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Abstract: The grid-connected converter is a key element in many power electronic 

applications and technological devices which are commonly used nowadays. Wind 

turbines, photovoltaic generation, railway traction and grid-connected battery charges, are 

only some few examples of technological devices which incorporate grid-connected 

converters. In addition, one aspect within grid-connected converter is the current control. 

Current controls of grid-connected converters is one element of vital importance as well. 

Thus, this book theorizes around two specific current controls of three phase grid-

connected converters. Current control of three phase grid-connected converters, can be 

made in a stationary reference frame, or often called also as  reference frame. 

Alternatively also and probably more extended in industry, current control can be made in 

a synchronous rotating reference frame, or often called also as dq reference frame.  

Therefore, this book develops the mathematical equations describing the behavior of 

the controlled currents in a stationary reference frame () of three phase converters. These 

mathematical expressions in  frame are derived, for the following well known and 

already well stablished current controls: current control with resonant controllers in 

stationary reference frame () and also, for current control with PI controllers in 

synchronous rotating reference frame (dq). Although these mathematical equations are 

already developed and quite commonly used for current controls in  frame, it is not easy 

to find them for current controls in dq frame, if they exist. 

Moreover, it is important to highlight that the mathematical equations derived in this 

book, are expressed in ‘s’ domain after applying the Laplace transformation. This fact allows 

employing all the classic control theory tools, such as: pole-zero maps, frequency domain 

analysis, time domain responses to different inputs, etc… In addition, thanks to the 

knowledge of these mathematical equations in a common mathematical framework (), it 

is possible to for instance: compare both current control methods at the same reference 

frame, easing comparative analyses.  

Thus, after deriving the mathematical equations of the mentioned current controls, 

these equations are experimentally validated in a laboratory set-up. Finally, the last two 

chapters of the book introduce further analysis such as: effect of delays and performance of 

the current controls in weak grids. To conclude, the appendix summarizes the most 

important mathematical developments to derive some useful expressions.  

Keywords: AC grids; analytical modeling; current control, grid-connected converter, pole-

zero maps, frequency response, time domain dynamic response. 
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Chapter 1.  
 

Introduction 
 

When a historic evolution of different technologies is analyzed under detail, it is often 

seen that first, the more technical, rudimentary or manual technological devices are 

developed, while then, after the technological devices are well stablished and used by many 

people, a more scientific knowledge is applied to them for further improvements, 

understanding or even evolutions [1].   

In the field of knowledge of control of power electronic converters connected to the grid 

or even in the field of knowledge of control of electric machines, it is possible to see an 

analogous behavior or tendency [1]. Since the first closed loop controls applied to electric 

machines were developed by pioneers K. Hasse and F. Blaschke in 1968–1972 [2], i.e. the so 

called ‘vector controls’, many authors have made a huge number of uncountable 

contributions or improvements to these original vector controls algorithms: theoretical 

analysis, analytical model equations describing its behavior, tuning methods of the 

regulators, discrete analytical models, improvements for compensation of delays, advanced 

estimators or observers to deal parameters uncertainties, sensorless controls, transient 

analysis, steady-state analysis, inclusion of active damping functionalities, etc… Many of 

the most representative of these improvements, or further studies for vector control 

techniques either applied to electric machine control or grid connected converters control, 

are already incorporated and covered in many specialized books such as: [2], [3], [4], [5], [6], 

[7], [8]. 

Thus, in the specific field of the grid-connected converters control, some of the most 

pioneering and important references addressing this issue in book formats are [9]-[10], 

although probably some leader companies also implemented previously, or in parallel, 

these type of grid connected converters. Since the first years of their existence, three phase 

grid-connected converters were controlled by means of vector control techniques [9]-[10]-

[11], where the currents were controlled in a synchronous rotating frame (dq) by means of 

PI controllers. In this case, the controlled currents seen by the PI regulators at steady-state 

where dominantly constant (an amount of ripple is superposed due to the converter’s 

switching). Or alternatively also, resonant controllers were also used to control of grid 

connected converters [12]-[13], controlling the currents in abc or  stationary reference 

frames (control 2 phases instead 3). Therefore, the current seen in this case by the resonant 

regulator was dominantly sinusoidal at steady state (an amount of ripple is superposed due 

to the converter’s switching) [7]. 

With this historical conditioning panorama, it can be affirmed that nowadays, either in 

industry or research, most of the current vector controls of three phase grid connected 

converters, are made by using PI controllers in synchronously rotating reference frame (dq) 
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or with resonant controllers in stationary reference frame () [8]. In addition, it can be 

observed that there is a clear and natural tendency to use mathematical models for analysis 

in stationary reference frame (), obviously in controls with resonant controllers. While in 

controls with PI controllers, the mathematical models for analysis are more often developed 

in synchronous rotating reference frame (dq), even if the final resulting or real currents 

exchanged between the grid and the power electronic converter are actually sinusoidal [7].   

Thus, what in this book is developed are the mathematical equations in stationary 

reference frame (), for both controls: current control with resonant controllers in 

stationary reference frame () and also for current control with PI controllers in 

synchronous rotating reference frame (dq). Part of the mathematical equations developed in 

this book for the controls in  frame are probably already derived [8], however, 

developments in this direction for controls in dq frame are less [13]. Thus, in this book a 

common and solid mathematical model for both controls is developed, allowing to dispone 

a powerful and global tool for further developments, studies or analyses. This common 

mathematical framework or mathematical model, allows for instance: 

- Compare both control methods at the same reference frame, easing comparative 

analysis. 

- To know mathematically the transient and steady state responses to different 

inputs, of both controls, in a common stationary reference frame (). 

- To understand the frequency analysis of both controls, in a common stationary 

reference frame (). 

- With this mathematical tool, it helps to do analysis of performance of both controls 

in a common stationary reference frame () such as: pole locations, modelling 

delays, modelling PLLs, modelling interactions with other power electronic 

converters connected in parallel in the vicinity of the grid, etc… [14] 

 

Finally, summarizing the book is divided into the following chapters: chapter 2 develops 

the model equations of a control of currents in stationary reference frame (). Then chapter 

3, develops the model equations of a control of currents in synchronous rotating frame (dq) 

with cancellation of the coupling terms. Chapter 4, analyzes the same current control 

method but without cancelling the coupling terms. Note that control of currents in dq can 

be made with or without cancellation of coupling terms and therefore, a deep mathematical 

analysis of both options in carried out in the book. Then, a short comparison between the 

controls analyzed is presented in chapter 5, while in chapter 6, the experimental validation 

of the mathematical equations is provided. Finally, chapters 7 and 8, introduces further 

analysis such as: effect of delays and performance of the controls in weak grids. To conclude, 

several appendices summarize the most important mathematical developments to derive 

some useful expressions. 

Therefore, in Figure 1 (a), a schematic is depicted of the converter connected to the three 

phase grid. As depicted, there may be many functionalities or applications where this 

converter can be used; reactive power compensators, active filters, wind turbines, etc… In 

all these cases in general, a current control is typically used, trying also to fulfill some 

standard or norms. At the AC side, a filter is necessary that for simplicity in this book, a 

purely inductive filter has been adopted with its corresponding parasitic resistance. Then at 

the DC side, depending on the application where this converter is used, there could be 

connected a battery pack, or another converter or even to nothing. Finally, commanding the 

current control, depending again on the application, there may be another control level, 
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generating the current references id(t) and iq(t). For simplicity, this book is focused on the 

current control and no attention is paid to how the current references are generated, because 

it strongly depends on the application itself.  

 
 

AC 

DC Filter 

AC Grid  

of the ship 

-To Battery Pack 

-To other converter  

-To nothing (Reactive 

Power Compensator, 

Active filter, etc…) 

-etc… 

Grid connected 

converter 

Current Control 

AC grid  

Optional 

transformer 

id
*(t) iq

*(t) 

High Level Control 

(Application dependent) 

-Reactive Power Compensators 

-Active filters  

-Wind turbines (Full power and 

DFIG) 

-Photovoltaic and solar applications. 

-Reversible battery chargers. 

-Reversible AC Drives. 

-HVDCs. 

-etc… 

a  

b  

c 

 
(a) 

 

- 

+ 

i(t) R L 

vconv(t) vg(t) 

- 

+ 

- 

+ 

i(t) R L 

vconv(t) vg(t) 

- 

+ 

 

(b) 

Figure. 1. (a) Grid connected converter operating with current references in dq reference frame; 

ids*(t) and iqs*(t), (b) Simplified equivalent electric circuit in  reference frame. 

 

 

After this, in Figure 1 (b), the  equivalent power circuit is depicted [7]. Note that simply 

is composed by the grid voltage vg(t) and vg(t) that in the first analysis of this book is 

supposed ideal (strong, with a neglectable series equivalent impedance). Then the 

equivalent impedance RL of the filter is also present, while finally the voltages created by 

the converter are also present. These voltages vconv(t) and vconv(t) are automatically 

generated by the corresponding current control method employed. For simplicity in the 

analysis, this book derives all the mathematical expressions in a  stationary reference 

frame. Note that the three components could be also used, abc, however the results and 

conclusions would be equivalent. 
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Chapter 2.  

Control of currents in stationary 

reference frame ( control) 

 
The control block diagram is depicted in Figure 2, [13]. The current control is effectively 

implemented in stationary reference frame () by using two resonant controllers, called 

PIR(t). A typical resonant controller configuration in ‘s’ domain is [15]:  

 

2 2
( ) i

p

k s
PIR s k

s 
 



 
(1) 

 

 

Being kp and ki the gains of the regulator that must be tuned and  the grid frequency at 

which the resonance of the regulator must be tuned. 

As shown in previous chapter when contextualizing, in most of the applications the current 

references id*(t) and iq*(t) are created in rotating reference frame (dq), therefore the rotational 

transformation is required together with the angle of the grid voltage [7]. Then, at the output 

of the regulators, often a feedforward term of the grid voltage is added (not strictly 

necessary, but recommendable as will be seen), obtaining thus the voltage references that 

will be applied by the VSC converter vconv(t) and vconv(t). 

 

 

 

+ 
( )PIR t

ej 

id
*(t) 

iq
*(t) 

+ 

- 

i
*(t) 

PLL 

vg(t)
 

+ 

+ 

- 

i
*(t) 

t  

vg(t)
 

+ 

+ 

vg(t)
 

vg(t)
 

vconv(t)
 

vconv(t)
 

i(t) 

i(t) 

+ 

2 2

i
p

k s
k

s 




ej 

id
*(t) 

iq
*(t) 

+ 

- 

i
*(t) 

PLL 

vg(t)
 

+ 

2 2

i
p

k s
k

s 




+ 

- 

i
*(t) 

t  

vg(t)
 

+ 

+ 

vg(t)
 

vg(t)
 

vconv(t)
 

vconv(t)
 

i(t) 

i(t) 

( )PIR t

 
Figure 2. Current control block diagram in stationary reference frame () with two resonant 

controllers.  
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This control block diagram, can be represented as an equivalent ‘black box’ either in time 

domain and also in ‘s’ domain, as shown in Figure 3. 

 

 

+ 

Control 

id
*(t) 

iq
*(t) 

+ 

+ 

+ 

vg(t)
 

vg(t)
 

vconv(t)
 

vconv(t)
 

i(t) i(t) 

+ 

Control 

Id
*(s) 

Iq
*(s) 

+ 

+ 

+ 

Vg(s) 

Vg(s) 

Vconv(s) 

Vconv(s) 

I(s) I(s) 

 

Figure 3. Current control blocks in time and ‘s’ domains. 

 

 

The  and  components of the converter voltages, considering the grid voltage feedforward 

terms, are mathematically represented in time domain as follows (‘’ is the convolution 

product):  

 

 * *( ) ( ) cos( ) ( ) sin( ) ( ) ( ) ( ) ( )conv d q gv t i t t i t t PIR t i t PIR t v t          
 

(2) 

 

 * *( ) ( ) sin( ) ( ) cos( ) ( ) ( ) ( ) ( )conv d q gv t i t t i t t PIR t i t PIR t v t          
 

(3) 

 

Note that the harmonics created by the converter are neglected. This is only a first 

component harmonic model and the voltage harmonics generated by the specific converter 

topology employed, together with its corresponding modulation technique are assumed to 

be zero. 

2.1. Mathematical model with an step input  

 

Considering step inputs at at both Id*(s) and Iq*(s) and assuming that the grid voltage is ideal, 

i.e., assuming no angle phase shift and  constant, the previous time domain expressions 

can be transformed into the ‘s’ domain as follows (see appendix A for detailed mathematical 

development) [13]: 

 

 

 

2 3

*

2 2 2 2 2
2 2

2

*

2 2 2
2 2

( ) ( ) ( )

( ) ( )

pi i

conv p d

p i

q g

k sk s k s
V s k I s I s

s s s

k s k s
I s V s

s s

 



  

 

 

 
             

 

 
   
  
 

 

(4) 
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 

 

2

*

2 2 2 2 2
2 2

2 3

*

2 2 2
2 2

( ) ( ) ( )

( ) ( )

pi i

conv p d

p i

q g

k sk s k s
V s k I s I s

s s s

k s k s
I s V s

s s

 



 

  

 

 
             

 

 
   
  
 

 

(5) 

 

Being these expressions only valid for a step input at both Id*(s) and Iq*(s):  

 

*
* | |
( ) d

d

I
I s

s


          *

*
| |

( )
q

q

I
I s

s


 
(6) 

 

The closed loop expression can be derived by using the electric circuit of Figure 1, where 

holds: 

 

( )
( ) ( ) ( )conv g

di t
v t v t R i t L

dt


      

 
(7) 

 

( )
( ) ( ) ( )conv g

di t
v t v t R i t L

dt



      

 
(8) 

 

And therefore, the ‘s’ domain equations of the power circuit are: 

 

 ( ) ( ) ( )conv gV s V s I s R Ls     
 

(9) 

 

 ( ) ( ) ( )conv gV s V s I s R Ls     
 

(10) 

 

Combining these expressions with the voltage applied by the control in equations (4) and 

(5), the closed loop current expression yield (appendix A): 

 

2
* *

2 2 2 2
( ) ( ) ( )

( ) ( )

i i
p d p q

k s k ss s
I s k I s k I s

s A s s A s




 

      
         

      

 
(11) 

 

2
* *

2 2 2 2
( ) ( ) ( )

( ) ( )

i i

p d p q

k s k ss s
I s k I s k I s

A s A ss s




 

     
         

       

 
(12) 

Being:  

 

3 2 2 2( ) ( ) ( ) ( )p i pA s Ls k R s L k s k R       
 

(13) 

 

Therefore, the output currents  can be compactly represented as follows: 
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* *( ) ( ) ( ) ( ) ( )d d q qI s G s I s G s I s     
 (14) 

 

* *( ) ( ) ( ) ( ) ( )d d q qI s G s I s G s I s     
 (15) 

 

Being Gd (s), Gq (s), Gd (s), Gd (s), easily deduced from correspondence of equations (11) 

and (12). These last equations are graphically represented in Figure 4. 

 

 

 

I(s) 

I(s) 
Iq

*(s) 

Id
*(s) 

( )dG s

( )qG s

+ 

+ 

I(s) 
( )dG s

( )qG s

+ 

+ 

 

Figure 4. Equivalent block diagram of the  control of the currents.  

 

Note that if not voltage feedforward term would not have been used, the closed loop 

expressions would also depend on the grid voltage as follows: 

 

2 2 2
* *

2 2 2 2
( ) ( ) ( ) ( )

( ) ( ) ( )

i i
p d p q g

k s k ss s s
I s k I s k I s V s

s A s s A s A s
 

 

 

        
           

        

 
(16) 

 

2 2 2
* *

2 2 2 2
( ) ( ) ( ) ( )

( ) ( ) ( )

i i

p d p q g

k s k ss s s
I s k I s k I s V s

A s A s A ss s
 

 

 

        
           

         

 
(17) 

 

Nevertheless, continuing with the analysis, from expression (11) and (12), substituting in 

both inputs a step (equation (6)), the output currents yields: 
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(18) 
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(19) 
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Expanding the denominator: 
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(20) 
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(21) 

By using a partial fraction expansion and applying the inverse Laplace transform, the time 

domain expression of the output current can be obtained (only i(t) current is shown, i(t) 

would present an equivalent form): 

 

 
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( ) ( ) (2 ) cos( arg ) (2 ) cos( ) | |
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d d

t t

d q

i t B e B e t B B t I

B e B e t B B t I

 



 

 

  

           

            

 
(22) 

It is seen that the i(t) current time domain response to the input steps, is composed by the 

‘forced response’ or ‘steady state response’, which are two cosine terms: 

 

*

2(| | 2 ) cos( )dI B t   
 (23) 

 

*

5(| | 2 ) cos( 2)qI B t     
 

(24) 

While the rest terms are pure exponentials or combinations of exponentials and cosine 

terms. All these terms are made zero at steady-state, if the system is stable, i.e., if all 0, 1, 

2, 3 are negative. These terms are often called the ‘natural response’ and conformate the 

transient response of the system.  

