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predict tool wear in the drilling process
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Abstract Industrial processes are being developed under a
new scenario based on the digitalization of manufacturing
processes. Through this, it is intended to improve the man-
agement of resources, decision-making, production costs and
production times. Tool control monitoring systems (TCMS)
play an important role in the achievement of these object-
ives. Therefore, it is necessary to develop light and scalable
TCMS that can provide information about the tool status us-
ing the signals provided by the machine. Due to the lack of
this type of systems in industrial environments, this work
has two main objectives. First, the predictive capacity of
statistical features in the time domain of internal and ex-
ternal signals for the prediction of tool wear in drilling pro-
cesses was analysed. To this end, a methodology based on
automatic learning algorithms was developed. Secondly, once
the most sensitive signals to tool wear were identified, al-
gorithms with signals of a certain tool geometry were trained
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and a model was obtained. Then, the model was tested using
signals from two different tool geometries. The experiments
were carried out on a vertical milling machine on a steel
with composition 35CrMo4LowS under pre-established cut-
ting conditions. The results show that the most sensitive sig-
nals to monitor the tool wear in the time domain are the
feed force (external) and the z-axis motor torque (internal).
The models created for the fulfilment of the second object-
ive show a great capacity of prediction even when dealing
with tools with different geometrical characteristics.

Keywords Tool wear · Drilling · Machine learning · Tool
condition monitoring

1 Introduction

The digitalisation of industrial processes is leading to the
creation of automatic control systems that can assist in de-
cision making during machining. As the quality requirements
of some industrial sectors are increasing (automotive, rail-
way, naval, aeronautical, appliance or construction indus-
tries) the decision making in manufacturing processes is be-
coming more critical. Machining processes are a key factor
in the manufacture of different parts for the above mentioned
sectors, so it is necessary to develop intelligent systems to
improve decision making.

The drilling process is usually carried out in the final
steps of a machined part, in these stages a nearly finished
part could be damaged [1], stopping the production line and
consequently increasing the production cost. Therefore, the
drilling process is one of the most critical machining op-
erations for sectors that manufacture parts that rely on high
quality holes. The hole quality is affected by tool wear, which
is one of the phenomenon that affects hole surface integrity
and hole dimensions [2]. In industrial environments the tool
is changed based on a conservative estimation of tool life to
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ensure product surface integrity, or to prevent premature tool
failure [3]. For the above reasons an unmanned production
is only possible with a tool control monitoring system [4].

Tool condition monitoring systems (TCMS) can be based
on direct or indirect measurements. Direct measurements
are considered more expensive than indirect measurements
because they require more complex equipment and higher
skilled workers. Thus, the trend is to use indirect measure-
ments for tool wear detection. To determine tool life, the use
of direct measurements are more extended [1, 5–8], to ob-
serve the evolution of the degradation of the tool both direct
and indirect techniques are used [3, 9–14], and for tool wear
detection purpose only indirect measurements are used [15].

In industrial environments the use of sensors is not widely
extended, this is due to the vulnerability of these sensors
to external noise, common in these environments. Some of
sensors can be expensive or invasive. For these reasons ex-
ternal signals are more widely employed for research pur-
poses than for industrial applications. There is requirement,
therefore, to replace the external signals commonly used for
fault detection with the internal signals provided by Com-
puter numerical control (CNC) machine. This would facilit-
ate the creation of non-invasive and easy-to-install fault de-
tection systems.

In recent years, sensor technology has improved and the
amount of data generated has increased. Therefore, machine
learning techniques are used to enhance the machining pro-
cess [16]. Machine learning algorithms allow the extraction
of unknown information from previously collected data. These
algorithms extract useful patterns (models) to be used with
new data to make future predictions regarding the machining
process.

This work has two main objectives. The first objective is
to identify the most sensitive signals to predict tool wear. For
this purpose, a comparison of the most widely used signals
for tool wear detection was made from the point of view of
machine learning. Two drill geometries were chosen and the
same methodology was applied to the data recorded for each
type of drill bit. The methodology used allows to identify the
most sensitive signals for both drill bit configurations using
the recorded raw data. The second objective is to predict tool
wear of one tool geometry using the model created from the
data from another tool geometry. Once the most sensitive
signal and the most accurate algorithm were identified, the
data acquired using one of the drill bits was used to predict
the tool wear of the other drill bit configuration.

2 Related work

Tool state monitoring systems are very extended with re-
search purposes. Regarding the industrial environments there
are few applications that allows tool state monitoring in real

time. In many cases it is necessary to install external sensors
with the requirement of the sensor setup. The most exten-
ded signals for tool wear monitoring are vibrations, acoustic
emissions, cutting forces and sound pressure. The spindle
cutting power also is employed for tool wear detection.

