0.00000 4 

0.04517 0.80000 0.00243 16 0.10896 0.39474 0.00154 32 0.02905 0.90769 0.00000 0 0.07189 0.57895 0.00000 4 

0.06990 0.68750 0.00072 19 0.11620 0.35135 0.00230 34 0.03487 0.87500 0.00140 1401 0.07724 0.51351 0.00000 0 

0.05029 0.77778 0.00150 15 0.11794 0.33333 0.00285 42 0.03559 0.87302 0.00045 2350 0.08247 0.47222 0.00000 2 

0.04188 0.82258 0.00333 22 0.04500 0.62857 0.00237 118 0.02572 0.93548 0.00191 165 0.08817 0.42857 0.00000 3 

0.02882 0.90164 0.00207 208 0.07898 0.44118 0.00266 89 0.03361 0.88525 0.00007 2353 0.08730 0.44118 0.00000 0 

0.05181 0.76667 0.00224 18 0.04810 0.57576 0.00208 173 0.04367 0.81667 0.00000 2500 0.08976 0.39394 0.00000 0 

0.06907 0.67797 0.00305 74 0.10161 0.31250 0.00257 84 0.04191 0.83051 0.00149 1070 0.09128 0.37500 0.00000 0 

0.06931 0.67241 0.00208 150 0.05725 0.45161 0.00252 163 0.04248 0.82759 0.00033 2401 0.09810 0.32258 0.00000 3 

0.06743 0.68421 0.00273 50 0.07264 0.36667 0.00000 10 0.03513 0.85965 0.00181 155 0.10340 0.26667 0.00252 59 

0.02385 0.80357 0.00392 73 0.02705 0.58621 0.00148 1957 0.03452 0.87500 0.00223 45 0.09401 0.31034 0.00037 8 

0.02102 0.81818 0.00395 75 0.03972 0.67857 0.00356 62 0.03721 0.85455 0.00119 14 0.08137 0.39286 0.00000 9 

0.01861 0.85185 0.00436 69 0.04219 0.62963 0.00371 54 0.03255 0.88889 0.00217 40 0.07616 0.40741 0.00102 22 

0.01706 0.86792 0.00383 66 0.04536 0.57692 0.00408 54 0.04210 0.81132 0.00084 14 0.10789 0.15385 0.00267 54 

0.02521 0.92308 0.00426 51 0.03473 0.36000 0.00360 45 0.04373 0.80769 0.00081 14 0.10970 0.12000 0.00250 57 

0.02673 0.92157 0.00544 46 0.03628 0.66667 0.00395 23 0.04546 0.78431 0.00052 13 0.07848 0.37500 0.00283 73 

0.01884 0.98000 0.00364 52 0.03530 0.65217 0.00281 152 0.03316 0.86000 0.00162 14 0.07397 0.39130 0.00305 71 

0.02950 0.87755 0.00475 28 0.03408 0.63636 0.00283 217 0.03184 0.87755 0.00246 46 0.07406 0.36364 0.00037 13 

0.02835 0.87500 0.00432 28 0.03775 0.57143 0.00258 165 0.03145 0.87500 0.00222 42 0.08275 0.23810 0.00315 65 

0.08866 0.57447 0.00067 26 0.05947 0.30000 0.00171 15 0.02405 0.93617 0.00026 2041 0.08894 0.15000 0.00247 30 

0.01412 0.71739 0.00193 0 0.05591 0.31579 0.00214 15 0.02567 0.91304 0.00023 2041 0.07950 0.21053 0.00354 29 

0.04139 0.77778 0.00484 50 0.08816 0.16667 0.00371 66 0.02790 0.88889 0.00025 2297 0.07875 0.22222 0.00000 4 

0.02839 0.88636 0.00707 13 0.05648 0.23529 0.00286 198 0.03058 0.86364 0.00000 11 0.07955 0.17647 0.00000 4 

0.02111 0.55814 0.00236 200 0.05944 0.12500 0.00343 184 0.02740 0.90698 0.00019 4 0.08030 0.12500 0.00000 4 

0.01768 0.61905 0.00240 184 0.06689 0.06667 0.00367 23 0.02854 0.88095 0.00080 7 0.08479 0.00000 0.00000 2 

0.02061 0.56098 0.00230 211 0.06351 -0.07143 0.00323 150 0.03765 0.82927 0.00177 34 0.08033 0.00000 0.00000 0 

0.04047 -0.02500 0.00216 296 0.09088 -0.15385 0.00361 18 0.03849 0.82500 0.00202 30 0.08762 -0.15385 0.00000 2 



 