All the constants present in equation (22), B0, 0, … can be easily numerically derived for 

instance using the ‘residue’ from Matlab Control Toolboox. Table I shows an example of 

numerical solution.  
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Table I. Numerical solution of expression (22) by using the the ‘residue’ function from Matlab 

Control Toolboox. Conditions of Appendix E.  

 

 

d  

 

q 

 

B0 = -6.529590130061056e-01  

0 = -4.088851233797501e+02  

 

 

B3 = -5.016888903659279e-01 

3 = -4.088851233797501e+02 

 

B1 =  3.513965304953767e-01 

1 = -4.805743831012502e+01 

d1 = 3.458129312915602e+02  

argB1 = -2.087253535142668e+00  

 

B4 = 3.161931338686155e-01 

4 = -4.805743831012502e+01 

d4 = 3.458129312915602e+02 

argB4 = -6.545422830740641e-01 

 

B2 =  5.0000e-01 

 = 3.14159e+02 

 

B5 =  5.0000e-01 

 = 3.14159e+02 

 

Thus, the transient response is depicted in Figure 5. The time domain response provided by 

the mathematical model of expression (22) is superposed to the Simulink block diagram 

depicted in Figure 5. It is seen an exact correspondence of both time domain responses to 

the step inputs. 

 

(a) 

 

 vconv 
 

i   

 

i natural response 
 

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

 

(b) 

Figure 5.  control of currents. (a) Simulink model for evaluating the Step response, of the  

control of the currents, (b) Time domain unit step response at both inputs Id*(s) and Iq*(s). Conditions 

of Appendix E. 
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Finally, the poles and zeros of the expression (11) are also depicted in Figure 6. Note the 

correspondence with the poles and the constants of the time domain response of equations 

(22).  

 

 

 

- 

 

- 

(a) (b) 

d 
q 

 

Figure 6. Poles for I(s) of expression (11), for the  control of the currents and step inputs. 

Conditions of Appendix E. 

 

Note that the poles and the zeros of equation (11) appear directly in the time domain 

expression (22). Thus, the real part of the poles are the  constants of the exponential terms. 

Then, the imaginary part of the poles are directly the d , of the cosine terms. While the phase 

shifts of the cosine terms (argB1, argB2…) and the amplitudes (B1, B2…) come from the 

combination of the poles and zeros.  

In addition, although it is not covered in this book, ramp responses could be also evaluated 

as done in many classic control books [16]. However, in this book, sinusoidal input analysis 

is carried out in the following chapter. 

2.2. Mathematical model with sinusoidal and cosenoidal input  

 

Now considering sine and cosine inputs at Id*(s) and Iq*(s) respectively and again assuming 

that the grid voltage is ideal, i.e., assuming no angle phase shift and  constant, the time 

domain expressions (1) and (2) can be transformed into the ‘s’ domain as follows (see 

appendix B for detailed mathematical development): 

 

 


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    

   

       
        

         

     
     

       

 

(25) 
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   
     

       

 

(26) 

 

Being these expressions only valid for a sine and cosine inputs at Id*(s) and Iq*(s) respectively: 

 

* *

1( ) | | sin( )d di t I t 
     


     

* *1

2 2

1

( ) | |q qI s I
s








 
(27) 

 

* *

1( ) | | cos( )q qi t I t 
       


    

* *

2 2

1

( ) | |q q

s
I s I

s 




 
(28) 

It has to be highlighted that sine and cosine inputs have been chosen for being as general as 

possible. Note that it could be also chosen at the inputs, for instance; sine and sine, or cosine 

and cosine, or cosine and sine. Then, combining these last two expressions in ‘s’ domain, 

with the power circuit model equations (9) and (10), the closed loop expressions of the 

currents can be obtained: 

 

2 2 2 2
*1 1 1

2 2 2 2

1 1 1

2 2 2 2
*1 1 1

2 2 2 2

1 1

1
( ) ( )

( ) 2 ( ) ( )

1
( )

( ) 2 ( ) ( )

p i p

d

p i p

q

k s k s k s
I s I s

A s s s

k s k s k s
I s

A s s s s



     

    

     

   

         
                 

         
                 

 

(29) 
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       
                 

 

(30) 

 

Being these expressions only valid for a sine and cosine inputs at Id*(s) and Iq*(s) respectively. 

As done in previous chapter, it is possible to define Gd_s(s), Gq_s(s), Gd_s(s), Gd_s(s) for 

previous two expressions, representing directly the transfer functions.Then, by substituting 

the sine and cosine inputs at Id*(s) and Iq*(s), we obtain the output current expressions:  
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(31) 
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(32) 

Or expanding into two factors: 
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(34) 

Which is how the Bode diagram originally is defined in every classic book as for instance 

[16]. Since A(s) is composed by poles with real negative parts, they present an exponential 

factor at the time domain response that is made zero at steady-state. Therefore, the output 

current I(s) at steady-state is composed by the addition of two sinusoidal terms of 

frequencies 1+ and 1- and their amplitudes and phases, are calculated by substituting 

s=j(+1) and s=j(-1) and calculating the module and phases in (33). While the same occurs 

with I(s) that is excited by cosine inputs, as we have chosen seeking a generalist analysis. 

By focusing only on I(s) current now, the steady-state two terms’ amplitudes and phases, 

are calculated by substituting: 
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(35) 

Expanding considering A(s): 
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(36) 

What means that the two sinusoidal output currents, can be evaluated in terms of amplitude 

and phase by applying for instance ‘Bode function’ of previous expression (36) in a 

programs such as Matlab. Numerically, this means that for instance by choosing (note that 

the frequency at which the Bode is wanted to be evaluated is 1): 

 

* *

1( ) | | sin( )d di t I t 
     


     

*( ) 1 sin(250 2 )di t t    
 (37) 

 

*( ) 0qi t 
         


              

*| | 0qI 
 (38) 

 

At the output current i(t), we obtain 0.187A at 200Hz and 0.127A at 300Hz, which 

corresponds with 14.5dB y -17.9dB and with obtained at Bode of previous expression (36) as 

noticed in next Figure 7. 
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1- 
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1- 
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1- 

D- 

 

Figure 7. Time domain and Bode correspondence for the  control of the currents. Conditions of 

Appendix E and: * ( ) 1 sin(250 2 )di t t     , *( ) 0qi t   

On the other hand, by using a partial fraction expansion and applying the inverse Laplace 

transform, the time domain expression for sinus and cosines inputs of the output current 

can be obtained from expression (31) (only i(t) current is shown, i(t) would present an 

equivalent form): 
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(39) 
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All the constants present in this last equation, B0, B1, etc... can be easily numerically derived 

for instance using the ‘residue’ from Matlab Control Toolboox. Table II shows an example 

of numerical solution.  

 

Table II. Numerical solution of expression (39) by using the ‘residue’ function from Matlab Control 

Toolboox. Conditions of Appendix E.  

 

 

d  

 

q 

 

B0 = 2.60333294897e-01 

0 = -4.08885123379e+02 

 

B4 = 4.52013268064e-02 

4 = -4.08885123379e+02 

B1 =  2.69804207945e-02 

argB1 = 4.24146388400e-01 

1 = -4.80574383101e+01 

d1 = 3.45812931291e+02 

B5 =  5.958132362346896e-03 

argB5 = 4.52277565853e-01 

5 = -4.80574383101e+01 

d5 = 3.45812931291e+02 

  

B2 = 6.46561538423e-02 

argB2 = -2.94401826699e+00 

1+ = 1.8849e+03 

 

B6 =  6.46561538423e-02 

argB6 = 1.97574386591e-01 

1+ = 1.88495559215e+03 

 

B3 = 9.53533539998e-02 

argB3 = =-2.85108949285e+00 

1- = 1.2566e+03 

 

B7 =  9.53533539998e-02 

argB7 = -2.85108949285e+00 

1- = 1.2566e+03 

 

 

Finally, the transient response to sinus and cosines inputs depicted in the following figure. 

The time domain response provided by the mathematical model of expression (39) is 

superposed to the Simulink block diagram depicted in previous Figure 5. It is seen an exact 

correspondence of both time domain responses to the sinus and cosines inputs. Note that at 

the time domain response, for the particular choice of inputs selected (

, ), the (1+) terms is zero as can be deduced 

also in the resulting residuals of Table II. 

 

 vconv 
 

i   

 

i natural response 
 

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

 

Figure 8. Time domain response for a sine and cosine input references of 250Hz at Id*(s) (1 Amp) 

and Iq*(s) (0.5 Amp) respectively, for the  control of the currents. Conditions of Appendix E.  

 

*( ) 1 sin(250 2 )di t t    
*( ) 0.5 cos(250 2 )qi t t    
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Finally, the poles and zeros of transfer function of expression (29) are depicted in next figure. 

Note the correspondence with the poles and the constant terms of the time domain response.  

 

 

1+ 

1- 

1+ 

1- d q 

(a) (b) 

-(1- ) 

  -(1+ ) 

-(1- ) 

 -(1+ ) 

 

Figure 9. Poles of transfer function of expression (29), for the  control of the currents with 

sinusoidal current references. Conditions of Appendix E.  
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Chapter 3. 

Control of currents in rotating 

reference frame (dq control) with 

cancellation of coupling terms 
 

 

The control block diagram [7] studied in this chapter is depicted in Figure 10. The current 

control is effectively implemented in rotating reference frame (dq) by using two PI 

controllers. A typical and ideal PI controller configuration in ‘s’ domain is:  

 

( ) i
p

k
PI s k

s
 

 
(40) 

 

Being kp and ki the gains of the regulator that must be tuned. The rotating reference frame 

rotates at speed , the grid frequency. In most of the applications of three phase grid 

connected converters, the current references id*(t) and iq*(t) are created in rotating reference 

frame (dq). Then, at the output of the regulators, a cancellation of coupling terms is adopted 

although is not strictly necessary [7]. After that, by using the rotational transformation the 

voltage references are transformed into the stationary reference frame (), obtaining thus 

the voltage references that will be applied by the VSC converter vconv(t) and vconv(t). Often a 

feedforward term of the grid voltage is added at the output [7]. 

 

 

+ 
( )PI t

ej 

+ 

- 

id
*(t) 

PLL 
vg(t)

 

+ 

+ 

- 

iq
*(t) 

t  

vg(t)
 

+ 

+ 

vg(t)
 

vg(t)
 

vconv(t)
 

vconv(t)
 

id(t) 

iq(t) 

( )PI t

e-j 

id(t) 

iq(t) 

i(t) 

i(t) 

- 

iq(t)L 

+ 

+ 

id(t)L 

+ 

 

Figure 10. Current control block diagram in rotating reference frame (dq) with two PI controllers 

and cancellation of current coupling terms. 



Chapter 3: Control of currents in rotating reference frame (dq control) with cancellation of coupling terms 

 

24 

3.1. Mathematical model in dq  

 

This model has been widely studied in specialized literature, such as for instance [6] – [7], 

so it will be shortly presented here. By using the equivalent electric circuit of Figure 11, the 

following expression can be derived: 

 
( )

( ) ( ) ( ) ( )d

convd d gd q

di t
v t R i t L v t L i t

dt
         (41) 

 
( )

( ) ( ) ( ) ( )
q

convq q gq d

di t
v t R i t L v t L i t

dt
         (42) 

 

Neglecting the transformations between reference frames, converter effect and some other 

non-dominant phenomena, the closed loop expression in dq reference frame, can be 

calculated from the union of the electric circuit equation and control represented in block 

diagram of Figure 10, which holds: 

 

* ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d

d d gd q d gd q

di t
i t i t PI t v t L i t R i t L v t L i t

dt
                

 (43) 

 

*
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
q

q q gq d q gq d

di t
i t i t PI t v t L i t R i t L v t L i t

dt
                

 (44) 

 

 

- 

+ 

id(t) R L 

vconvd(t) vgd(t) 

- 

+ 

Liq(t) 

+ - 

- 

+ 

iq(t) R L 

vconvq(t) vgq(t) 

- 

+ 

Lid(t) 

- + 

 

Figure. 11. Equivalent electric circuit of grid connected converter, filter and grid operating 

with current control in dq reference frame. 

 

 

In general, the d axis of the synchronously rotating frame is aligned with the grid voltage 

space vector, making therefore zero the q component of the grid voltage, vqg=0. Eliminating 

the terms that can be cancelled in the equations, substituting the PI(t) equations and 

applying the Laplace transform, the expressions yield: 

 

* ( ) ( ) ( ) ( )i

d d p d d

k
I s I s k R I s L s I s

s

 
          

 

 (45) 

 

* ( ) ( ) ( ) ( )i

q q p q q

k
I s I s k R I s L s I s

s

 
          

 

 (46) 
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Rearranging both equations, the transfer functions of each current control loop yields: 

 

 
* *

2

/( )( )

( )( ) ( )

p iqsds

p ids qs

k s k LI sI s

k R kI s I s
s s

L L


 


 

 
(47) 

 

With this, it is possible to associate the denominator to the canonic second order transfer 

function as follows: 

 

   
* * 2 2

2

/ /( )( )

( )( ) ( ) 2

p i p iqsds

p ids qs n n

k s k L k s k LI sI s

k R kI s I s s s
s s

L L

 

 
  

  
 

 
(48) 

 

For a specified closed loop dynamic, it is possible to define the natural frequency n and 

damping  ratio as desired, by choosing: 

 

22p n i nk L R k L   

 
(49) 

 

Thus, the poles and zeros of the closed loop transfer functions are represented in Figure 12 

for a given numerical example: 

 

Figure 12. Poles of transfer functions Id(s)/Id*(s) and Iq(s)/Iq*(s) of expression (47), for control of 

currents in synchronous reference frame (dq) with current coupling cancellation. Conditions of 

Appendix E. 

 

 

Thus, for a step input applied to both input current references Id*(s) and Iq*(s): 

 

*
* | |
( ) d

d

I
I s

s


          *

*
| |

( )
q

q

I
I s

s


 
(50) 

 

the output currents yields: 
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 
* *

2 2 2 2

/ /
( ) | | | |

2 2

p i

d d d

n n n n

k L k L
I s I I

s s s s s   
 

   

 
(51) 

 

 
* *

2 2 2 2

/ /
( ) | | | |

2 2

p i

q q q

n n n n

k L k L
I s I I

s s s s s   
 

   

 
(52) 

 

 

Applying the inverse Lapalace transform, the time domain current expressions are: 

 

 * 2
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2
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2 2 2
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( ) | | sin 1
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i t I e t
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 


 
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 

  


       
        

          

 
(53) 
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 
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

 

  


       
        

          

 
(54) 

 

Once the exponential terms are damped and assuming that the expression (49) has been 

used, the steady-state expressions for the current yields: 

 
*( ) | |d t di t I     and   *( ) | |q t qi t I   (55) 

 

Thus, the step response in time domain is represented in the following figure. It is seen an 

exact match between the mathematical previously deduced equations (53-54) and the id(t) 

and iq(t) currents provided by the control block diagram. In the figure, it is also represented 

the Bode diagram of the current transfer function (47). 
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(a) 

 

 

 
 

+ 

+ 

vsTh 
 

id 
 

GRID 

iq 
 

i natural response 
 i natural response 

 i natural response 
 

dq
 

dq without compensation
 

id 
 

iq 
 

id 
 

iq 
 

        

(b)                                        (c) 

Figure 13. (a) Block diagram of control in synchronous reference frame (dq) with current coupling 

cancellation,  (b) time domain responses in dq reference frame, to a unit step input in id*(t) and 

iq*(t), (c) Bode diagrams of Id(s)/Id*(s) and Iq(s)/Iq*(s). Conditions of Appendix E. 

 

3.2. Mathematical model in   

 

This control block diagram, can be represented as an equivalent ‘black box’ either in time 

domain and also in ‘s’ domain, as shown in Figure 14. 
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+ 
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Figure 14. Current control blocks in time and ‘s’ domains. 