The acquisition of signals to obtain relevant information
about the cutting process results in large volumes of data.
Therefore, the management and extraction of information
must be done in an efficient way, selecting the features that
best represent the physical quality of the cutting process to
be controlled.

Tool geometry is a relevant factor in the aggressiveness
of the cutting process [17]. That is why tool selection is an
important aspect of the machining process. In any case, the
modification of the cutting conditions is cheaper than chan-
ging the tool to increase the tool life. The system developed
could support this kind of decision.

Returning to the signals used for such a system, an accel-
erometer is an easy to install sensor, so the vibration signals
are widely extended for tool wear prediction. These types of
signals represent the external variations of tool wear [18].
Regarding the statistical features of vibration signals for the
detection of tool wear, several studies show the use of differ-
ent signal features to meet the same objective. Kim and Choi
[19] employed the amplitude of vibration signals as tool
wear detection feature in turning operations, they stopped
the process when the amplitude exceeded a preestablished
limit. In contrast, Dimla Snr. [20] said that time domain
features were more correlated with the modification of the
cutting conditions than with tool wear. Frequency domain
features of vibration signals showed better correlation with
tool wear. Rmili et al. [21] shows how to identify the three
phases of the tool wear (breaking-in, steady state, acceler-
ation) using the mean power of vibration signals in turning
operations, they report that the vibration in the x-axis is the
most relevant signal. However, in the same way Krishnaku-
mar et al. [22] used different time domain features to create
a classification tree to classify three different levels of tool
wear using vibration on the z-axis as the most relevant sig-
nal. Therefore, although the accelerometer is an easy to in-
stall sensor and not too invasive, the clamping, cantilevering
and dynamics of the machine affects to the measurements
made.

The acoustic emissions (AE) are transient elastic waves
created by the plastic deformations and chip flow in machin-
ing operations [18]. AE signals are also widely employed for
tool wear monitoring, the constant friction between tool and
workpiece produces continuous signals while micro-cracks
create transient signals [1]. Diniz et al. [12] identify the dis-
persion of RMS values of AE signals as a relevant feature
for tool wear detection since tool wear increases the friction
between the tool and the workpiece. As a result the amp-
litude of the AE signal increases, thus the RMS value shows
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a higher dispersion. By contrast Bhuiyan et al. [13] say that
this technique based on the RMS values of AE signals may
have problems with loss of information about transient sig-
nals created by fractures on the tool surface. Locating the
source of the continuous emissions is a difficult task. There-
fore, the most common application is to detect transient sig-
nals [23]. In drilling processes with small diameter drills it is
difficult to detect tool wear by using other types of sensors,
so the use of AE signals can be of great help in this type of
operation [24].

Sound pressure is an additional option for tool wear de-
tection. Measurement of sound pressure is versatile, easy to
acquire and does not require direct contact with any element
of the process. However, the variety of tools, the variability
of cutting conditions and the conditions of production en-
vironments negatively affect the measurements made. Ko-
thuru et al. [25] developed a TCMS based on machining op-
eration audible sound signal using machine learning tech-
niques. Pre-processing treatments are not sufficient to re-
move noise from measurements, so there are misclassifica-
tions. Therefore more sophisticated treatments are needed to
remove noise from the signal. Seemuang et al. [26] tried to
predict tool wear with the spindle audible sound signal, con-
cluding that there is no relationship between the spindle aud-
ible sound signal spectrum bandwidth and tool wear. Never-
theless, the audible signal from the spindle makes it possible
to identify changes in cutting conditions so that with this
technique it is possible to acquire knowledge of the process
and even combine it with some other type of instrumenta-
tion.

Cutting processes are operations with high plastic de-
formations and high stresses leading to a high cutting forces.
There are different parameters that affect the cutting forces,
the most relevant are cutting conditions, tool geometry and
workpiece material properties. As the tool wears down the
friction between the tool and workpiece is increased. As a
result, the microgeometry of the tool is changed causing
higher cutting forces [7, 17]. However, it is necessary to
take into account the cutting conditions as well as the work-
piece material properties to avoid false positives [11]. Stav-
ropoulos et al. [14] proposes to measure the spindle current,
it is less invasive and less sensitive to external noises.