202 

0.02428 0.92308 0.00503 43 0.05860 -0.33333 0.00377 150 0.03943 0.79487 0.00203 32 0.08735 -0.25000 0.00019 13 

0.03173 0.68421 0.00143 2539 0.06132 -0.54545 0.00352 167 0.03981 0.78947 0.00174 32 0.08821 -0.36364 0.00048 0 

0.02377 0.91892 0.00435 42 0.07469 -0.60000 0.00470 18 0.03933 0.81081 0.00208 33 0.09145 -0.50000 0.00333 27 

0.02756 0.88889 0.00619 22 0.04220 0.22222 0.00685 28 0.03929 0.80556 0.00164 32 0.08579 -0.55556 0.00051 13 

0.03794 0.77143 0.00453 21 0.02764 0.00000 0.00445 52 0.03593 0.82857 0.00188 39 0.09425 -0.87500 0.00455 24 

0.03107 0.85294 0.00658 13 0.35346 -0.71429 0.00000 0 0.02996 0.85294 0.00055 8 0.09135 -1.00000 0.00004 11 

0.03071 0.84848 0.00501 25 0.34491 -0.83333 0.00000 0 0.03716 0.78788 0.00267 38 0.09388 -1.33333 0.00059 15 

0.03076 0.84375 0.00538 23 0.04268 -9.40000 0.00207 0 0.03732 0.81250 0.00256 37 0.09926 -2.00000 0.00474 21 

0.01030 0.83871 0.00225 326 0.07849 0.75000 0.00084 3 0.03713 0.80645 0.00207 38 0.02451 -1.25000 0.00000 3 

0.03051 0.83333 0.00604 12 0.03920 0.66667 0.00430 65 0.03094 0.83333 0.00002 0 0.02059 -1.00000 0.00000 3 

0.03233 0.82759 0.00527 24 0.06326 1.00000 0.00283 13 0.04234 0.75862 0.00268 27 0.03276 0.50000 0.00552 38 

0.02151 0.92857 0.00488 42 0.02218 -2.00000 0.00708 16 0.03240 0.82143 0.00079 7 0.02752 0.00000 0.00433 39 

0.01009 0.74074 0.00266 184  0.02616 0.88889 0.00323 31  

0.03170 0.80769 0.00694 0 0.02944 0.84615 0.00022 4 

0.03373 0.80000 0.00696 13 0.03300 0.80000 0.00071 6 

0.03581 0.75000 0.00654 14 0.03364 0.79167 0.00189 29 

0.03367 0.78261 0.00640 15 0.03047 0.82609 0.00259 29 

0.03039 0.81818 0.00736 15 0.02700 0.86364 0.00290 30 

0.01479 0.85714 0.00847 16 0.01502 0.85714 0.00254 172 

0.07560 0.50000 0.00328 91 0.01746 0.90000 0.00372 62 

0.02591 0.89474 0.00264 240 0.03114 0.84211 0.00183 11 

0.05901 0.55556 0.00522 20 0.03042 0.83333 0.00183 12 

0.02359 0.94118 0.00473 33 0.03014 0.82353 0.00216 12 

0.02357 0.93750 0.00473 33 0.03009 0.87500 0.00200 12 

0.02419 0.93333 0.00973 13 0.03034 0.86667 0.00181 13 

0.01144 0.71429 0.00431 84 0.02466 0.92857 0.00172 4 

0.02502 -0.46154 0.00427 61 0.02256 1.00000 0.00259 30 

0.01623 0.00000 0.00342 55 0.02524 0.91667 0.00200 6 

0.04630 -89.72727 0.00479 2425 0.02669 0.90909 0.00197 6 

0.02210 -0.70000 0.00303 60 0.02390 1.00000 0.00207 30 

0.01152 0.00000 0.00386 45 0.02768 0.88889 0.00212 7 

0.01069 0.12500 0.00607 39 0.01975 0.75000 0.00328 30 

0.01118 0.28571 0.00418 34 0.01858 0.71429 0.00134 7 

0.01444 0.50000 0.00520 52 0.01818 0.50000 0.00479 51 

0.01999 0.60000 0.00693 20 0.01850 0.40000 0.00025 11 

0.03583 0.75000 0.00811 18 0.02030 0.50000 0.00013 19 

0.01983 0.66667 0.00665 35 0.02646 1.00000 0.00276 11 

0.02861 1.00000 0.00866 16 0.02634 0.50000 0.00266 11 

0.02109 -1.00000 0.01123 12 0.02656 0.00000 0.00266 10 

Table 167: The obtained evaluation metrics on all the tests and training data sets with the evaluated Unscented Kalman Filter 

 



 

 