 

 

The  and  components of the converter voltages, considering the grid voltage feedforward 

terms, are mathematically represented in time domain as follows (Note that the harmonics 

created by the converter are neglected):  

 

   * *( ) ( ) ( ) ( ) cos( ) ( ) ( ) ( ) sin( )

( ) cos( ) ( ) sin( ) ( )

conv d d q q

q d g

v t i t i t PI t t i t i t PI t t

L i t t L i t t v t





 

   

             

        

 
(56) 

 

   * *( ) ( ) ( ) ( ) sin( ) ( ) ( ) ( ) cos( )

( ) sin( ) ( ) cos( ) ( )

conv d d q q

q d g

v t i t i t PI t t i t i t PI t t

L i t t L i t t v t





 
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             

        

 
(57) 

Which is equal to: 
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(58) 
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(59) 

3.3. Mathematical model in  with an step input 

 

Considering step inputs at at both Id*(s) and Iq*(s) and assuming that the grid voltage is ideal 

or purely sinusoidal and assuming no angle jumps and  constant, the previous time 

domain expressions can be transformed into the ‘s’ domain as follows (see appendix C for 

detailed mathematical development): 
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(60) 
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(61) 

 

Being these expressions only valid for a step input at both Id*(s) and Iq*(s):  
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(62) 

 

As done in previous chapter, combining the last two control law expressions with the power 

circuit electric expressions, it is possible to derive the closed loop equation for both  and  

currents: 
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(63) 
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(64) 

Being again: 

 

3 2 2 2( ) ( ) ( ) ( )p i pA s Ls k R s L k s k R       
 (65) 

 

Thus now substituting in both inputs a step, the output currents yields: 
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(66) 
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(67) 

Which is equal to: 
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(69) 

 

As can be noticed from the previous expressions, there is a coupling in  and . What means 

that I(s) depends on I(s) and vice versa. This coupling, can be represented graphically as 

in Figure 15. 

 

 

G 

 

+ 

+ 

I(s) 

I(s) 

+ 

+ 

G 

 

+ 

+ 

Gd 

Gq 

 

+ 

+ 

Gd 

 

Gq 

Iq
*(s) 

Id
*(s) 

 

Figure 15. Block diagram of the control of currents in dq with cancellation of coupling terms. 

 

 

With equations developed up to this point, we cannot derive decoupled expressions that 

connect the outputs (I(s) and I(s)) directly to the inputs (Id*(s) and Iq*(s)). In order to solve 

this problem, a further mathematical development must be carried out. Hence, by renaming 

the expressions (63) and (64) as follows: 

 

* *( ) ( ) ( ) ( ) ( ) ( ) ( )d d q qI s G s I s G s I s G s I s      
 

(70) 

 

* *( ) ( ) ( ) ( ) ( ) ( ) ( )d d q qI s G s I s G s I s G s I s      
 

(71) 

 

If we combine both equations seeking to eliminate I(s) from the second equation and I(s) 

from the first equation, the decoupled input-output transfer functions can be obtained 

easily: 
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(73) 

 

The decoupled transfer functions are graphically represented in block diagram in next 

figure: 
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Figure 16. Equivalent block diagram of the control of currents in dq with cancellation of coupling 

terms.  

 

 

 Focusing on I(s) current and by solving these last expressions using a symbolic Toolbox 

from Matlab for instance, it is possible to obtain for d input current: 

 

5 4 3

5 4 3 2 1

6 5 4 3

6 5 4 3 2 1 0
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d d nd nd nd nd nds s

s s

G s G s G s g s g s g s g g

G s G s g s g s g s g s g g g

  

 

      

     

 

 




   

 
(74) 

 

Being each coefficient of the resulting transfer function: 
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(75) 

 

And for q input current: 
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(76) 

 

Being the denominator’s coefficients, g6, g5, … equal to the previous expression. While the 

coefficients of the numerator are: 
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(77) 

 

Thus, in next Figure 17, the poles and zeros of the system are shown, after substituting the 

same numerical example used in previous chapter. It is seen that the real poles in 

synchronous reference frame (dq) that are located in this numerical example at -217 and -

288, are directly translated to two complex conjugate pole pairs at the stationary reference 

frame (), with same real parts (same  of the exponential terms) and with imaginary parts 

d=314.159rd/s. Therefore, the time in which these poles are extinguished is equal (same  

of the exponential terms) in both stationary and synchronous rotating frames. Then, at the 

stationary reference frame () there is another pair of conjugate imaginary poles, without 

real part and with imaginary part d=314.159rd/s, which are the components that create the 

steady-state current.  
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                                                    Poles in synchronous reference frame (dq) 
 

 
(a) 

 

 

                                                    
Poles in stationary reference frame () 

 

 
(b) 

Figure 17. Control in dq with cancellation of coupling terms. (a) Poles in synchronous reference 

frame (dq) of Id(s)/Id*(s) and Iq(s)/Iq*(s) of expression (47), (b) Poles in stationary reference frame () 

of expression (72). Conditions of Appendix E.  

 

 

After this, by substituting step inputs at at both Id*(s) and Iq*(s), the output  current results 

in: 
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(78) 

 

What is equal to: 
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(79) 

 

Note that the denominator is not altered compared to equation (74) and (76). By using a 

partial fraction expansion and applying the inverse Laplace transform, the time domain 

expression for step inputs of the output current can be obtained from previous equation 

(79). Being the time response of the complete final expressions (only i(t) current is shown, 

i(t) would present an equivalent form): 
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(80) 

As done in previous chapter, in Figure 18, the Simulink blocks and the derived mathematical 

expressions are compared, corroborating an exact match. 
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(a) 

 

 vconv 
 

i   

 

i natural response 
 

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

(b) 

Figure 18. (a) Block diagram of control in synchronous reference frame (dq) with current coupling 

cancellation,  (b) time domain responses in  reference frame of control in dq frame with current 

coupling cancellation, to a unit step input in id*(t) and iq*(t). Conditions of Appendix E. 

 

Table III shows a numerical example of the constants obtained by Matlab by using the 

‘residue’ function applied for equation (80). 
 

Table III. Numerical solution of expression (80) by using the the ‘residue’ function from Matlab 

Control Toolboox. Conditions of Appendix E.  

 

d  q 

  

B0 = 1.960463118457156e+00 

argB0 = 3.141592653589781e+00 

0 = -2.879436171968935e+02 

wd0 = 3.141592653589789e+02 

B3= 1.960463118457155e+00 

argB3 =-1.570796326794909e+00 

3 =-2.879436171968935e+02 

wd3 = 3.141592653589789e+02 

  

B1 = 1.460463118457152e+00 

argB1 = -1.593711439601920e-14 

1 = -2.170563828031064e+02 

d1 = 3.141592653589797e+02 

B4 = 1.460463118457151e+00 

argB4 =1.570796326794881e+00 

4 = -2.170563828031064e+02 

      d4 = 3.141592653589797e+02 

  

B2 =4.999999999999996e-01 

 = 3.141592653589798e+02 

 

B5= 4.999999999999988e-01 

 = 1.570796326794898e+00 
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3.4. Mathematical model in  with sinusoidal and cosenoidal input  

 

Now considering sine and cosine inputs at Id*(s) and Iq*(s) respectively and again assuming 

that the grid voltage is ideal and purely sinusoidal, i.e., assuming no angle phase shift and 

 constant, the time domain expressions (58) and (59) can be transformed into the ‘s’ domain 

as follows (see appendix D for detailed mathematical development): 
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(81) 
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Being these expressions only valid for a sine and cosine inputs at Id*(s) and Iq*(s):  
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(84) 

Then, combining these last two expressions in ‘s’ domain, with the power circuit model 

equations, the closed loop expressions of the currents can be obtained: 
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And 
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Being again, these expressions only valid for a sine and cosine inputs at Id*(s) and Iq*(s). By 

representing these expressions in a more compact form: 
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(92) 

 

It is seen that there is again a coupling between two output currents that influence one in 

the other. Repeating again the same procedure applied in the previous chapter, the 

decoupled input-output transfer functions are obtained: 
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The decoupled transfer functions are graphically represented in block diagrams in next 

figure: 
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Figure 19. Equivalent block diagram of the currents control in dq with cancellation of current 

coupling.  

 

 

 By solving I(s) expressions using a symbolic Toolbox from Matlab for instance, it is 

possible to obtain for d input current: 
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Being each coefficient of the numerator of the resulting transfer function: 
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And the denominator: 
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And for q input current: 
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Being the denominator’s coefficients, g1, g2, … g8 equal to the previous expression. While the 

coefficients of the numerator are: 
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For current I(s) the same procedure can be followed and an equivalent expression can be 

obtained. For simplicity here, it is not shown. Thus, in next Figure 20, the poles and zeros of 

the system are shown, after numerically substituting the same numerical example used in 

previous chapter. It is seen again that two complex conjugate pole pairs, with real parts ( 

of the exponential terms) of -217 and -288 appear and with imaginary parts d=314.159rd/s. 

Then, there are two more pair of conjugate imaginary poles, without real part and with 

imaginary parts d=1+=1884.9rd/s and d=1-=1256.6rd/s, which are the components 

that create the steady-state current. Note also that there is a conjugate zero pair with 

imaginary part 1 in both transfer functions, that is cancelled with the sinus and cosines 

inputs’ poles with imaginary part 1. 

 

                                                    

d q 

1+ 

1- 

1+ 

1- 

-(1- ) 

-(1+ ) 

-(1- ) 

-(1+ ) 

 

Figure 20. Poles of transfer function of expression (93), for the dq control of currents with sinusoidal 

current references. Conditions of Appendix E. 
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Once the transfer functions have been obtained, it is possible to derive the output current 

expressions. Hence, substituing a sine and cosine inputs at Id*(s) and Iq*(s). The output  

current is given by: 
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What is equal to: 
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With coefficients of the numerator corresponding to the d input: 
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Being obviously the denominator’s coefficients, g1, g2, … g8 equal to the previous expressions 

of transfer functions (93) and (94). While for the q component, the coefficients of the 

numerator are symbolically represented by: 
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(102) 

 

Finally, by using a partial fraction expansion and applying the inverse Laplace transform, 

the time domain expression for step inputs of the output current can be obtained from 

equation (100). Being the time response of the complete final expressions (only i(t) current 

is shown, i(t) would present an equivalent form): 
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(103) 
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To conclude, Table IV shows a numerical example for the previous time domain expression.  

 

 
Table IV. Numerical solution of expression (103) calculated by using the ‘residue’ function from 

Matlab Control Toolboox. Conditions of Appendix E.  

 
 

d  

 

q 

  

B0 =7.70087020305e-02 

argB0 =-2.9031908834e+00 

1+ =1.88495559e+03  

B4 = 7.700870203052385e-02 

argB4 = 2.3840177014250e-01 

1+= 1.8849555921e+03  

  

B1 = 7.700870203052350e-02 

argB1 = -2.903190883447285e+00 

1- = 1.25663706143e+03  

B5 = 7.700870203052385e-02 

argB5 = -2.90319088344e+00 

1- = 1.2566370614e+03  

  

B2 = 3.476903109250930e-01 

argB2 =0 

2 =-2.879436171968e+02 

d2 = 3.141592653589806e+02 

B6 = 6.373531952189007e-02 

argB6 = -1.570796326794e+00 

6 = -2.87943617196e+02 

d6 = 3.141592653589806e+02 

  

B3 = 1.980290369248264e-01 

argB3 = -3.141592653589774e+00 

3 =-2.170563828031060e+02 

d3 =   3.141592653589793e+02 

B7 = 2.736412462371267e-02 

argB7 = 1.570796326794917e+00 

7 =-2.170563828031e+02 

d7 = 3.141592653589e+02 

  

 

Therefore, it is inferred that the transient response or damped terms, oscillate at 

d=314.159rd/s (poles with real parts of -217 and -288), while the steady-state (poles without 

real parts) oscillate at 1+=1884.9rd/s and 1-=1256.6rd/s. 

3.5. Bode Diagram  

 

Once the transfer functions for sine and cosine inputs are obtained, from them it is possible 

to derive the expressions for the Bode diagram. Hence, from equation (93), for simplicity in 

the exposition, let us assume that the input Iq*(s) is zero, what means that we only apply a 

sinusoidal input at Id*(s): 
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(104) 

 

Therefore, after substituting the sinusoidal input at Id*(s) the current yields: 
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Analyzing this last expression, it is possible to see two dominant terms that contribute with 

two sinusoidal outputs at current I(s).  

One sinusoidal term at +1 frequency: 
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One sinusoidal term at -1 frequency: 
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And two more terms that are a sum of exponential terms in time domain and therefore are 

made zero at steady-state if the system is stable:  
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Consequently, these last two terms do not contribute to the steady-state, therefore, neither 

to the Bode diagram. Thus, to calculate the Bode diagram in a classic way [16], it is necessary 

to substitute the required frequency at which the output is wanted to be considered in the 

following expressions: 
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What means that the two sinusoidal output currents at steady-state, can be evaluated in 

terms of amplitude and phase by applying for instance the Bode function from Matlab of 

previous expressions. Numerically, this means that for instance by choosing: 

 

* *

1( ) | | sin( )d di t I t 
     



     
*( ) 1 sin(250 2 )di t t    

 (110) 

 
*( ) 0qi t   (111) 

 

At the output current i(t), we obtain 0.154A at 200Hz and 0.154A at 300Hz, which 

corresponds with -16.2dB at both frequencies as noticed in next Figure 21. Note that at both 

output frequencies +1 and -1, this control in dq reference frame with cancellation of 

coupling terms, curiously obtains the same amplitudes at the output current. It is important 

to notice the fact that at the Bode itself, the 1 frequency also appears. 
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D- 

 

Figure 21. Time domain and Bode correspondence of currents expressed in  reference frame, of 

dq control of currents with cancellation of coupling terms. Conditions of Appendix E and: 

, . 

On the other hand, if we now evaluate the time domain response and Bode diagram in 

synchronous rotating dq reference frame, as can be seen in Figure 22, id(t) oscillates at 1  

frequency, with an amplitude of 0.308A. This value corresponds with -10.22dB, which is 

exactly the gain given by the Bode diagram at 1 frequency.  

 

 

 

*( ) 1 sin(250 2 )di t t    
*( ) 0qi t 
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id

*
 (t) and id (t) 

q 

1+ 

1- 

1+ 

1- 

1+ 

1- 

D- 

iq
*

 (t) and iq(t) 

 

Figure 22. Time domain responses of id(t) and iq(t) and Bode correspondence in currents expressed 

in a  synchronous rotating dq reference frame. Conditions of Appendix E and: 

,  

If we compare both time domain responses in synchronous rotating dq reference frame and 

stationary  reference frame, we see that the amplitude of the obtained two outputs at 1+ 

and 1-, is 0.154A in , while the output obtained at 1 is 0.308A in dq, is just the double. 

What means that the amplitude of the oscillating current in dq, is divided equally into two 

oscillating currents in . This fact is schematically represented in Table V. 

 

 

Table V. Comparison of output currents in synchronous rotating dq reference frame and stationary 

 reference frame 

input 
Output in 

dq reference frame 

Output in 

 reference frame 

 

 
 

 

id(t): 

1 and 0.308 A amplitude 

i (t): 

1+  and 0.308/2 A amplitude 

+ 

1-  and 0.308/2 A amplitude 

   

 

*( ) 1 sin(250 2 )di t t    
*( ) 0qi t 

*( ) 1 sin(250 2 )di t t    

*( ) 0qi t 
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Chapter 4.  

Control of currents in rotating 

reference frame (dq control) without 

cancellation of coupling terms 

 
The control block diagram studied in this chapter is depicted in Figure 23, [6]-[7]. It is exactly 

the same control strategy as presented in previous chapter, but in this case, the unique 

difference is that the cancellation of the current coupling terms is not carried out. 

 

 

 

+ 
( )PI t

ej 

+ 

- 

id
*(t) 

PLL 
vg(t)

 

+ 

+ 

- 

iq
*(t) 

t  

vg(t)
 

+ 

+ 

vg(t)
 

vg(t)
 

vconv(t)
 

vconv(t)
 

id(t) 

iq(t) 

( )PI t

e-j 

id(t) 

iq(t) 

i(t) 

i(t) 

 

Figure 23. Current control block diagram in rotating reference frame (dq) with two PI controllers 

and no cancellation of current coupling terms. 

 

 

This control block diagram, can be represented as an equivalent ‘black box’ either in time 

domain and also in ‘s’ domain, as shown in Figure 24.  
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+ 

Control 

id
*(t) 

iq
*(t) 

+ 

+ 

+ 

vg(t)
 

vg(t)
 

vconv(t)
 

vconv(t)
 

i(t) i(t) 

+ 

Control 

Id
*(s) 

Iq
*(s) 

+ 

+ 

+ 

Vg(s) 

Vg(s) 

Vconv(s) 

Vconv(s) 

I(s) I(s) 

 

Figure 24. Current control blocks in time and ‘s’ domains. 