Although all analyses are based on the extraction of fea-
tures from the acquired signals, the use of automatic learn-
ing algorithms can help to understand and identify the most
relevant features. Learning algorithms allows to extract un-
known information from previously collected data. This is
done by creating models capable of predicting past phe-
nomena with new data. Different methods of detecting tool
wear based on automatic learning have been seen in the
literature. Corne et al. [27] study the possibility of obtain-
ing a threshold before the catastrophic failure of the tool
when drilling holes in Inconel using artificial neural net-

works based on data from the spindle power. Concluding
that the tool is about to break at 120%-130% of the meas-
ured power when the first hole was drilled. However, it is
only valid for the tool, material and cutting conditions used.
Lee et al. [28] proposed a TCM system for milling oper-
ation based on RMS feature of cutting forces as input to
Response Surface Methodology (RSM) algorithm obtaining
good results. Even if good results are achieved, it is neces-
sary to install a dynamometer for the measurement of cut-
ting forces. The Suport vector machine (SVM) algorithm is
an option for automatic learning as it represents a specific
number of statistical features extracted from the signals in
a larger dimension than the original feature space. Kothuru
et al. [25] are based on audible signals from the cutting pro-
cess for the extraction of statistical features that allow dif-
ferent levels of tool wear to be classified using the above
mentioned algorithm. Pattern recognition, artificial neural
networks, fuzzy logic, genetic algorithms and decision trees
are widely used for predicting different phenomena. For the
detection of tool wear many have been used with positive
results.

As for commercial systems, such as the one offered by
ARTIS [29]. Generally, they work like black boxes and need
historical data in order to be trained to detect tool wear.
However, if they are going to be employed in different cut-
ting conditions, they need to be trained again. In the liter-
ature review there are not many applications that once the
system has been trained in given cutting conditions (cutting
speed, feed, tool geometry), the system will properly work
not only in these cutting conditions but as well in different
ones (in a limited process window) to detect tool wear.

During the literature review, most of the consulted meth-
ods only analyse a certain type of tool geometry and cutting
condition, testing the developed model only to data gathered
under the same conditions. The methodology proposed in
this paper, evaluates the capability of a model trained on one
tool geometry and cutting conditions to predict tool wear
for other tool geometry under different cutting conditions,
widening the scope of application for the use of a developed
model. In addition, the methodology used during the devel-
opment of these models, facilitates the comparison of the
accuracy of the different signals at the time of predicting the
tool wear for different geometries and cutting conditions us-
ing time domain statistical features.

In the following sections, first the methodology used is
explained, detailing the setup used in this work. It is also ex-
plained the extraction of features from the signals acquired
and their subsequent use with automatic learning algorithms.
Afterwards, the results obtained are discussed and finally the
conclusions obtained are shown.
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3 Methods

In this section, the experimental setup is presented and the
methodology used to perform sensitivity analysis of obtained
signals from the point of view of machine learning is ex-
plained. A complete experimental setup was used to acquire
the maximum amount of data of the drilling process. Thus,
several sensors were installed to obtain cutting forces, vibra-
tions, sound pressure and acoustic emissions in addition to
acquiring signals from the CNC machining centre.

3.1 Experimental setup

The experiments were performed on a Lagun vertical CNC
milling machine. The workpiece material was a steel of com-
position 35CrMo4LowS. As can be seen in Fig. 1 (a-e) two
types of drills were used, Kendu R204.6D curved edge drill
with a helix angle of 30◦, and BH04.5D straight edge drill
with a helix angle of 15◦, both of �8mm diameter. In the
same image Fig. 1 (b-c-d-f-g-h) can be seen the different
levels of wear considered in this work with their cutting edge
profile.

Two types of drills (R204.6D and BH04.5D) were em-
ployed with three different tool condition states: fresh, tool
flank wear of 0.1mm and tool flank wear of 0.2mm. While in
R204.6D the tool flank wear of 0.1mm and 0.2mm was gen-
erated making preliminary tests aside of the experimental
test presented in this paper, in BH04.5D tool flank wear was
generated by sharpening.

To keep track of the changes in the microgeometry of
the tools during the execution of the tests, all the tools were
measured before and after performing the trials. These meas-
urements were made in terms of cutting edge geometry. Thus,
the flank wear was measured in a Leica DMS1000 macro-
scope and the cutting-edge radius and the cutting-edge angle
were measured in an Alicona IFG4 3D profilometer. The
measurements were taken at the periphery of the cutting
edge, where the cutting speed reaches its maximum value
as can be seen in Fig. 1 (a-e). No standard has been found
for the measurement of tool wear in drilling processes so the
measurements have been based on ISO 8688:1989 (tool-life
testing in milling) and ISO 3685:1993 (Tool life testing with
single-point turning tools) standards.

Table 1 shows the cutting conditions, tool geometry and
tool identification. The main modified parameter was the

(a) R204.6D

(b) Fresh (c) Vb = 0.1mm (d) Vb = 0.2mm

(e) BH04.5D

(f) Fresh (g) Vb = 0.1mm (h) Vb = 0.2mm

Fig. 1 Drill bit geometries a-e) General geometry b-c-d-f-g-h) Considered tool wears: fresh, Vb=0.1 and Vb=0.2 with their
cutting edge profile at measuring point
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Table 1 Cutting conditions, cutting edge geometry and number of holes related to drill number

Drill identification Cutting edge geometry Cutting conditionsVb(mm) β (◦) r(µm)

Drill n◦ Drill ID Vb σ2 ·10−4 β σ2 r σ2 V c(m ·min−1) fn(mm · rev−1) L(mm) �(mm) N◦ of holes
1 R204.6D 1 0 0 0 54.9 0.24 15 2 100 0.15 16 8 5
2 R204.6D 2 0 0 0 53.3 0.6 15 2 100 0.15 16 8 10
3 R204.6D 1 01 0.08 2.2 66.7 12.5 5.5 0.5 100 0.15 16 8 5
4 R204.6D 2 01 0.08 3.1 61.1 2.6 4 0 100 0.15 16 8 5
5 R204.6D 1 02 0.15 5.8 63.8 0.72 3.5 0.5 100 0.15 16 8 5
6 R204.6D 2 02 0.17 26.1 62.7 11.5 11 0 100 0.15 16 8 5
7 BH04.5D 1 0 0 0 79.6 0.32 6 2 40 0.07 5 8 5
8 BH04.5D 2 0 0 0 79.6 0.12 7.5 0.5 40 0.07 5 8 10
9 BH04.5D 1 01 0.14 0.5 91.5 0 7.5 4.5 40 0.07 5 8 5
10 BH04.5D 2 01 0.1 0 92.1 0.02 10.5 4.5 40 0.07 5 8 5
11 BH04.5D 3 01 0.12 2 91.5 0.08 9 2 40 0.07 5 8 5
12 BH04.5D 4 01 0.12 0 90.6 0.08 11 0 40 0.07 5 8 5
13 BH04.5D 1 02 0.28 0 90.2 0.02 11 18 40 0.07 5 8 5
14 BH04.5D 2 02 0.24 0.5 90.2 0.125 11.5 4.5 40 0.07 5 8 5
15 BH04.5D 3 02 0.2 0 90.5 0.125 8 0 40 0.07 5 8 5
16 BH04.5D 4 02 0.28 0.5 89.7 0.4 10.5 0.5 40 0.07 5 8 5
Total 90 holes

flank wear, which in this case is considered an input para-
meter to the cutting operation. Due to the lack of precision
in the preparation of the tools, a unique value was assigned
to represent the tool wear. Each of the tools was assigned an
approximation of the wear value closest to those considered
in this work (0, 0.1, 0.2 mm). The cutting speed, feed rate
and hole depth were the same for each type of drill bit. A
total of 90 holes was made.

To obtain a wide range of data from the drilling pro-
cess, different sensors were installed in addition to the meas-
urements of the signals provided by the CNC machining
centre. Thus, a dynamometer, acoustic emission sensor, ac-
celerometer and microphone were mounted on the setup.
Fig. 2 shows the location of the installed sensors and the ac-
quisition system used during the experiments. The internal
signals were acquired from the CNC with a sampling fre-
quency of 250Hz, that is the frequency of the CNC running
cycle. Furthermore, the dynamometer amplifier output sig-
nals were connected to the analogical input of the CNC. For

this reason, the signals of the dynamometer were also recor-
ded at 250Hz. The acoustic emission signal was acquired
at 1MHz and was mounted on the workpiece using a mag-
netic clamp. Finally, the vibration in the Z axis direction and
sound pressure were recorded at 50kHz. In [30] it can be
observed the different relationships between the signals ac-
quired in the present work. The duration of the holes varies
depending on the length and the cutting conditions used to
perform the tests. Those holes made with curved edge tools
have lasted 1.6s while those made with straight edge tools
have lasted 2.6s.

Table 2 shows the recorded signals, specifying where the
signal was obtained, the type of the signal (Internal, external
or measured wear), the description, the units in which the
signal was measured and the sampling frequency. As can be
seen, a wide variety of signals have been collected. In total
there are 14 signals, of which 8 are internal signals, 5 are
external signals and the last one is the tool wear measured
directly before and after the tests.

Fig. 2 Experimental setup and signal acquisition system used for the experiments
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Table 2: Internal signals (I), external signals (E) and measured tool wear (W), and details about used sensors

N Signal ID Sensor type Type Description Units
Sampling
freq. (Hz) Range Sensitivity Weigth

1 TV50 CNC I Spindle motor mechanical power W 250 ± 2147483647 W × ×
2 TV51 CNC I Spindle motor electrical power W 250 ±100000 W × ×