 

 

The  and  components of the converter voltages, considering the grid voltage feedforward 

terms, are mathematically represented in time domain as follows (Note that the harmonics 

created by the converter are neglected):  

 

   * *( ) ( ) ( ) ( ) cos( ) ( ) ( ) ( ) sin( ) ( )conv d d q q gv t i t i t PI t t i t i t PI t t v t                

 
(112) 

 

   * *( ) ( ) ( ) ( ) sin( ) ( ) ( ) ( ) cos( ) ( )conv d d q q gv t i t i t PI t t i t i t PI t t v t                

 
(113) 

 

Which is equal to: 

 

  
  

*

*

( ) ( ) ( ) cos( ) ( ) sin( ) ( ) cos( )

( ) ( ) sin( ) ( ) cos( ) ( ) sin( )

( )

conv d

q

g

v t i t i t t i t t PI t t

i t i t t i t t PI t t

v t

  

 



  

  

       
 

        
 



 

(114) 

 

  
  

*

*

( ) ( ) ( ) cos( ) ( ) sin( ) ( ) sin( )

( ) ( ) sin( ) ( ) cos( ) ( ) cos( )

( )

conv d

q

g

v t i t i t t i t t PI t t

i t i t t i t t PI t t

v t

  

 



  

  

       
 

        
 



 

(115) 

 

4.1. Mathematical model in  with a step input  

 

Considering step inputs at at both Id*(s) and Iq*(s) and assuming that the grid voltage is ideal 

and not perturbed, i.e., assuming no angle jumps and  constant, the previous time domain 

expressions can be transformed into the ‘s’ domain as follows (see appendix C omitting the 

coupling terms cancellation): 
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   

2 2 2 2

2 2 2 2

* *

2 2 2 2 2 2
2 2 2 2

( ) ( ) ( )

( ) 2
( ) ( ) ( )

i i

conv p

p pi i

d q g

k s k
V s k I s I s

s s

k s k sk s s k s
I s I s V s

s ss s

  





 

 

  

   
      

    

   
       

     
   

 

(116) 

 

   

2 2 2 2

22 2 2

* *

2 2 2 2 2 2
2 2 2 2

( ) ( ) ( )

2 ( )
( ) ( ) ( )

i i

conv p

p pi i

d q g

k k s
V s I s k I s

s s

k s k sk s k s s
I s I s V s

s ss s

  





 

  

  

   
      

    

   
       

     
   

 

(117) 

 

Being these expressions only valid for a step input at both Id*(s) and Iq*(s):  

 

*
* | |
( ) d

d

I
I s

s


          *

*
| |

( )
q

q

I
I s

s


 
(118) 

 

As done in previous chapter, combining the last two control law expressions with the power 

circuit electric expressions, it is possible to derive the closed loop equation for both  and  

currents: 

 

2 2
* *

2 2 2 2

( ) 2
( ) ( ) ( ) ( )

( ) ( ) ( )

i i i
p d p q

k s k s ks s
I s k s I s k I s I s

s A s s A s A s
 

 

 

        
           

        

 
(119) 

 

2 2
* *

2 2 2 2

2 ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

i i i
p d p q

k s k s ks s
I s k I s k s I s I s

s A s s A s A s
 

 

 

       
           

        

 
(120) 

 

Being again: 

 

3 2 2 2( ) ( ) ( ) ( )p i pA s Ls k R s L k s k R       
 (121) 

Thus now substituting in both inputs a step, the output currents yields: 

 

3 2 2 2 2 3

* *

2 2 2 2

2
( ) | | | | ( )

( ) ( ) ( ) ( ) ( )

p i p i p i p i
d q

k s k s k s k k s k s k k
I s I I I s

s A s s A s A s
 

     

 

         
                

 
(122) 

 

2 3 3 2 2 2

* *

2 2 2 2

2
( ) | | | | ( )

( )( ) ( ) ( ) ( )

p i p p i p i i

d q

k s k s k k s k s k s k k
I s I I I s

A ss A s s A s
 

     

 

         
                

 
(123) 

Which is equal to: 
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3 2 2 2

*

5 4 2 3 2 2 2 2 4

2 3

*

5 4 2 3 2 2 2 2 4

3 2

( ) | |
( ) (2 ) 2 ( ) ( ) ( )

2
| |

( ) (2 ) 2 ( ) ( ) ( )

( )

p i p i

d

p i p i p

p i p

q

p i p i p

i

p

k s k s k s k
I s I

Ls k R s L k s k R s L k s k R

k s k s k
I

Ls k R s L k s k R s L k s k R

k

Ls k R s



 

    

  

    



   
             

  
            


   2 2

( )
( ) ( )i p

I s
L k s k R


 

 
     

 

(124) 

 
2 3

*

5 4 2 3 2 2 2 2 4

3 2 2 2

*

5 4 2 3 2 2 2 2 4

3 2

2
( ) | |

( ) (2 ) 2 ( ) ( ) ( )

| |
( ) (2 ) 2 ( ) ( ) ( )

( )

p i p

d

p i p i p

p i p i

q

p i p i p

i

p

k s k s k
I s I

Ls k R s L k s k R s L k s k R

k s k s k s k
I

Ls k R s L k s k R s L k s k R

k

Ls k R s



  

    

 

    



  
  
           

   
 
           


   2 2

( )
( ) ( )i p

I s
L k s k R


 

 
 
    

 

(125) 

 

As can be noticed from the previous expressions and as occurred in previous chapter when 

the current coupling terms were cancelled, there is a coupling between  and . What means 

that I(s) depends on I(s) and vice versa. This coupling, can be represented graphically as 

in Figure 25. 

 

 

G 

 

+ 

+ 

I(s) 

I(s) 

+ 

+ 

G 

 

+ 

+ 

Gd 

Gq 

 

+ 

+ 

Gd 

 

Gq 

Iq
*(s) 

Id
*(s) 

 

Figure 25. Block diagram of the control of currents in dq with cancellation of coupling terms.  

 

Seeking to eliminate this coupling, we rename the expressions (122) and (123) as follows: 

 

* *( ) ( ) ( ) ( )d d q qI s G I s G I s G I s      
 

(126) 

 

* *( ) ( ) ( ) ( )d d q qI s G I s G I s G I s      
 

(127) 

 

Combining these two expressions, the decoupled input-output transfer functions are 

obtained: 
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* *
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

q qd d

d q

G s G s G sG s G s G s
I s I s I s

G s G s G s G s

    



   

   
           

 
(128) 

 

* *
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

q qd d

d q

G s G s G sG s G s G s
I s I s I s

G s G s G s G s

    



   

   
           

 
(129) 

 

The decoupled transfer functions are graphically represented in block diagrams in next 

Figure 26: 

 

 

 

 

I(s) 

I(s) Iq
*(s) 

Id
*(s) 

+ 

+ 

I(s) 

+ 

+ 

( ) ( ) ( )

1 ( ) ( )

q qG s G s G s

G s G s

  

 

 
   

( ) ( ) ( )

1 ( ) ( )

d dG s G s G s

G s G s

  

 

 
   

I(s) 

+ 

+ 

( ) ( ) ( )

1 ( ) ( )

d dG s G s G s

G s G s

  

 

 
   

( ) ( ) ( )

1 ( ) ( )

q qG s G s G s

G s G s

  

 

 
   

 

Figure 26. Equivalent block diagram of the control of currents in dq without cancellation of coupling 

terms. Note that its structure is equal to one shown in Figure 16, but the poles and zeros are 

different. 

 

 

 By solving I(s) expressions using a symbolic Toolbox from Matlab for instance, it is 

possible to obtain for d input current: 

 

5 4 3

5 4 3 2 1

6 5 4 3

6 5 4 3 2 1 0

2

2

( ) ( ) ( )

1 ( ) ( )

d d nd nd nd nd nds s

s s

G s G s G s g s g s g s g g

G s G s g s g s g s g s g g g

  

 

      

     

 

 




   

 
(130) 

 

Being each coefficient of the resulting transfer function:  

 



Chapter 4: Control of currents in rotating reference frame (dq control) without cancellation of coupling terms 

 

49 

2

2

2

5

4

3

2 2

1

2

2

2 2

2

p

p p i

p i p

i

nd

nd

nd

i

d

p p

n i

nd

g

g

L k

k R k L k

L k R ki k k

k L k k R k

R k

g

g

g



  





   

      

       

 





 





   

2

2 2 2 2

2 2

2 4 2 2 2 2 2 2 2

2 4 4

6

5

4

3

2

0

4

1

2

2 4 2

2 2

2 2 2

2 2 4 4

2 2 4 2

2 2 2 2

2

p

i p p

i i p

i i p

i p i

p i

L

L k L R

L k L R R k k

R k k kp L R L k

L L k R R kp k k

k kp L R L k R

g

g

k

R

g

g

R

g

k k

g

g



 

    

   

 

    

         

            

        













      
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(131) 

 

And for q input current: 

 

4 3

4 3 2 1

6 5 4 3

6 5 4 3 2 1 0
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 
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        

 
(132) 

 

Being the denominator’ coefficients, g1, g2, … equal to the previous expression. While the 

coefficients of the numerator are: 

 

 
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k kg k R





 

  

 

     

        

  

 

 



  





 

(133) 

 

Thus, in next Figure 27, the poles and zeros of the system are shown, after substituting the 

same numerical example used in previous chapters. Comparing the poles with the control 

that cancels the coupling terms, it is seen that the real and imaginary parts of the poles that 

conform the natural or transient response, have been moved considerably. Now it is seen 

that there is a pole that has increased considerably its imaginary part (bigger oscillating 

frequency) and it has reduced considerably its real part (it is damped slower). On the other 

hand, the other pole has decreased considerably its imaginary part (smaller oscillating 

frequency) and it has increased considerably it real part (it is damped faster). This fact occurs 

due to the presence of the current coupling terms that are not cancelled by this control. In 

this way, the coupling terms operate analogously to a perturbation action that affects to the 

behavior of the entire closed loops system.  
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 

- 

Without cancellation of current coupling 

terms 

- 

 
(a) 

 

 

                                                    

 

- 

With cancellation of current coupling 

terms 

 
(b) 

 
Figure 27. Poles in stationary reference frame () for I(s) of expression (128) (a) without 

cancellation of current coupling terms, (b) with cancellation of current coupling terms. Conditions 

of Appendix E.  

 

 

After this, by substituting step inputs at at both Id*(s) and Iq*(s), the output alfa current results: 
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(134) 

 

What is equal to: 
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(135) 

 

By using a partial fraction expansion and applying the inverse Laplace transform, the time 

domain expression for step inputs of the output current can be obtained from previous 

equation. Being the time response of the complete final expressions (only i(t) current is 

shown, i(t) would present an equivalent form): 
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                

 
(136) 

 

In the following Table VI, the numerical parameters and constants of the previous 

expressions are provided. In accordance with the poles depicted in Figure 27, it is seen that 

the two conjugate pole pairs that conform the transient response (natural response) present 

now very distant real and imaginary parts. There is now a much slower pole, with a 

damping constant (real part) of 1=-8.032e+01 and oscillates at d1=3.8743e+02rd/s 

(imaginary part). This pole becomes dominant in the transient response, because it present 

much longer time constant than the other pole denoted by B0, argB0, 0 and d0. Then, 
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regarding the steady-state conforming pole pair, nothing special or new can be said, in 

comparison with what occurred with the control that cancels the current coupling terms. 

Finally, note that the poles and/or parameters corresponding to the Id(s) input are almost the 

same that the ones corresponding to the Iq(s) input, the only difference can be found on the 

arguments of the cosine terms that come from a slight difference on the zeros. 

 
 

 

Table VI. Numerical solution of expression (136) by using the ‘residue’ function from Matlab 

Control Toolboox. Conditions of Appendix E.  

 
 

d  

 

q 

  

B0 = 3.66059470414e-01 

argB0 = -2.38756461679e+00 

0 = -4.24679933020e+02 

d0 = 7.32759410267e+01 

B3= 3.66059470414e-01 

argB3 =2.32482436358e+00 

3 =-4.24679933020e+02 

d3 = 7.32759410267e+01 

  

B1 = 3.422939427312006e-01 

argB1 = -2.320176782313537e+00 

1 = -8.032006697983152e+01 

d1 = 3.874352063857773e+02 

B4 = 3.42293942731e-01 

argB4 =-7.49380455518e-01 

4 = -8.03200669798e+01 

d4 = 3.87435206385e+02 

  

B2 =5.00000e-01 

=3.141592653589798e+02 

 

B5= 5.00000e-01 

=3.14159265358e+02 

 

 

 

Finally, the time domain step response is shown in the next Figure 28. It is seen a good 

agreement between the derived mathematical expressions and the Simulink based model. 
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(a) 

 

 vconv 
 

i   

 

i natural response 
 

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

 

(b) 

Figure 28. (a) Block diagram of control in synchronous reference frame (dq) without current 

coupling cancellation, (b) time domain responses in  reference frame of control in dq frame 

without current coupling cancellation, to a unit step input in id*(t) and iq*(t). Conditions of 

Appendix E.  

 

4.2. Mathematical model in  with sinusoidal and cosenoidal input   

 

Now considering sine and cosine inputs at Id*(s) and Iq*(s) respectively and again assuming 

that the grid voltage is ideal, i.e., assuming no angle phase shift and  constant, the time 

domain expressions (112) and (113) can be transformed into the ‘s’ domain as follows (see 

appendix D omitting cancellation of coupling terms): 

 



Chapter 4: Control of currents in rotating reference frame (dq control) without cancellation of coupling terms 

 

53 

2 2 2 2

2 2

*1 1 1

2 2 2 2

1 1 1

2 2

*1

2 2 2 2 2 2 2

1 1 1

2

( ) ( ) ( )

( )
2 ( ) ( )

2
( )

2 ( ) ( )

2

i i

conv p

p

d

i

d

p

k s k
V s k I s I s

s s

k s
I s

s s

k s s s s
I s

s s s

k s

  



 

    

    



     



   
      

    

     
    

      

   
     

       

  
 
 

2

*1 1 1

2 2 2 2

1 1

2 2

*1

2 2 2 2

1 1 1

( )
( ) ( )

( ) ( )
2 ( ) ( )

q

i

q g

I s
s s s

k s s s
I s V s

s s s


   

   



    

   
  

     

    
     

        

(137) 

 

2 2 2 2

2 2

*1 1 1

2 2 2 2 2 2 2

1 1 1

2 2

*1

2 2 2 2

1 1 1

2

1

( ) ( ) ( )

2
( )

2 ( ) ( )

( )
2 ( ) ( )

2

i i

conv p

i

d

p

d

i

k s k
V s k I s I s

s s

k s
I s

s s s

k s s s
I s

s s

k s

  



 

     

     



    



   
      

    

     
     

       

   
    

      

 
 
 

2

*1 1 1

2 2 2 2

1 1

2 2

*1

2 2 2 2

1 1

( )
( ) ( )

( ) ( )
2 ( ) ( )

q

p

q g

I s
s s s

k s s s
I s V s

s s s


    

   



   

    
  

     

   
     

        

(138) 

 

 

Being these expressions only valid for a sine and cosine inputs at Id*(s) and Iq*(s):  
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(139) 
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(140) 

Then, combining these last two expressions in ‘s’ domain, with the power circuit model 

equations, the closed loop expressions of the currents can be obtained: 
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With: 
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(143) 
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And 
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Being again, these expressions only valid for a sine and cosine inputs at Id*(s) and Iq*(s). (147)-

(148). By representing the previous expressions in a more compact form: 
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(150) 

 

It is seen that there is again a coupling between two output currents that influence one in 

the other. Repeating again the same procedure developed in the previous chapter, the 

decoupled input-output transfer functions are obtained: 
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The decoupled transfer functions are graphically represented in block diagrams in next 

figure: 
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Figure 29. Equivalent block diagram of the currents control in dq frame without cancellation of 

coupling terms. Note that its structure is equal to one shown in Figure 19, but the poles and zeros 

are different. 

 

 

 By solving I(s) expressions using a symbolic Toolbox from Matlab for instance, it is 

possible to obtain for d and q inputs current: 
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(153) 

 

Thus, in next Figure 30, the poles and zeros of the system are shown, after numerically 

substituting the same numerical example used in previous chapter. It is seen again that two 

complex conjugate pole pairs conforming the transient response or natural response, have 

been moved in comparison with the poles of a control with cancellation of current coupling 

terms. Both the real and the imaginary part of these poles now are different one from each 

other.  

Then, the other two pair of conjugate imaginary poles, without real part and with imaginary 

parts d=1+=1884.9rd/s and d=1-=1256.6rd/s, which are the components that create the 

steady-state current are still there. Note also that there is a conjugate zero pair with 

imaginary part 1 in both transfer functions, that is cancelled with the sinus and cosines 

inputs’ poles with imaginary part 1. 
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Figure 30. dq control of currents. (a) Poles in stationary reference frame () for I(s)/Id*(s) and 

I(s)/Iq*(s) without the current coupling terms cancellation, (b) Poles in stationary reference frame 

() for I(s)/Id*(s) and I(s)/Iq*(s) with the current coupling terms cancellation. Conditions of 

Appendix E. 