3 TV2 CNC I Z axis motor torque N 250
±1000 % of the stall
torque of the motor × ×

4 V(X-Y-Z) CNC I Tool speed in three axes mm · s−1 250 × × ×
5 ACCEL(X-Y-Z) CNC I Tool acceleration in three axes mm · s−2 250 × × ×
6 JERK(X-Y-Z) CNC I Tool jerkin three axes mm · s−3 250 × × ×
7 n CNC I Feed rate rpm 250 × × ×
8 av CNC I Feed rate mm ·m−1 250 × × ×
9 Fz Kistler 9123 E Thrust force N 250 ± 20 ·103 N 0.5 mV/Ibf 3Kg
10 Mz Kistler 9123 E Torque N ·m 250 ±200 N ·m 0.5 mV/N cm 3Kg
11 SP G.R.A.S 40AE E Sound pressure Pascal 50 ·104 ± 2dB (freq. range) 50 mV/Pa 6.50 g
12 V z Brüel & Kjaer 4321 E Vibration in Z axis m · s−2 50 ·104 ± 500 g 10 pC/g 55 g
13 AE Kistler 8152C E Acoustic emissions V 106 ± 10 dB 48 dBref 1Vs/m 29 g
14 Vb Leica DMS1000 W (0, 0.1, 0.2) measured Vb mm × × × ×

The concept of power is same in the context of mechan-
ical as well as electrical engineering applications. The mech-
anical power (TV50) is measured by the rate at which work
is done. On the other hand, electrical power (TV51) is meas-
ured by the rate at which electrical energy is transformed.
The concept differs in electrical and mechanical engineering
because the expression of the work done or energy conver-
sion is different in the two disciplines. In theory, electrical
power should be transferred completely to mechanics. In
practice, taking into account the efficiency of the machine,
there will be power losses because of frictional factors.

3.2 Sensitivity analysis: machine learning approach

The analysis of the predictive capacity of the statistical fea-
tures extracted from the signals was carried out using ma-
chine learning techniques. To that end, the following statist-
ical features were calculated for each signal in time domain:
mean, rms, standard deviation, maximum, minimum, kur-
tosis, skewness, variance and coefficient of variation. These
statistical features explain the shape and distribution of the
signal, so automatic learning is applied to them.

First of all, the data which constituted the dataset was
selected. The rows of the dataset are called instances while
the columns are attributes. Table 3 shows a generalized data-
set of any of the acquired signals. In addition to the calcu-
lated statistical features some process parameters were ad-
ded to the datasets: cutting speed (Vc), feed per revolution
( fn), drilled depth (L), the cutting-edge angle (β ) and the
cutting edge radius (r). All these attributes were used to pre-
dict the class, which is the tool wear (Vb) measured before
the experiments. V c and fn variables were calculated acquir-
ing av and n signals, which are penetration rate and spindle
speed respectively, obtained from the drilling process. The
mean of the signals was used to calculate Vc and fn.

In order to evaluate the precision of each of the different
acquired signals, separately, one different model has been
trained for each one of the collected signals. Therefore, a

Table 3 Generalized example of a signal dataset. Consti-
tuted by statistical features extracted from the signal, pro-
cess input parameters, and the class

Statistical features Process parameters C

mean rms std. desv. max. min. kurt skew var coef. var Vc fn L β r Vb

Hole1: 1st instance
Hole2: 2nd instance

...
HoleN: Nth instance

dataset is related to only one signal. In total eleven data-
sets were created for each type of drill, one for each of the
acquired signals. Among them, the ones with name TV50,
TV51, TV2, Mz, Fz, SP and V Z were created with 14 at-
tributes and the class. In contrast V(X-Y-Z), ACCEL(X-Y-
Z) and JERK(X-Y-Z) were built with 32 attributes and the
class. This is due to the fact that signals composed of more
than one component were put together in a dataset. The R204.6D
drill type datasets had 35 instances while the BH04.5D type
drill datasets had 55, having a total of 90 instances, one for
each of the holes made.

In Fig. 3 can be seen different signals acquired depend-
ing on the wear of the tool used. The first row shows the
Z axis motor torque (TV2) and the thrust force (Fz) for the
different Vb levels considered in this work. The second row
shows the mechanical power (TV50) of the head and the
cutting torque (Mz). The graphs show signals for 3 different
holes made with different flank wear. Specifically, the holes
shown belong to the 1st hole of tools #7, #9 and #13. In order
to create the dataset mentioned above, the parts belonging to
the approach of the head to the work-piece material and the
spindle retraction have been eliminated. The signal has been
taken into account from the beginning of tool penetration up
to the machined length.

Using these datasets, machine learning algorithms were
used within a 10 folds cross validation process. Due to their
differences in approximation at the time of generating the
models, J48 [22, 31], LMT (Logistic Model tree) [24], IBk
[22, 31] and NaiveBayes available in the Weka platform
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Fig. 3 Signals for different levels of Vb, TV2 and Fz, TV50 and Mz of BH04.5D type drill (1st hole of Drill n◦ 7, 9 and 13,
Table 1).

were tested. This process consists of performing 10 itera-
tions where in each iteration the data is partitioned in 10 sub-
sets. Then, the analysis (also called training) is performed in
nine of these subsets, while the validation or testing uses the
remaining subset. It is repeated 10 times rotating the val-
idation subset until every instance has been validated once.
Same validation process was applied to all datasets.

Further statistical significance of the differences in ac-
curacy of the results of these algorithms was also carried out
at three level of difficulty. From the simplest classification
to the more complex one, the three difficulty levels are lis-
ted below:

V1: In the first version only the holes made with new drill
bits (Vb = 0) and those with the maximum flank wear
(Vb = 0.2mm) were considered. But, still the classifica-
tion was in binary mode (false if the hole was made with
a new drill bit, true if the hole was made with a worn
drill bit)

V2: Apart from holes made with new drill bits (Vb = 0)
and those with the maximum flank wear (Vb = 0.2mm),
instances corresponding to holes made with Vb = 0.1mm
drill bit were added. In this case, the classification was
also carried out in binary mode (false if the hole was
made with a new drill bit, true if the hole was made with
a worn drill bit).

V3: All flank wear levels were considered, Vb = 0mm, Vb =

0.1mm and Vb = 0.2mm in a multiclass classification pro-
cess.

After the cross-validation process had been applied, a T-
test was performed. The sensitivity analysis was performed
using the WEKA software experimenter. For the paired T-
test, the first signal is the dominant signal, while all other
signals are compared against the dominant signal. There-
fore, the most accurate signal was chosen as the dominant

one. The objective of this test is to obtain the statistical sig-
nificance of the signals analysed in this work with respect to
the most accurate signal to predict tool wear.

3.3 Testing with different drill bits

To test the ability of one model created from one drill geo-
metry to predict the tool wear of the other drill geometry,
the models created with the most sensitive signals in drill
R204.6D were used to test the wear on instances of both
drills.

Fig. 4 shows a picture explaining the process. Firstly,
statistical characteristics of selected signals and process para-
meters (Vc, fn, L, β ) along with Vb for R204.6D were used
to train 1 , and then the model was tested to predict Vb for
both 2 .

Fig. 4 Model training and testing using different geomet-
ries of drill bits

Further feature extraction processes made us distinguish
between four different strategies explained below:

S1: Calculates the statistical characteristics of the entire
signal for each hole. The signal has been considered from
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the beginning of the hole to the end of the hole, omitting
any part that does not belong to the drilling process.

S2: Calculates the statistical characteristics for each 1mm
depth of cut, segmenting the signal for one hole in as
many segments as mm it has. As both tools are the same
diameter, using this approach, statistical characteristics
correspond to the same volume of material removed. For
different cutting conditions, the 1mm window was cal-
culated using equation equation 1. As a consequence, the
number of instances available for the same hole could
increase.

W1mm =
fs ·60

av
(1)

Where W1mm is the 1mm window length (Samples·mm−1),
av is the feed rate (mm ·min−1) and fs is the sampling
frequency (Samples · seg−1).

S3: The predictions were made using the predictions made
for each segment of the hole in a voting scheme. If the
majority of the segments predicted one specific value for
Vb, this will be the final decision for the predicted wear
in this hole.

The process parameter changed during the experiments
were: the type of drill and cutting conditions. None refer-
ence of the type of drill was included in the datasets. Re-
garding cutting conditions, the statistical features were ex-
tracted for 1 mm hole length, making them independent of
the cutting speed for strategies S2 and S3.

4 Results and discussion

This section shows the results of the sensitivity analysis,
comparing the ability of the different signals to predict the
tool wear. It also shows the results of training a model with
signals from one type of drill bit and predicting the wear of
another type of drill bit.

4.1 Sensitivity of the signals to tool wear

As already mentioned, the sensitivity analysis was carried
out based on a two-tailed paired T-test using 10-fold-cross-
validation 10 times. In the three versions proposed(V1, V2,
V3) and for both types of tools used in this work the most
sensitive signals seem to be the thrust force (Fz) and the Z
axis torque (TV 2).

Table 4 shows the accuracy of each signal with respect
to the algorithm used for the type BH04.5D drill bit. To per-
form this test TV 2 signal was chosen as the most accurate
signal to predict tool wear. Therefore, T paired test is applied
against the TV 2 signal. In the first version (V1), only new
tools and tools with flank wear were classified. In all signals

at least one or more algorithms fulfil the null hypothesis. In
the second version (V2), although the classification is done
in binary form, the degree of difficulty is increased, so the
number of signals that fulfil the null hypothesis is consider-
ably reduced. In the last version (V3), the only signal which
fulfils the null hypothesis respect to TV 2 that the difference
of the means for the accuracy of the paired data is 0, is Fz.
With regard to the other signals, none of them are statistic-
ally relevant. Therefore, they are not considered as signals
with statistical features capable of predicting tool wear in
the time domain better than TV 2 or Fz do.