 

 

Once the transfer functions have been obtained, it is possible to derive the output current 

expressions. Hence, substituing a sine and cosine inputs at Id*(s) and Iq*(s). The output alfa 

current is given by: 
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What is equal to: 
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With coefficients of the numerator and denominator corresponding to the d input: 
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While for the q component, the coefficients of the numerator are symbolically represented 

by: 
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By using a partial fraction expansion and applying the inverse Laplace transform, the time 

domain expression for sinus and cosines inputs of the output current can be obtained from 

equation (155). Being the time response of the complete final expressions (only i(t) current 

is shown, i(t) would present an equivalent form): 
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(158) 

 

Finally, Table VII shows a numerical solution of expression (158) by using the the ‘residue’ 

function from Matlab Control Toolboox. Therefore, it is inferred that in contrast to the 

control with cancellation of coupling terms, the transient response or damped terms (natural 

response), oscillate at different d=314.159rd/s (different imaginary parts) and are damped 

with different time constants (real parts), while the steady-state terms (poles without real 

parts) oscillate at 1+=1884.9rd/s and 1-=1256.6rd/s. 
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Table VII. Numerical solution of expression (158) by using the the ‘residue’ function from Matlab 

Control Toolboox. Conditions of Appendix E.  

 

d  q 

  

B0 =6.48967586678e-02 

argB0 =-2.9031908834e+00 

1+ =1.88495559e+03 

B4 = 6.489675866781006e-02 

argB4 = 1.869371989665175e-01 

1+ = 1.8849555921e+03 

  

B1 = 9.42325130201e-02 

argB1 = -2.82842575621e+00 

1- = 1.25663706143e+03 

B5 = 9.423251302016845e-02 

argB5 = -2.828425756210602e+00 

1- = 1.2566370614e+03 

  

B2 = 1.312085249117193e-01 

argB2 = 1.454573489016104e-01 

2 =-4.246799330201682e+02 

d2 = 7.327594102679845e+01 

B6 = 4.801766349698532e-02 

argB6 = 9.766847868259755e-01 

6 =-4.246799330201682e+02 

d6 = 7.327594102679845e+01 

  

B3 = 2.368128003266055e-02 

argB3 = 8.661548497401336e-02 

3 =-8.032006697983110e+01 

d3 =   3.874352063857774e+02 

B7 = 1.639103833170650e-03 

argB7 = -2.223749730691358e+00 

7 =-8.032006697983110e+01 

d7 = 3.874352063857774e+02 

  

4.3. Bode Diagram  

 

Once the transfer functions for sine and cosine inputs are obtained, from them it is possible 

to derive the expressions for computation of the Bode diagram. Hence, from equation (151), 

as we did in previous chapter, for simplicity in the exposition, let us assume that the input 

Iq*(s) is zero, what means that we only apply a sinusoidal input at Id*(s): 
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Therefore, after substituting the sinusoidal input at Id*(s) the current yields: 
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As occurred in the control with cancellation of the current coupling terms, analyzing this 

last expression, it is possible to see two dominant terms that contribute with two sinusoidal 

outputs at current I(s).  

One sinusoidal term at +1 frequency: 
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One sinusoidal term at -1 frequency: 
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And two more terms that are a sum of exponential terms and therefore are made zero at 

steady-state if the system is stable:  
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Consequently, these last two terms do not contribute to the steady-state, therefore, neither 

to the Bode diagram. Thus, to calculate the Bode diagram in a classic way, it is necessary to 

substitute the required frequency at which the output is wanted to be considered in the 

following expressions: 
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(164) 

 

What means that the two sinusoidal output currents at steady-state, can be evaluated in 

terms of amplitude and phase by applying for instance ‘Bode function’ in Matlab of previous 

expressions (164). Numerically, this means that for instance by choosing: 

 

* *

1( ) | | sin( )d di t I t 
     


     

*( ) 1 sin(250 2 )di t t    
 (165) 

 
*( ) 0qi t   (166) 

 

At the output current i(t), we obtain 0.1885A at 200Hz and 0.1298A at 300Hz, which 

corresponds with -14.5dB and -17.7dB respectively, as noticed in next Figure 31. It can be 

inferred that there is not correspondence between this Bode diagram and the one with the 
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control that cancels the current coupling terms (Figure 21). However, this Bode diagram 

matches with the bode Diagram of the control with resonant controller of Figure 7. Note 

also that in this case, it is problematic to compare the resulted Bode diagram with its 

corresponding in dq reference frame, since there is not cancellation of coupling terms and 

they affect to the steady-state.  
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1- 
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1- 
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D- 

 

Figure 31. Time domain and Bode correspondence of currents expressed in  frame, for control in 

dq without cancellation of coupling terms. Conditions of Appendix E. , 

 

*( ) 1 sin(250 2 )di t t    
*( ) 0qi t 
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Chapter 5.  

Comparison and analysis 

 
In this chapter, a summary of the time domain responses, pole-zero map and Bode is 

presented for the three studied controls. The three controls are excited by the same inputs 

and the three controls also use the same filter and kp-ki gains for their regulators. For and 

easier comparison, the results of the simulations are grouped into three columns, each one of 

them dedicated for a control. 

Hence, first of all in Figure 32 the time domain responses to a unit step input in id*(t) and iq*(t), 

are presented. Above, the voltages created by the control are shown. Then below, the current 

i(t) and i(t), while finally, at the bottom, the natural response (only exponential terms of the 

time domain response) of i(t) is shown. 

 

 

 

 Control
 

vconv 
 

vconv 
 vconv 

 

i 
 i 

 i 
 

i natural response 
 i natural response 

 i natural response 
 

dq Control 

with cancellation of coupling terms 
 

dq Control 

without cancellation of coupling terms 
 

(a) (b) (c) 
 

Figure 32. Time domain responses to an unit step input in id*(t) and iq*(t), for the three types of 

controls studied, (a) Control in stationary reference frame (), (b) Control in synchronous reference 

frame (dq) with current coupling cancellation, (c) Control in synchronous reference frame (dq) 

without current coupling cancellation. Conditions of Appendix E.  
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id 
 

iq 
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 Control
 dq Control 

with cancellation of coupling terms 
 

dq Control 

without cancellation of coupling terms 
 

(a) (b) (c) 
 

Figure 33. Time domain responses to an unit step input in id*(t) and iq*(t), for the three types of 

controls studied and only current in dq reference frame are shown. (a) Control in stationary reference 

frame (), (b) Control in synchronous reference frame (dq) with current coupling cancellation, (c) 

Control in synchronous reference frame (dq) without current coupling cancellation. Conditions of 

Appendix E. 

 

It is seen that for the same values of kp-ki, the control in dq with cancellation of current coupling 

terms achieves the steady-state faster than the other two controls. Nevertheless, the 

differences are not very significant. However, it must be remarked that by changing the gain 

values of kp-ki, , the dq control without cancellation of coupling terms and the  control, 

probably could achieve faster dynamic response.   

Then, in Figure 33 it is also seen the behavior of the same currents under the same experiment 

but after being transformed into dq reference frame. In this case also occurs that the fastest 

dynamic is achieved, by the control in dq with cancellation of current coupling terms. It is 

remarkable also that in  control, it appears an small oscillatory current when transformed 

the  currents to dq reference frame.    

The dynamic response behavior of these controls, is in good agreement with the pole-zero 

maps shown in Figure 34. It is possible to see how the  control and the dq control without 

cancellation of coupling terms, present a pair of conjugate pole pair with smallest real part 

around -50 and -80 respectively, while the control in dq with cancellation of coupling terms 

presents a lowest real part of conjugate pole around -210. Thus, by checking the smallest real 

part of the poles, it is deduced that the control in dq with cancellation of coupling terms 

presents a natural response that is damped between 3 or 4 times faster than the other two 

controls. 

Figure 34 also shows the Bodes of the three studied controls. The biggest remarkable 

difference is that only in dq control with cancellation of coupling terms, achieves the same 

gain at both frequencies 1+ and 1-. 
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  Control 

 

 

dq Control  

with cancellation of coupling terms 

 

dq Control  

without cancellation of coupling terms 

 

  Control 

 

 
(a) 

dq Control  

with cancellation of coupling terms 

 
(b) 

(dq Control  

without cancellation of coupling terms 

 
(c) 

Figure 34. Poles to a step input and Bode diagrams of transfer function I(s)/Id*(s), for the three types 

of controls studied (rest of transfer functions present very similar behavior: I(s)/Iq*(s), I(s)/Id*(s), 

I(s)/Iq*(s)). (a) Control in stationary reference frame (), (b) Control in synchronous reference frame 

(dq) with current coupling cancellation, (c) Control in synchronous reference frame (dq) without 

current coupling cancellation. Conditions of Appendix E. 

 

 

Coming back again to the poles, Figure 35 shows the poles to a step input of control in 

synchronous reference frame (dq) with current coupling cancellation. It is seen that this 

control achieves to maintain the real part of the poles responsible of the dynamic response to 

a step input, in both dq and  representation. This means that damping factors, , of the 

current dynamic is equal in both dq and  representation of the currents. Note that in reality, 

a perfect cancellation of current coupling terms is very difficult due to the effect of delays of 

filters and computation delays mainly, as later will be shown more under detail. 
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  Control 

 

 dq Control  

with cancellation of coupling terms 

 

Figure 35. Poles to a step input of control in synchronous reference frame (dq) with current coupling 

cancellation. (a) Current in dq reference frame, i.e.: Transfer function: Id(s)/Id*(s) (b) Current in  

reference frame, i.e.: Transfer function: I(s)/Id*(s). Conditions of Appendix E. 

 

 

Finally, in Figure 36, poles, time domain responses and Bode diagrams of the three studied 

controls (I(s)/Id*(s) and i(t) time domain responses) at different conditions of the regulators are 

shown. It is seen how the poles and zeros are affected by a different tuning of the regulator, 

how the time domain responses are affected and finally, how the Bode diagrams are also 

modified. A remarkable difference is that for the gains kp and ki evaluated at least, there is a 

clear tendency of control in dq with cancellation of the coupling terms, to be more stable. 

Being more specific, for the evaluated gains, the dq control with cancellation maintains the 

real part of the poles further away from the imaginary axis, producing also less oscillatory 

step responses. 
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Step inputs: 

  Control 

 

dq Control with cancellation 

 

dq Control without cancellation 

 

Step responses: 

  Control 

 

dq Control with cancellation 

 

dq Control without cancellation 

 

 
Natural response to step inputs: 

  Control 

 

dq Control with cancellation 

 

dq Control without cancellation 

 

Bode diagrams: 

  Control 

 

dq Control with cancellation 

 

dq Control without cancellation 

 

Figure 36. Poles, time domain responses and Bode diagrams of the three studied controls of 

I(s)/Id*(s) at different conditions of the regulator. Conditions: R = 1, L= 1mH, =1.01 and n = 

(R/L)·25·[1,0.9,0.8,0.7,0.6,0.5]. 

 

 

Finally, the following tables show a summary of the most relevant equations for the studied 

controls. 
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Table VIII. Most relevant expressions of the three control studied for step inputs ( magnitudes 

are not shown for simplicity). 
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Table IX. Most relevant expressions of the three control studied for sinusoidal and cosenoidal 

inputs ( magnitudes are not shown for simplicity). 
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Chapter 6.  

Experimental validation of the 

analytical models 

 
In this chapter, the experimental validation of the mathematical model equations derived in 

previous chapters is carried out. The experimental platform employed is presented in Figure 

37. Its main parameters and characteristics are specified in appendix F. The control block 

diagrams implemented are depicted in Figure 38. Note that the power system does not 

present a DC voltage source, what means that the active power exchange with grid cannot be 

controlled freely. Consequently, it is necessary to incorporate a DC bus voltage control loop 

as depicted in Figure 38.  

 

 

Figure 37. Experimental platform of the grid connected converter. Main characteristics: Appendix F. 
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Trying to simplify the set of results presented in this validation, only one input response is 

evaluated for all the controls. More specifically, a q axis current step change is applied to the 

controls studied in this book, and the experimental response obtained is compared with the 

mathematical model equations derived. Thus, the obtained results are depicted in Figures 39 

and fig 40. 

In Figure 39, the three studied control of this book are evaluated in a step response of 4 Amps 

at iq. In this set of results the employed gains for the PIR and PI regulators are: kp = 10 and ki 

= 3500. In all the controls and variables shown, the experimental and analytical models show 

a reasonably good agreement both at steady-state and transient response.  

Then, in Figure 39, the same experiment is carried out but in this case, with a smaller gains at 

the PIR and PI regulators: kp = 4.4 and ki = 395. This choice, produces a slower dynamic 

response of the currents. Under these regulators gains, it has been observed that the PIR 

regulators did present difficulties for stabilization (mainly due to the high frequency current 

ripple present and the discretization method employed for the regulators), so only controls 

in dq (with and without cancellation of the current coupling terms) are evaluated. The 

agreement under these conditions between the experimental behavior and the mathematical 

models is reasonably good as well. 
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Figure 38. Control block diagram of the three studied controls, with inclusion of the DC bus voltage 

control loop. 
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These tests have been repeated under many other operating conditions, but due to lack of 

space are not shown in this book. In all the cases, the agreement between both experimental 

and analytical results have been observed to be reasonably good, very similar to what it has 

been shown in Figure 39 and Figure 40.  
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Figure 39. Time domain responses to a 4 Amps step input in iq*(t), for the three types of controls 

studied: Experimental -> continuous lines, Mathematical models -> dashed lines, (a) Control in 

stationary reference frame (), (b) Control in synchronous reference frame (dq) with current 

coupling cancellation, (c) Control in synchronous reference frame (dq) without current coupling 

cancellation. Conditions of Appendix F. Gains for the PIR and PI regulators: kp = 10 and ki = 3500.  
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Figure 40. Time domain responses to a 4 Amps step input in iq*(t), for two of the controls studied: 

Experimental -> continuous lines, Mathematical models -> dashed lines, (a) Control in synchronous 

reference frame (dq) with current coupling cancellation, (b) Control in synchronous reference frame 

(dq) without current coupling cancellation. Conditions of Appendix F. Gains for the PIR and PI 

regulators: kp = 4.4 and ki = 395.  
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Chapter 7.  

Inclusion of delay and filter at current 

measurement 

 

7.1. Control of currents in stationary reference frame ( ) for step inputs 

 

Approaching to a more realistic modelling of the control under some specific contexts, let us 

now consider the inevitable delay between the voltage reference generation and the actual 

synthetization, Del(t), and the low pass filter that is normally employed at the current 

measurements Fi(t), to reduce the current ripple seen by the control. This is represented in 

block diagram of Figure 41. Note that at the grid voltages no filter has been considered, 

because at strong grids, this voltage is not severely corrupted by ripple or other 

perturbations. 
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Figure 41. Current control block diagram in stationary reference frame () with two resonant 

controllers and inclusion of converter’s delay and filter for current measurement. 
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Thus, the  and  components of the converter voltages, considering the grid voltage 

feedforward terms, are mathematically represented in time domain as follows (Note that the 

harmonics created by the converter are neglected):  

 

   * *( ) ( ) cos( ) ( ) sin( ) ( ) ( ) ( ) ( ) ( ) ( )conv d q i gv t i t t i t t PIR t i t F t PIR t v t Del t             
 

 
(167) 
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 

 
(168) 

 

Considering step inputs at at both Id*(s) and Iq*(s) and assuming that the grid voltage is ideal 

or not perturbed, i.e., assuming no angle phase shift and  constant, the previous time 

domain expressions can be transformed into the ‘s’ domain as follows: 
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Knowing also that the ‘s’ domain equations of the power circuit are: 
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(172) 

 

Combining these expressions with the voltage applied by the control in equations (169) and 

(170), the closed loop current expression yield: 
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(173) 
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Being:  
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Then, the current filter and the delay can be modelled in a simple manner, for instance as 

follows: 

 

1
( )

1
i

i

F s
T s




       
1

( )
1d

Del s
T s




 
(176) 

 

Note that is believed is more accurate any other filter and delay models could be substituted 

at previous expressions. Thus for instance, for modelling the delay a Pade approximation is 

also quite common. Next, equation shows as an example, a fourth order Pade approximation 

for a delay of 200seg: 

 

4 3 2

3 2 1 0

4 3 2

3 2 1 0

( )
s a s a s a s a

Del s
s b s b s b s b

   


   

 
(177) 

 

With; a3 = - 9.9999e+04, a2 = 4.4999e+09, a1 = - 1.05e+14, a0 = 1.05e+18, b3 = 9.9999e+04, b2 = 

4.4999e+09, b1 = 1.05e+14, b0 = 1.05e+18. Nevertheless, in forthcoming analysis and for 

simplicity, both delay and filter are modelled as a first order system as described in equation 

(176). Hence, the following figure’ results show that the time domain responses to step inputs, 

are perfectly described with the derived mathematical equations in correspondence with the 

Simulink blocks.  
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(a) 

 

 vconv 
 

i   

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

 

(b) 

Figure 42. (a) Simulink model for evaluating the Step response, (b) Unit step (at both inputs) 

response of control of currents in stationary reference frame . Conditions of Appendix E. With 

delay ( Del(s)=1/(Tds+1) ) and Td=1/5000/3sec and low pass filter at current measurements ( 

Fi(s)=1/(Tis+1) ) with time constant Ti=1/5000sec.  