Table 4 Statistical significance of signals in a two tailed
paired T-test for accuracy in predicting BH04.5D drill bit
wear for three proposed versions. In white, the signals with
the same mean in accuracy as TV 2. In grey, the signals with
different mean in accuracy

Internal External

T
V

2

T
V

50

T
V

51 V

A
C

C
E

L

JE
R

K

Fz M
z

A
E

So
un

d

V
ib

J48 97 97 96 85 88 91 97 90 86 96 86
LMT 99 91 91 84 84 87 100 96 82 96 84
IBK 100 94 91 85 86 85 100 99 89 97 89V1

NB 100 94 93 91 84 94 100 95 89 95 82

J48 98 77 66 81 82 95 97 89 86 98 89
LMT 98 69 72 85 80 89 100 87 82 95 86
IBK 100 71 70 84 80 86 100 96 90 90 88V2

NB 100 82 75 77 81 90 100 81 83 96 87

J48 94 68 55 67 61 78 91 77 70 66 72
LMT 94 64 69 75 72 80 94 80 73 70 57
IBK 96 59 63 72 74 72 98 86 78 63 68V3

NB 94 77 63 79 72 81 98 75 63 69 53

Regarding the prediction of the wear for the R204.6D
type drill bit, Table 5 shows the corresponding results. The
signal chosen as most accurate was Fz and the paired-T test
wast applied against it. As in the previous case, the highest
number of signals that accept the null hypothesis are found
in the first version (V1) proposed. However, the same num-
ber of successes are not achieved as in the previous case.
This may be due to differences in tool geometry. In the second
version (V2), as expected, the number of successes is signi-
ficantly reduced. In the last one results indicate that the TV 2
signal is the one that makes most of the algorithms accept
the null hypothesis.

Basically, the results match for both tool geometries.
Given the two tool configurations, it can be seen from the
results that the straight-edged tool (BH04.5D) has better res-
ults for some of the signals. This may be due to geometrical
differences between the two tools or to the preparation prior
to testing, as the BH04.5D tools were sharpened by the tool
manufacturer leaving more uniform wear along the tool’s
flank.

The results, as expected, showed that the Fz and TV 2
signals were the most sensitive signal at the time of predict-
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Table 5 Statistical significance of signals in a two tailed
paired T-test for accuracy in predicting R204.6D drill bit
wear for three proposed versions. In white, the signals with
the same mean in accuracy as Fz. In gray, the signals with
different mean in accuracy

Internal External

T
V

2

T
V

50

T
V

51 V

A
C

C
E

L

JE
R

K

Fz M
z

A
E

So
un

d

V
ib

J48 96 79 91 60 65 74 99 83 71 54 69
LMT 99 94 91 64 70 72 100 89 72 72 64
IBK 96 88 84 73 65 70 100 85 49 73 61V1

NB 96 91 91 69 61 57 96 86 66 65 65

J48 93 72 73 68 71 71 100 70 58 52 75
LMT 88 95 87 69 69 73 100 83 53 63 66
IBK 79 78 76 75 70 71 100 73 58 53 69V2

NB 75 77 77 70 69 71 97 72 53 54 68

J48 85 56 63 55 59 59 91 63 54 46 65
LMT 84 90 83 65 60 58 92 74 63 48 67
IBK 74 69 59 73 56 55 95 63 57 52 67V3

NB 87 75 72 74 63 55 91 70 66 38 69

ing the tool wear. Further analysis in the frequency domain
could add feasible statistical characteristics, improving ac-
curacy and robustness.

Sensors are fixed at all times, replicability of measure-
ments is a difficult task. The location of the hole changes
constantly, changing the source of the signal to be meas-
ured, so measurements are likely to vary as the hole changes
location. In this case, the acoustic emissions sensor, the vi-
bration sensor and the sound pressure sensor are affected by
this phenomenon. A frequency-domain analysis would help
to obtain the frequency bands that are least affected by the
change of location of the hole and those that best correspond
to the phenomena to be detected. This can also lead to more
favourable results in all these signals.

4.2 Model testing for different tool geometries

To check the impact of the tool geometry in the models
used for tool wear detection, an algorithm was trained us-
ing R204.6D drill bits and then, tested with R204.6D and
BH04.5D tool signals, using for that TV 2 and Fz, the most
sensitive signals for tool wear detection.