 

7.2. Control of currents in rotating reference frame (dq) with cancellation of 

coupling current terms for step inputs 

 

This section includes also the inevitable delay between the voltage reference generation and 

the actual synthetization Del(t) and the low pass filter at the current measurements Fi(t). This 

is represented in block diagram of Figure 43. Note that at the grid voltages no filter has been 

considered, because at strong grids, this voltage is not corrupted by ripple or other 

perturbations. 
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Figure 43. Current control block diagram in rotating reference frame (dq) with two PI controllers and 

cancellation of current coupling terms and inclusion of converter’s delay and filter for current 

measurement. 

 

 

The  and  components of the converter voltages, are mathematically represented in time 

domain as follows:  
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Which is equal to: 
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Considering step inputs at both Id*(s) and Iq*(s) and assuming that the grid voltage is not 

perturbed so it is purely sinusoidal, i.e., assuming no angle jumps and  constant, the 

previous time domain expressions can be transformed into the ‘s’ domain as follows: 
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Being these expressions only valid for a step input at both Id*(s) and Iq*(s):  
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(184) 

 

As done in previous chapters, combining the last two control law expressions with the power 

circuit electric expressions, it is possible to derive the closed loop equation for both  and  

currents: 
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Being again:  
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In order to derive decoupled expressions that connect the outputs (I(s) and I(s)) directly to 

the inputs (Id*(s) and Iq*(s)), a further mathematical development must be carried out. Hence, 

by renaming the expressions (185) and (186) as follows: 
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(188) 
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(189) 

 

If we combine both equations seeking to eliminate I(s) from the second equation and I(s) 

from the first equation, the decoupled input-output transfer functions can be obtained as: 

 

* *
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

( ) ( )( )
( ) ( )

1 ( ) ( ) 1 ( ) ( )

q qd d

d q

vv

g g

G s G s G sG s G s G s
I s I s I s

G s G s G s G s

G s G sG s
V s V s

G s G s G s G s

    



   



 

   

   
           

   
           

 

(190) 

 

* *
( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
1 ( ) ( ) 1 ( ) ( )

( ) ( ) ( )
( ) ( )

1 ( ) ( ) 1 ( ) ( )

q qd d

d q

v v

g g

G s G s G sG s G s G s
I s I s I s

G s G s G s G s

G s G s G s
V s V s

G s G s G s G s

    



   



 

   

   
           

   
           

 

(191) 

 

The decoupled transfer functions are graphically represented in block diagrams of next 

figure: 
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Figure 44. Equivalent block diagram of the currents control in dq with cancellation of coupling terms 

and inclusion of delay and filter at measurements.  

 

 

In this case, the resulting symbolic expressions maybe are too long to be represented here. It 

is perhaps simpler to solve them numerically if further analysis is wanted to carry out. Note 

that the terms multiplying the stator voltages, Gv(s) are made zero very quickly so their effect 

is only appreciated at the beginning when connecting the converter to the grid. Afterwards, 

if the grid voltage does not change, the effect of the grid voltage in equations (190) and (191) 

will be zero as well. Note that many other analysis could be carried out at this point, as for 

instance, transient behavior analysis under different delays or filter conditions. However, this 

is left as a future study in a different book to this. 

 

 

 



Chapter 7: Inclusion of delay and filter at current measurement 

  

81 
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Solid: Simulink blocks

 

Dashed: Mathematical model 
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(b) 

Figure 45. (a) Simulink model for evaluating the step response, (b) Unit step (at both inputs) 

response of control of currents in rotating reference frame (dq) with cancellation of coupling current 

terms. Conditions of Appendix E. With delay ( Del(s)=1/(Tds+1) ) and Td=1/5000/3sec and low pass 

filter at current measurements ( Fi(s)=1/(Tis+1) ) with time constant Ti=1/5000sec.  

 

7.3. Stability analysis of both controls: pole location for step inputs  

 

This chapter evaluates how the filter at current measurement and the delay affects to the 

stability of the closed loop current control, in both studied control techniques: Control in 

stationary reference frame () and control in rotating reference frame (dq) with cancellation 

of current coupling terms. This affection, for simplicity will be only studied for a step input.  

First, in Figure 46, the poles to a step input of different controls ( Transfer function I(s)/Id*(s) 

) are evaluated, with a low pass filter at current measurements ( Fi(s)=1/(Tis+1) ) with different 

time constants. It is clearly seen that the control in dq is affected much more severely by this 

filter, altering the real part of the dominant poles significantly (poles affecting to the natural 

response).  
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  Control  
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dq Control 

with cancellation of coupling terms 

(a) (b) 

Ti 

Ti 

Ti 

Ti 

Figure 46. Poles to a step input of different controls of Transfer function I(s)/Id*(s), with low pass 

filter at current measurements ( Fi(s)=1/(Tis+1) ) with different time constants: (Td=2/50004.4/5000, 

increments: 0.2/5000). (a) Current control in  reference frame, (b) Current control in dq reference 

frame with cancellation of coupling terms. Conditions of Appendix E. 

 

Second, in Figure 47, the poles to a step input of different controls (Transfer function 

I(s)/Id*(s) ) are evaluated, with different delays. Again, it is seen that the control in dq is 

affected more severely by this delay, altering the real and imaginary parts of more dominant 

poles (poles affecting to the natural response). 

 

 

 
  Control  
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dq Control 

with cancellation of coupling terms 

Td 
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Td 

(a) (b) 

 

Figure 47. Poles to a step input of different controls of Transfer function I(s)/Id*(s), with different 

delays (Del(s)=1/(Tds+1) ): (Td=2/50004/5000, increments: 0.2/5000). (a) Current control in  reference 

frame, (b) Current control in dq reference frame with cancellation of coupling terms. Conditions of 

Appendix E. 
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Finally, in Figure 48, both effects of filter and delay are evaluated in the poles and zeros of 

the closed loop systems. It is seen that combination of both phenomena move the poles more 

significantly than in previous two analyzed cases, being again the control in dq the most 

sensitive one. It is also seen that if the filter time constant Ti is made very big (severe filter 

with big delay in current measurement) the system can become unstable. 
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  Control  
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Figure 48. Poles to a step input of different controls of Transfer function I(s)/Id*(s), with constant 

delay (Del(s)=1/(Tds+1) ) of Td = 1/5000/3sec and with low pass filter at current measurements ( 

Fi(s)=1/(Tis+1) ) with different time constants: (Td=2/50009/5000, increments: 0.25/5000). (a) Current 

control in  reference frame, (b) Current control in dq reference frame with cancellation, Conditions 

of Appendix E. 
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Chapter 8.  

Step response analysis in a weak grid 

 

This chapter provides an introductory or simplified analysis of what occurs in grid-connected 

converters, when the grid to what is connected is weak. As shown in Figure 49, it is supposed 

now that the series impedance of the grid Lg is considerable big in comparison with the filter 

inductance L, so it cannot be assumed to be neglectable. This scenario is quite common in 

some grids and commonly this grid’s impedance is quantified as the Short Circuit Ratio 

(SCR). Hence, the following chapter shortly analyzes how the mathematical expressions 

derived in previous chapters for both controls in  and dq are affected under these 

conditions.  
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Figure. 49.  equivalent electric circuit connected to a weak grid with impedance Lg. 

 
 

In the following figure, it is graphically shown how the steady-state vector diagram is 

modified after a variation of the operating point. More specifically, after an increase of active 

power. 
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Figure. 50. Steady-state phasor diagrams under a change of active current operating point in a 

weak grid (effect of resistance R neglected). 
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8.1. Control of currents in stationary reference frame ( control) with a PLL 

tuned dynamically slow 

 

First of all, the performance of the current control in stationary reference frame is studied. 

For simplicity in the analysis, it is assumed the ideal control block diagram utilized in chapter 

2 as shown in Figure 51, not considering filter at current measurement and delay between 

control and converter synthesis of the output voltage. This choice helps a decoupled analysis, 

understanding the effect of different phenomena separately.  
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Figure 51. Current control block diagram in stationary reference frame () with two resonant 

controllers and converter connected to a weak grid. 

 

 

It is important to highlight the fact that the converter’s control now sees voltages vcg(t) and 

vcg(t), which are affected by the current exchange due to the presence of the grid’s impedance 

Lg. Therefore, the input voltage that goes to the PLL and the voltage feed forward terms are 

vcg(t) and vcg(t). Then, regarding to the behavior of the PLL, for this analysis, it is supposed 

that it has been tuned with a slow dynamic response. This means that when for instance, a 

step is performed at the input current references, although the currents during the transient 

response make vcg(t) and vcg(t) voltages change, we will consider that the PLL will 

synchronize with the new phase angle a time later. In other words, we will consider that the 

PLL has been tuned, so that detects the phase changes due to the current changes, a time later 

than they occur. This behavior is typical in some power electronic applications such as for 

instance some type of battery chargers. 

Therefore, considering this, when the step in performed at the reference currents, since  

angle is assumed that does not change, the voltage reference generated by the control is 

equivalent to expressions (4) and (5), but only changes the voltage feedforward terms 

(expressions only valid for step inputs): 
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(193) 

 

On the other hand, the electric power circuit equations in Laplace domain are: 

 

     ( ) ( ) ( ) ( ) ( ) ( )conv cg g gV s I s R Ls V s I s R Ls I s L s V s              
 

(194) 

 

     ( ) ( ) ( ) ( ) ( ) ( )conv cg g gV s I s R Ls V s I s R Ls I s L s V s              
 

(195) 

 

By combining these last four equations and as commented before, if the voltage feed-forward 

term is used and no delay is assumed in this measurement at the voltage synthesis, the Vcg(s) 

and Vcg(s) are effectively cancelled and we obtain the closed loop current expressions, which 

are equal to ones obtained in chapter 2, in a strong grid:  
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(197) 

Being: 

 

3 2 2 2( ) ( ) ( ) ( )p i pA s Ls k R s L k s k R       
 (198) 

 

Therefore, under the considered assumptions and specially assuming that the PLL is tuned 

dynamically slower than the time that the current needs to reach the steady state, it is 

concluded that the currents behavior to a step input reference are not different in a strong 

grid and in a weak grid. Note also that the  phase angle in this control method, only affects to 

the current references i
*(t) and i

*(t), what means that it does not affect to the control loops’ internal 

behaviour, resulting thus in a quite stable or robust performance to this fact. 

Obviously, it is crucial to include the voltage feedforward terms in control as in equations (192)-(193), 

otherwise, note that the current dynamics would be affected by the grid Lg impedance.   
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8.2. Control of currents in syncronous rotating reference frame (dq control) 

with a PLL tuned dynamically slow 

 

In this case now, it is studied how the dq control’s performance is affected by a weak grid. In 

Figure 52, the  electric circuit of Figure 49 is transformed to a dq reference frame.  
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Figure. 52. Equivalent electric circuit in dq, of grid-connected converter connected to a weak grid. 

 

 

Again as done in previous chapter, it is assumed that the PLL is tuned in such a way that 

detects the phase angle after the current transient ends after a step input. In a real application 

for this scenario could be for instance a battery charger that is not required to actively 

contribute to the grid support. Then also, not filter at the measurements and neither delay is 

considered at the control. The control block diagram under this weak grid scenario is 

depicted in Figure 53. 
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Figure 53. Current control block diagram in rotating reference frame (dq) with two PI controllers 

with cancellation of current coupling terms and converter connected to a weak grid. 

 

 

Therefore, since we are assuming that the phase angle  estimated by the PLL, does not 

change during the step current response, it is possible for instance to simply do the analysis 

in a  reference frame. Hence, the voltage references provided by the control are equivalent 

to those previously derived in a strong grid:  
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(199) 
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(200) 

 

 

On the other hand, the electric power circuit equations in  reference frame and in Laplace 

domain are: 
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(201) 
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(202) 
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Combining all, the step current responses yield: 
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(204) 

 

With: 

 

3 2 2 2( ) ( ) ( ) ( )p i pA s Ls k R s L k s k R       
 

(205) 

 

Being again these expressions only valid for a step input at both Id*(s) and Iq*(s). Therefore, as 

occurred in previous chapter, it can be concluded now again that under the considered 

assumptions, the control performance in dq reference frame is equal in a strong or weak grid. 

The same conclusions can be obtained if the analysis is performed in dq reference frame.  

 

8.3. Control of currents in stationary reference frame ( control) with a PLL 

tuned dynamically fast 

 

In this chapter, a step forward is given towards the inclusion of the Phase Locked Loop (PLL) 

into the model of the control loops. In general, the PLLs are included into the control loops 

enabling the synchronizing with the grid’s phase angle. Especially when the grid in which 

the converter is connected is weak (it presents a considerable series equivalent impedance), 

it is necessary to dedicate a special attention to this fact.  

Hence, in general, the PLL must be tuned considering two main issues, among other 

secondary factors. First of all, its synchronizing dynamics with the phase angle must be tuned 

as desired (functionality) or required (norms or codes). Second, it must be able to reject a 

certain level of perturbations such as, low amplitude ripples or noises. Thus for instance, in 

the specific case of a wind turbine which must meet the LVRT grid code requirements [6], the 

PLL should be able to quickly detect quick phase changes of the grid voltage during faults, 

in order to quickly provide reactive current as demanded by the grid codes [17]. At the same 

time, it should be also able to reject a certain level of high frequency (produced by 

commutations of other converter connected to the grid for instance) or low frequency voltage 

harmonics (flicker producing loads for instance), so they do not interfere negatively in the 

normal operation of the converter.  

Therefore, it is very recommendable to take into consideration the effect of the phase angle 

estimation of the PLL and study how it interacts with the current control loops. By 
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considering both PLL and control loops behavior, it is possible to detect instabilities or 

abnormal performances of the entire control system. 

However, most of the classic proposed PLLs at the literature [6] present an internal structure 

that is not suitable for being modelled linearly in ‘s’ domain. The PLLs normally present an 

intrinsic non-linear structure that obliges to apply linearization methods [16] if ‘s’ domain is 

wanted to be applied for their studies. Thus, in order to solve this modelling obstacle, by 

means of the block diagram of figure 54, an alternative PLL is proposed that at least in most 

part of its structure is linear, or in other words, it can be modelled by using the ‘s’ operator. 

As can be noticed, two closed loops with resonant controllers are used in order to synchronize 

with the main component , of the grid voltages seen be the converter Vcg(s) and Vcg(s). By 

an appropriate tuning of the gains of the resonant controllers, kppll and kipll, it is possible to 

obtain the desired synchronizing dynamic behavior and the ripple, oscillations or noise 

rejection capacity. Then, once synchronized with Vcg(s) and Vcg(s), the cos(t) and sin(t) are 

obtained by normalizing with the voltage amplitude as graphically represented (values 

between -1 and +1). Note that by being strict, the left hand side of the proposed PLL can be 

linearly modelled in ‘s’ domain, but the right hand side, i.e. the normalization, presents a 

‘smooth’ or ‘not severe’ non-linearity.        
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Figure 54. Proposed Phase Locked Loop.  

 

 

This PLL has been tested at different operation points and different scenarios, providing a 

similar performance to classic PLLs. Despite the fact that the PLL of Figure 54 is used, the 

model of the PLL is going to be assumed as represented in Figure 55. As can be seen, the 

normalization is neglected (avoided), in order to obtain and therefore work with a linear 

model of the PLL. Note that the amplitude error that is incurred would be less than 5% is 

most of the realistic cases of a weak grid scenario. 
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Figure 55. Proposed Phase Locked Loop model, which is an approximation of the actual PLL, but can 

be linearly modeled in ‘s’ domain without a considerable error.  

 

 

Therefore, the linear model of the PLL neglecting the variation of the grid voltage amplitude 

seen by the converter during the transient is given by: 
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Then, by equaling the denominator to the canonic second order equation, we have: 
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What means that a possible criterion for tuning the resonant controller (or synchronizer) 

could be to locate the poles, with a certain desired damping ration , providing first a free 

value for kppll. What means: 

 

0.1pll

pk 
      ,      

 2 1pll pll

i n pk k 
 (209) 

 

On the other hand, the following figure 56 shows the poles and the Bode diagram of the PLL, 

by using the previous two model equations, with different values of kppll and kipll first, and 

then, with different values of kipll leaving constant kppll. 

 

 
(a) 

 
(b) 

Figure 56. Poles and Bode of the simplified model of PLL with different values of kp
pll and ki

pll. Blue: kp
pll=0.1, 

Red: kp
pll=0.05, Orange: kp

pll=0.01, in the three cases:  2 0.2 314.16 1pll pll

i pk k    . 

 

 

 
(a) 

 
(b) 

Figure 57. Poles and Bode of the model of PLL, with different values of ki
pll keeping constant kp

pll. kp
pll=0.01. 

Blue:  2 0.2 314.16 1pll pll

i pk k    , Red:  2 0.1 314.16 1pll pll

i pk k    , Orange:  2 0.02 314.16 1pll pll

i pk k    .  

 

 

In first set of results, it is seen that the poles are not modified and therefore, neither the 

dynamic response of the synchronizing process. However, the attenuation (rejection) to 

different frequencies of  can be made bigger or smaller. On the other hand, by leaving 
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constant kppll and modifying kipll, the poles can be modified as well as the rejection to 

frequencies near .  

 

Thus, once the PLL model and its tuning method is clear, the mathematical model of the 

current loops including the PLL can be also obtained. The  and  components of the 

converter voltages, considering the grid voltage feedforward terms, are mathematically 

represented in time domain as follows:  

 

 * *( ) ( ) cos( ) ( ) sin( ) ( ) ( ) ( ) ( )conv d q cgv t i t t i t t PIR t i t PIR t v t          
 

(210) 

 

 * *( ) ( ) sin( ) ( ) cos( ) ( ) ( ) ( ) ( )conv d q cgv t i t t i t t PIR t i t PIR t v t          
 

(211) 

 

By substituting the model of the PLL: 

 

   * *1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

| | | |

( ) ( ) ( )

conv d cg q cg

cg cg

cg

v t i t PLL t v t i t PLL t v t PIR t
V V

i t PIR t v t

  

 

 
          
 

  

 

(212) 

 

   * *1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

| | | |

( ) ( ) ( )

conv d cg q cg

cg cg

cg

v t i t PLL t v t i t PLL t v t PIR t
V V

i t PIR t v t

  

 

 
          
 

  

 

(213) 

 

Considering a step input at both Id*(s) and Iq*(s) and |Vcg| constant, the previous equation in 

Laplace domain after substituting the PLL’s transfer function yields: 

 

 
   

2 2

* *

2 22 2 2

2 2

1
( ) | | ( ) | | ( )

| |1

( ) ( )

pll pll pll

p i p i

conv d cg q cg ppll pll pll
cgp i p

i

p cg

k s k s k k s
V s I V s I V s k

V sk s k s k

k s
I s k V s

s

  

 



 



       
                    

 
    

 

 

(214) 

 

 
   

2 2

* *

2 22 2 2

2 2

1
( ) | | ( ) | | ( )

| |1

( ) ( )

pll pll pll

p i p i

conv d cg q cg ppll pll pll
cgp i p

i

p cg

k s k s k k s
V s I V s I V s k

V sk s k s k

k s
I s k V s

s

  

 



 



       
                    

 
    

 

 

(215) 

 

Thus, by expressing the previous two equations in transfer function form (only valid for a 

step input at both Id*(s) and Iq*(s)): 
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 
   

2 2

* *

2 22 2 2

2 2

1
( ) ( ) ( ) ( ) ( )

| |1

( ) ( )

pll pll pll

p i p i

conv d cg q cg ppll pll pll
cgp i p

i

p cg

k s k s k k s
V s I s V s I s V s k

V sk s k s k

k s
I s k V s

s

  

 



 



       
                    

 
    

 

 

(216) 

 

 
   

2 2

* *

2 22 2 2

2 2

1
( ) ( ) ( ) ( ) ( )

| |1

( ) ( )

pll pll pll

p i p i

conv d cg q cg ppll pll pll
cgp i p

i

p cg

k s k s k k s
V s I s V s I s V s k

V sk s k s k

k s
I s k V s

s

  

 



 



       
                    

 
    

 

 

(217) 

 

Now, taking into account the power circuit equations: 

 

 ( ) ( ) ( )conv cgV s I s R Ls V s     
 

(218) 

 

 ( ) ( ) ( )conv cgV s I s R Ls V s     
 

(219) 

 

The closed loop current transfer function expressions yield: 

 

 
   

2 2 2 2

* *

2 2 2

1
( ) ( ) ( ) ( ) ( )

| | ( )1

pll pll pll

p i p p i p

d cg q cg pll pll pll
cgp i p

k s k s k k s k s k
I s I s V s I s V s

V A sk s k s k
  

 

 

         
                    

 
(220) 

 

 
   

2 2 2 2

* *

2 2 2

1
( ) ( ) ( ) ( ) ( )

| | ( )1

pll pll pll

p i p p i p

d cg q cg pll pll pll
cgp i p

k s k s k k s k s k
I s I s V s I s V s

V A sk s k s k
  

 

 

         
                   

 
(221) 

 

Or equivalently: 

 

 
   

  

2 2 2 2

* *

2 2

1 1
( ) ( ) ( ) ( ) ( )

| | ( )1

pll pll pll pll

p i p p p i p

d cg q cg pll pll
cgi p

k s k s k k k s k s k
I s I s V s I s V s

V A ss k k s
  

 



         
                

 

(222) 

 

 
   

  

2 2 2 2

* *

2 2

1 1
( ) ( ) ( ) ( ) ( )

| | ( )1

pll pll pll pll

p i p p p i p

d cg q cg pll pll
cgi p

k s k s k k k s k s k
I s I s V s I s V s

V A ss k k s
  

 



         
                

 

(223) 

Being as usual: 

 

3 2 2 2( ) ( ) ( ) ( )p i pA s Ls k R s L k s k R       
 

(224) 

 

Thus, in Figure 58 the poles of previous two current expressions are shown together with the 

Bode diagram of the PLL. It is seen that the poles corresponding to the PLL dynamics have 

been tuned slightly faster than the slower poles of the current dynamic, so their real part is 
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around 60. At the Bode plot of the PLL transfer function, it is seen that a good rejection to 

frequencies different from 50Hz is achieved.  

 

 
(a) 

 
(b) 

 
Figure 58. Poles of the closed loop currents (expressions (222) and (223)) and Bode of the model of 

PLL: kppll = 0.1 and kipll = 0.2·(1+kp_pll)·2·w; 

 

 

Finally, the time domain responses to a step input at current id and iq references is presented 

in Figure 59. It is seen that the Simulink based model and the mathematical model present an 

exact match. In this case, the grid impedance has been considered Lg=125H. For a step input 

at both d and q current references, it is seen that the grid voltage seen by the converter (Vcg) 

falls approximately 4% in amplitude. Consequently, this proposed model shows that under 

certain assumptions, it is also possible to linearly model using the Laplace transformation, 

the PLL itself together with the current control loops. Further analysis and inclusion of the 

PLL model in dq controls, are left for future works. 

 

 

  



Chapter 8: Step response analysis in a weak grid 

  

96 

 

 

 

 
(a) 

 

 

vconv 
 

i   

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

Dashed: Mathematical model 

 

Solid: Simulink blocks

 

vcg   

 

 

(b) 

Figure 59. (a) Simulink blocks based model, for evaluating the Step response of control of currents in 

stationary reference frame () and including the PLLs dynamic behavior, (b) Time domain 

responses comparison of mathematical model and Simulink blocks based model for a unit step input 

at both references. Conditions of Appendix E. R = 0.01; L = 1mH; Lg=0.125·L.  
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Chapter 9.  

Conclusions 

 
In this book, it has been shown that it is possible to obtain useful mathematical expressions 

in  frame (stationary reference frame) of controls developed in dq reference frame 

(synchronous rotating frame), for three phase grid-connected converters. Thanks to these 

mathematical expressions, it is possible to know the actual behavior of the converter’s 

currents and voltages, i.e. the actual  converter’s currents and voltages, despite the fact that 

they are controlled under a dq reference frame. In addition, these mathematical equations 

provide a common framework that allow comparing controls conceived in different reference 

frames, i.e.  controls with resonant controllers and dq controls with PI controllers. 

Thanks to this analytical tool, in this book several conclusions have been derived by applying 

the classic control theory analysis. One remarkable fact is that the dq control with cancellation 

of coupling terms, provides the same current transient response (natural response) to step 

inputs, in  frame or in dq frame. Being more precise, this means that the real part of the 

poles of the closed loop current transfer functions (damping factors), are the same in  frame 

or in dq frame. Indirectly, this fact means that if in a dq control with PI controllers, if the 

current coupling terms are not properly cancelled by control, or simply are not considered at 

all, the transient response of the controlled currents will be different in  frame and in dq 

frame.  

Regarding to the frequency response analysis of the controlled currents, i.e. the Bode 

representations, it is a curious coincidence that the  control and the dq controls without 

cancellation of coupling terms, provides an equivalent Bode amplitudes. Being more specific, 

this means that both controls obtain the same amplitude gains of the controlled currents at 

the evaluated frequencies. 

Connected to this frequency response analysis, it is also remarkable that the dq controls with 

cancellation of coupling terms, is the only control evaluated that achieves equal amplitudes 

at both output current frequencies +1 and -1, when a 1 frequency is set at the current 

reference input. This fact means therefore that the other two evaluated controls, the  

control and the dq controls without cancellation of coupling terms, obtain different output 

current amplitudes at frequencies +1 and -1, when a 1 frequency is set at the current 

reference sinusoidal input. 
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In addition, the mathematical tool presented in this book, has shown that is possible to go 

further and study how the control is affected by phenomena that could be important in some 

specific contexts. The phenomena shortly evaluated have been: significant delays between 

the control and converter synthesis, significant filtering actions at currents measurements, 

converters connected to weak grids, PLLs tuned with particular dynamic behaviors, etc… 

One more utility of some of the mathematical expressions derived in this book, could be the 

analysis of how different converters with their corresponding controls interact, in specific 

grid scenarios [14]. Connecting together the mathematical models of several grid connected 

converters’ controls and the grid impedance models where they are connected, can also 

provide more analytical information about issues such as: stability, oscillations, steady-state 

behavior, etc… 

As extension possibilities of the proposed mathematical model approach, it is remarkable 

that this method can also be applied to grid-connected converters that exchange currents with 

the grid of different frequencies, such as for instance, active filters or converters with active 

impedance functionalities [14]. In addition, this modelling approach can be also directly 

applied to control of different topologies of three phase AC motors. For instance, control of 

asynchronous motors, control of synchronous motors and control of doubly fed induction 

motors. In this context of three phase AC motors as well, the dq control with PI controllers is 

widely extended among researchers and manufacturers, but is not so common to study how 

is the performance of the actual  currents or fluxes of the motor. As in three phase grid-

connected converters, it is assumed that the behavior of the dq and  currents is in some 

way similar or equivalent, but not being able to specify quantitatively how equal they are, or 

how much they differ. 

Finally, as a future improvement of the proposed modelling approach, could be to develop 

discrete mathematical models (in ‘z’ domain) that are able to incorporate the discrete nature 

of the controls, when they are implemented in microcontrollers. Thanks to this, it could be 

also studied more powerfully how affects to the control factors such as; sample time, 

discretization methods, delays, etc… 
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Appendix A.  

Step inputs in control at stationary 

reference frame ( ) 

 

 

From the control equation: 

 * *( ) ( ) cos( ) ( ) sin( ) ( ) ( ) ( ) ( )conv d q gv t i t t i t t PIR t i t PIR t v t          
 

(225) 

 

It is equal to: 

 

   * *( ) ( ) cos( ) ( ) ( ) sin( ) ( ) ( ) ( ) ( )conv d q gv t i t t PIR t i t t PIR t i t PIR t v t           
 

(226) 

 

Applying the Laplace transform to each part of this equation, and substituting a step in both 

inputs id*(t)=|Id*| and iq*(t)=|Iq*|, at t=0: 

 

 

   * *

2 2 2 2
| | cos( ) ( ) | |d d p i

s s
I t PIR t I k k

s s


 

             

 
(227) 

   * *

2 2 2 2
| | sin( ) ( ) | |q q p i

s
I t PIR t I k k

s s




 

               

 
(228) 

      2 2
( ) ( ) ( ) p i

s
i t PIR t I s k k

s
 



 
          

 
(229) 

( ) ( )g gv t V s 
   

    and     ( ) ( )conv convv t V s   (230) 

 

 

Note that the convolution product in ‘s’ domain becomes a product. Therefore, the converter 

voltage in ‘s’ domain for step inputs yields: 
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   

2

* *

2 2 2 2 2 2 2 2
2 2 2 2

( ) ( ) | | | | ( )
p pi i i

conv p d q g

k s kk s k s k s
V s k I s I I V s

s s ss s
  

 

   

   
                      

   

 
(231) 

 

Knowing that the step inputs in ‘s’ domain are:  

 

*
* | |
( ) d

d

I
I s

s


          
*

*
| |

( )
q

q

I
I s

s


 
(232) 

 

This last equation can be expressed in transfer function form as follows: 

   

2 3 2

* *

2 2 2 2 2 2 2 2
2 2 2 2

( ) ( ) ( ) ( ) ( )
p pi i i

conv p d q g

k s k sk s k s k s
V s k I s I s I s V s

s s ss s
  

 

   

   
                      

   

 
(233) 

Being this last expression only valid for step inputs. The  expression can be deduced in an 

equivalent manner. 
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Appendix B. 

Sine and cosine inputs in control at 

stationary reference frame ( ) 

 

 

From the control equation: 

 

   * *( ) ( ) cos( ) ( ) ( ) sin( ) ( ) ( ) ( ) ( )conv d q gv t i t t PIR t i t t PIR t i t PIR t v t           
 

(234) 

 

 

Taking for instance as inputs a sine and cosine at Id*(s) and Iq*(s) respectively, at t=0:  

 

* *

1( ) | | sin( )d di t I t      and  * *

1( ) | | cos( )q qi t I t   (235) 

 

Applying the Laplace transform to the first two elements of the right hand side of this 

equation: 

 

         
* *

*

1 1 1

* *

1 1

2 2 2 2 2 2

1 1

| | | |
| | sin( ) cos( ) ( ) sin ( ) sin ( ) ( )

2 2

| | | |( ) ( )

2 ( ) 2 ( )

d d
d

d d
p i

I I
I t t PIR t t t PIR t

I I s
k k

s s s

     

   

    

  
              

  

    
    

      

 

(236) 

         
* *

*

1 1 1

* *

1 1

2 2 2 2 2 2

1 1

| | | |
| | cos( ) sin( ) ( ) sin ( ) sin ( ) ( )

2 2

| | | |( ) ( )

2 ( ) 2 ( )

q q

q

q q

p i

I I
I t t PIR t t t PIR t

I I s
k k

s s s

     

   

    

  
                  

   

    
            

 

(237) 

 

Thus, the complete ‘s’ domain equation yields: 
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*

1 1

2 2 2 2 2 2 2 2

1 1

*

1 1

2 2 2 2 2 2

1 1

| | ( ) ( )
( ) ( )

2 ( ) ( )

| | ( ) ( )
( )

2 ( ) ( )

i d

conv p p i

q

p i g

k s I s
V s k I s k k

s s s s

I s
k k V s

s s s

 



   

     

   

    

      
         

          

     
               

 

(238) 

 

Knowing that the sine and cosine inputs in ‘s’ domain are:  

 

* *

1( ) | | sin( )d di t I t 

     


     
* *1

2 2

1

( ) | |q qI s I
s








    
(239) 

 

* *

1( ) | | cos( )q qi t I t 
       



    
* *

2 2

1

( ) | |q q

s
I s I

s 




 
(240) 

 

This last equation can be expressed in transfer function form as follows: 

 


2 2

*1 1 1

2 2 2 2 2 2

1 1 1

2 2

*1 1 1

2 2 2 2

1 1

1
( ) ( ) ( )

2 ( ) ( )

1
( ) ( )

2 ( ) ( )

i

conv p d

q g

k s s
V s k I s I s

s s s

s
I s V s

s s s

 



    

    

    

   

       
        

         

     
     

       

 

(241) 

 

Being this last expression only valid for inputs sine and cosine at Id*(s) and Iq*(s) respectively. 

The  expression can be deduced in an equivalent manner. 
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Appendix C. 

Step inputs in control at synchronously 

rotating frame (dq) with cancellation of 

coupling terms 

 
From the control equation: 

 

  
  

*

*

( ) ( ) ( ) cos( ) ( ) sin( ) ( ) cos( )

( ) ( ) sin( ) ( ) cos( ) ( ) sin( )

( ) cos( ) ( ) sin( ) ( )

conv d

q

q d g

v t i t i t t i t t PI t t

i t i t t i t t PI t t

L i t t L i t t v t

  

 



  

  

   

       
 

        
 

        

 

(242) 

 

It is equal to: 

 

 

  

  
 

  

  

*

*

( ) ( ) ( ) cos( )

( ) cos( ) ( ) cos( )

( ) sin( ) ( ) cos( )

( ) ( ) sin( )

( ) sin( ) ( ) sin( )

( ) cos( ) ( ) sin( )

( ) cos( ) ( ) sin( )

conv d

q

q d

v t i t PI t t

i t t PI t t

i t t PI t t

i t PI t t

i t t PI t t

i t t PI t t

L i t t L i t t













 

 



 

 

   

  

   

   

  

   

   

         ( )gv t

 

(243) 

 

Applying the Laplace transform to each part of this equation, and substituting a step in both 

inputs id*(t)=|Id*| and iq*(t)=|Iq*|, at t=0, we have several terms that can be solved separately 

in several steps [13]. Starting from this one for instance: 

 

  ( ) cos( ) ( ) cos( )i t t PI t t       (244) 
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First, it is known that: 

1 1
( ) cos( ) ( ) ( )

2 2

j t j ti t t i t e i t e 

           (245) 

 

By using the Laplace transform property: 

 

( ) ( )ate f t F s a    
 (246) 

 

The Laplace transform of expression (245) yields: 

 

 
1 1 1

( ) ( ) ( ) ( )
2 2 2

j t j ti t e i t e I s j I s j 

     
         

 

 
(247) 

 

Once we have this part solved, the following element is: 

 

    1

1
( ) cos( ) ( ) ( ) ( ) ( )

2

i

p

k
i t t PI t I s j I s j k F s

s
    

 
           

 

 
(248) 

 

Finally, the total term is: 

 

    1 1 1

1
( ) cos( ) ( ) cos( ) ( ) cos( ) ( ) ( )

2

j t j ti t t PI t t f t t f t e f t e 

                  (249) 

 

So its Laplace transform is: 

   1 1 1 1

1 1
( ) ( ) ( ) ( )

2 2

j t j tf t e f t e F s j F s j    
           
 

 
(250) 

 

And substituting in F1 expression (248): 

 

  

   

   

1 1 1 1

( ) cos( ) ( ) cos( )

1 1
( ) ( ) ( ) ( )

2 2

1 1
( 2 ) ( ) ( 2 ) ( )

4 4

j t j t

i i

p p

i t t PI t t

f t e f t e F s j F s j

k k
I s j I s k I s j I s k

s j s j



 

   

 

 

 
 



     
 

 
             

 

   
               

    

 

(251) 

 

Then, taking the term that also depends on i(t) and on sinus terms: 
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  ( ) sin( ) ( ) sin( )i t t PI t t       (252) 

 

It is known that: 

1 1
( ) sin( ) ( ) ( )

2 2

j t j ti t t i t e i t e
j j

 

           
(253) 

 

The Laplace transform of this term therefore yields: 

 
1 1 1

( ) sin( ) ( ) ( ) ( ) ( )
2 2 2

j t j ti t t i t e i t e I s j I s j
j j j

 

       
           

 

 
(254) 

 

Once we have this part solved, the following element is: 

 

    2

1
( ) sin( ) ( ) ( ) ( ) ( )

2

i

p

k
i t t PI t I s j I s j k F s

j s
    

 
           

 

 
(255) 

 

Finally, the total term is: 

 

    2 2 2

1
( ) sin( ) ( ) sin( ) ( ) sin( ) ( ) ( )

2

j t j ti t t PI t t f t t f t e f t e
j

 

                  
(256) 

 

So its Laplace transform is: 

   2 2 2 2

1 1
( ) ( ) ( ) ( )

2 2

j t j tf t e f t e F s j F s j
j j

    
           
 

 
(257) 

 

And substituting F2 from expression (255): 

 

  

   

   

2 2 2 2

( ) sin( ) ( ) sin( )

1 1
( ) ( ) ( ) ( )

2 2

1 1
( 2 ) ( ) ( 2 ) ( )

4 4

j t j t

i i

p p

i t t PI t t

f t e f t e F s j F s j
j j

k k
I s j I s k I s j I s k

s j s j



 

   

 

 

 
 



     
 

 
             

 

   
               

    

 

(258) 

 

Consequently, adding terms (251) and (258): 
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     

   

   

( ) cos( ) ( ) cos( ) ( ) sin( ) ( ) sin( )

1 1
( 2 ) ( ) ( 2 ) ( )

4 4

1 1
( 2 ) ( ) ( 2 ) ( )

4 4

i i

p p

i i

p p

i t t PI t t i t t PI t t

k k
I s j I s k I s j I s k

s j s j

k k
I s j I s k I s j I s k

s j s j

 

   

   

   

 
 

 
 

         
 

   
                

    

  
             

  

2 2

1
( )

2

( )

i i

p p

i

p

k k
k k I s

s j s j

k s
k I s

s





 




 

 

 
        

  

 
    

 
 

(259) 

Following the same procedure with terms with sine and cosine: 

 

  ( ) sin( ) ( ) cos( )i t t PI t t       (260) 

 

Its Laplace transform is equal to: 

 

  

   

( ) sin( ) ( ) cos( )

1 1
( 2 ) ( ) ( 2 ) ( )

4 4

i i
p p

i t t PI t t

k k
I s j I s k I s j I s k

j s j j s j



   

 

 
 

     
 

   
                

    

 

(261) 

 

While the other term with sine and cosine: 

 

  ( ) cos( ) ( ) sin( )i t t PI t t      (262) 

 

Its Laplace transform is equal to: 

  

   

( ) cos( ) ( ) sin( )

1 1
( 2 ) ( ) ( 2 ) ( )

4 4

i i
p p

i t t PI t t

k k
I s j I s k I s j I s k

j s j j s j



   

 

 
 

    
 

   
               

    

 

(263) 

Consequently, adding term (261) and (263): 
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     

   

   

( ) sin( ) ( ) cos( ) ( ) cos( ) ( ) sin( )

1 1
( 2 ) ( ) ( 2 ) ( )

4 4

1 1
( 2 ) ( ) ( 2 ) ( )

4 4

i i
p p

i i
p p

i t t PI t t i t t PI t t

k k
I s j I s k I s j I s k

j s j j s j

k k
I s j I s k I s j I s k

j s j j s

 

   

   

   

 
 

 


         
 

   
                

    

 
            

  

2 2

1
( )

2

( )

i i
p p

i

j

k k
k k I s

j s j s j

k
I s

s







 





 
 
 

 
        

  

 
  

 

 

(264) 

 

Then, there are two terms that depend on the reference inputs that are solved as follows: 

 

 *

* *

( ) ( ) cos( )

1 1
( ) ( )

2 2

d

i i
d p d p

i t PI t t

k k
I s j k I s j k

s j s j



 
 

   
 

   
            

    

 

(265) 

 

Considering a step input at both Id*(s) and Iq*(s):  

 

*
* | |
( ) d

d

I
I s

s


          *

*
| |

( )
q

q

I
I s

s


 
(266) 

 

The previous expression yields after substituting the step input: 

 

 *

* *

( ) ( ) cos( )

| | | |1 1

2 2

d

d i d i
p p

i t PI t t

I k I k
k k

s j s j s j s j



   

   
 

   
          

      

 

(267) 

 

And after several developments seeking to eliminate the imaginary operator ‘j’: 

 

 

 

*

2 2
*

22 2 2 2

( ) ( ) cos( )

( )
| |

d

p i
d

i t PI t t

k s k s
I

s s





 

   
 

 
   

  
 

 

(268) 

Doing the same with the following term: 
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 *

* *

( ) ( ) sin( )

1 1
( ) ( )

2 2

q

i i
q p q p

i t PI t t

k k
I s j k I s j k

j s j j s j



 
 

    
 

   
             

    

 

(269) 

 

Substituting the step input: 

 

 *

* *

( ) ( ) sin( )

| | | |1 1

2 2

q

q qi i
p p

i t PI t t

I Ik k
k k

j s j s j j s j s j



   

    
 

   
           

      

 

(270) 

 

And after several developments: 

 

 

*

*

22 2 2 2

( ) ( ) sin( )

2
| |

q

p i
q

i t PI t t

k k s
I

s s



 

 

    
 

 
    
  
 

 

(271) 

Finally, the remaining terms are: 

 

( ) cos( ) ( ) sin( ) ( )q d gL i t t L i t t v t             (272) 

 

Substituting their equivalent currents in  representation:  

 

   ( ) sin( ) ( ) cos( ) cos( ) ( ) cos( ) ( ) sin( ) sin( ) ( )gL i t t i t t t L i t t i t t t v t                          
 

(273) 

 

Rearranging terms and applying trigonometric equalities, it is obtained: 

 

( ) ( )gL i t v t    
 

(274) 

So its Laplace transform: 

 

( ) ( ) ( ) ( )g gL i t v t L I s V s              

 
(275) 

 

Hence, adding all the resulting terms, the Laplace transform of the complete expression (242) 

is: 
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   

2 3

2 2 2 2

2 2

* *

2 2 2 2 2 2
2 2 2 2

( ) ( )
( ) ( ) ( )

( ) 2
| | | |

i i

conv p

p pi i

d q

k s L s k L
V s k I s I s

s s

k s kk s k s
I I

s ss s

  

  

 

 

  

    
      

    

   
        

     
   

 

(276) 

 

Knowing that these expressions are only valid for a step input at both Id*(s) and Iq*(s), we can 

represent them in transfer function form:  

 

 

   

2 3

2 2 2 2

2 2 2 2

* *

2 2 2 2 2 2
2 2 2 2

( ) ( )
( ) ( ) ( )

( ) 2
( ) ( )

i i

conv p

p pi i

d q

k s L s k L
V s k I s I s

s s

k s k sk s s k s
I s I s

s ss s

  

  

 

 

  

    
      

    

   
      

     
   

 

(277) 
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Appendix D.  

Sine and cosine inputs in control at 

synchronously rotating frame (dq) with 

cancellation of coupling terms 

 
From the control equation that has been solved in previous chapter: 

 

 

  

  
 

  

  

*

*

( ) ( ) ( ) cos( )

( ) cos( ) ( ) cos( )

( ) sin( ) ( ) cos( )

( ) ( ) sin( )

( ) sin( ) ( ) sin( )

( ) cos( ) ( ) sin( )

( ) cos( ) ( ) sin( )

conv d

q

q d

v t i t PI t t

i t t PI t t

i t t PI t t

i t PI t t

i t t PI t t

i t t PI t t

L i t t L i t t













 

 



 

 

   

  

   

   

  

   

   

         ( )gv t

 

(278) 

 

Only two terms that depend on new inputs must be recalculated. Assuming as inputs a sine 

and cosine at Id
*(s) and Iq

*(s) respectively, at t=0:  

 

* *

1( ) | | sin( )d di t I t      and  * *

1( ) | | cos( )q qi t I t   (279) 

These terms are: 

 *( ) ( ) cos( )di t PI t t         and        *( ) ( ) sin( )qi t PI t t    
(280) 
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In this case, we will solve the problem by following an alternative method. First of all taking 

the Laplace transform of the input reference and the PI(t): 

 
1* * * 11

2 2 2 2 2 2
1 1 1

( ) ( ) | | | |
pi i

d d p d

kk k
i t PI t I k I

s s s s s

 

  

    
                 

       
(281) 

Now taking the inverse Laplace transform: 

 
   1* 1 * *1

1 12 2 2 2
1 11

( ) ( ) | | | | sin (1 cos )
p i i

d d d p

k k k
i t PI t I I k t t

s s s

 
 

 


    
        

       

       
(282) 

Multiplying this last expression by cos(t): 

       

         

* *

1 1

1

*

1 1 1 1

1 1

( ) ( ) cos( ) | | sin cos( ) (cos( ) cos cos )

| | cos( ) sin ( ) sin ( ) cos ( ) cos ( )
2 2

i

d d p

pi i

d

k
i t PI t t I k t t t t t

kk k
I t t t t t

     


        
 

 
     

 

 
         

 

       

(283) 

And its Laplace transform is calculated directly: 

 *

* 1 1

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1

( ) ( ) cos( )

| |
2 ( ) ( ) 2 ( ) ( )

d

pi i
d

i t PI t t

kk ks s s
I

s s s s s



   

          

   
 

       
                         

 

(284) 

Being this expression only valid for a sine input at d component current: 

Following the same procedure the remaining term and considering a cosine input at q 

component of current reference: 

* * *

2 2 2 2 2 2

1 1 1

( ) ( ) | | | |
pi i

q q p q

k sk ks
i t PI t I k I

s s s s  

    
                 

       
(285) 

Now taking the inverse Laplace transform: 
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   * 1 * *

1 12 2 2 2

1 1 1

( ) ( ) | | | | cos sin
p i i

q q q p

k s k k
i t PI t I I k t t

s s
 

  


    

        
     

       
(286) 

Multiplying this last expression by sin(t): 

       

         

* *

1 1

1

*

1 1 1 1

1

( ) ( ) sin( ) | | cos sin( ) sin sin

| | sin ( ) sin ( ) cos ( ) cos ( )
2 2

i

q q p

p i

q

k
i t PI t t I k t t t t

k k
I t t t t

    


       


 
       

 

 
          

 

       

(287) 

And its Laplace transform is calculated directly: 

 *

* 1 1

2 2 2 2 2 2 2 2

1 1 1 1 1

( ) ( ) sin( )

| |
2 ( ) ( ) 2 ( ) ( )

q

p i
q

i t PI t t

k k s s
I

s s s s



   

        

    
 

     
                     

 

(288) 

Hence, adding all the resulting terms, the Laplace transform of the complete expression (278) 

is: 

2 3

2 2 2 2

*1 1

2 2 2 2

1 1

*

2 2 2 2 2 2

1 1

1 1

2 2 2

1

( ) ( )
( ) ( ) ( )

| |
2 ( ) ( )

2
| |

2 ( ) ( )

2 ( )

i i
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p

d

i

d

p

k s L s k L
V s k I s I s

s s

k
I

s s

k s s s
I

s s s

k

s s

  

  

 

   

   

    

   

 

    
      

    

   
   

     

  
    

      

   
  

  

*

2

1

*

2 2 2 2

1 1 1

| |
( )

| | ( )
2 ( ) ( )

q

i

q g

I

k s s
I V s

s s


 

    

 
 

  

  
    

             

(289) 

 

Knowing that these expressions are only valid for a sine and cosine input at both Id*(s) and 

Iq*(s) respectively, we can represent them in transfer function form:  
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
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   



    

     
    

      

    
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      



       

(290) 
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Appendix E. 

Numerical conditions for simulations 

 
AC grid:  

 

Lg = 0mH,  

 = 2pi50 rad/s 

|Vg|=1V 

 

Filter: 

 

R = 10m      

L = 1mH        

 

Control: 

 

1 = 11 rad/s 

n = (R/L)25 rad/s 

=1.01 

kp =siL2n – R = 0.495 

ki =Ln
2 = 62.5 
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Appendix F. 

Experimental platform 

 
AC grid:  

 

Lg = 0mH,  

 = 2pi50 rad/s 

|Vg|=25V 

 

Filter: 

 

R = 32m      

L = 4mH   

 

Converter:    

 

2L - VSC – with IGBTs, commutating at fsw=8kHz. 
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Appendix G. 

Space Vectors 

 
Next figure graphically shows the two reference frames in which the space vectors can be 

represented: 

 

 

α 

β 

d 

q 

θ 

 

x


x

dx

qx

x

 

 

Figure 60. Transformation between stationary and synchronous reference frames. 

 

 

Transformations between reference frames are made according to the following matrix 

equations: 

 

 

cos sin

sin cos

d

q

v v

v v





 

 

    
    

      
(291) 

 

cos sin

sin cos

d

q

vv

vv





 

 

     
     
      

(292) 
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Finally, to transform into a three phase system: 

1 0

1 3

2 2

1 3

2 2

a

b

c

x
x

x
x

x





 
 

   
    

       
     

 
 
  

(293) 

1 1
1

2 2 2

3 3 3
0

2 2

a

b

c

x
x

x
x

x





 
                   

(294)
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