Fig. 5 shows the proportion of correct and incorrect pre-
dictions made for each of the proposed strategies and con-
sidered algorithms. The TV 2 signal shows a good perform-
ance in terms of the first strategy (S1). However, despite the
percentage of correct results obtained, other classification
strategies have been carried out with the aim of improving
the results obtained. The second strategy (S2) involves the
segmentation of signals and therefore contains a larger num-
ber of instances for both the training and testing phases, the
IBk algorithm has optimal performance when training with
a larger number of instances. In the last strategy (S3), a vot-
ing system was added to the previous classification strategy.

Comparing this strategy with the first one, it can be seen how
it significantly improves the behaviour of all the algorithms.
Thus, the segmentation of signals together with the voting
system presents a better behaviour than using the complete
signal.

Observing Fig. 5, the Fz signal shows a worse behaviour
regarding the first strategy (S1). This could be due to the as-
sembly and disassembly of the rotational dynamometer dur-
ing the execution of the tests, the measurements made could
vary in case of not having exactly the same assembly. The
signal TV2 is acquired directly from the machine itself so
the acquisition and this signal is always made in the same
conditions. As for the second strategy (S2), the Fz signal
appears to have a favourable effect on the number of cor-
rectly classified instances. The segmentation of the signal
into independent instances seems to have a positive effect
on the precision of the algorithms. It does not seem to have
the same effect on the TV2 signal with which in this case the
proportion of correctly classifieds decreases with respect to
the first strategy (S1). In the last strategy (S3), predictions
are made in terms of hole made, that is, the same as in the
first strategy (S1). For both signals, the amount of correctly
classified increases obtaining a considerable improvement
in all the algorithms considered.

A confusion matrix shows the performance of a classi-
fication model, columns represent current values of a target
(Measured Vb) and, in rows, the values predicted (Predicted
Vb) by a model. the values in the cells represent the number
of instances for which the Measured Vb has a certain Pre-
dicted Vb. Any value out of the diagonal of the confusion
matrix correspond to the same number of wrongly classified
instances. Precision is the fraction of all relevant instances
divided among the obtained instances. The recall is the frac-
tion of relevant instances obtained over the total number of
relevant instances. The column on the far right of the plot
shows the recall for each predicted class, while the row at
the bottom of the plot shows the precision for each true class.
The cell in the bottom right of the plot shows the overall ac-
curacy.

In S2, for both signals, an optimal result is achieved
using the IBk algorithm. Therefore, this algorithm benefits
from the number of instances available for the training phase.
Fig. 6 shows the confusion matrices for the predictions made
using the IBk algorithm for the S2 and S3 strategies with
the TV2 and Fz signals. Making use of S2 (Fig. 6 (a, c)) a
good percentage of correctly classified instances is obtained,
90.4% for TV2 and 92.7% for Fz. For both signals in S2
the worst instances at the time of being classified are the
worn tools to Vb=0.1 mm. This is because there are overlaps
between the proposed labels for wear classification between
the different statistical features extracted from the signals.
This supposes a challenge at the time of assigning the labels



10 Aitor Duo1,2 et al.
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(a) TV2 signal
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50%

100%
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79% 87% 84% 77%

21% 13% 16% 23%

J48 LMT IBK NB
0%

50%

100%

(b) FZ signal

Fig. 5 Performance of all the strategies and algorithms tested

based on the measurements made in the Leica DMS1000
macroscope and Alicona profilometer.

Observing the precision and recall in Fig. 6 (a, b). In
general, the precision increases from strategy S2 to strategy
S3. However, the recall is affected and decreases. As a result
of increasing the precision of the model, the recall is affected
and decreases. For Vb = 0 mm in S3, 100% of the cases
are correctly classified. Nevertheless, there are several false
positives that are classified as new tools. On the other hand,
in Fig. 6 (c, d), in the case of the Fz signal, the precision and
recall decrease from S2 to S3. However, in the case of S2 it
can be seen that the results are closer to the class to which
they should belong.

Fig. 7 compares the performance of the J48 algorithm
using the TV2 for strategies 1 and 3. The improvement is re-
markable. The final classification is the same in both strategies.
On the one hand the statistical characteristics extracted from
the complete signal (S1) are taken into account. On the other
hand, the classification is made on the basis of the segments
obtained (S3). So the difference is in the use that is made of
the data obtained from the process. The 5 holes made with
0.1mm wear tools classified as new tools in S3 belong to a
single tool, the tool labelled with ID: BH04.5D 2 01 . It is
the tool with the lowest wear measured directly on the tool,
making it difficult to distinguish them from the new ones. In
general, it can be observed that precision and recall increase
from S1 to S3. The number of false positives is reduced,
observing a considerable improvement when performing a
classification based on signal segments. This way of hand-
ling the data allows to increase the probability of success
of a certain model, since in addition to the current output it
takes into account previous system outputs.
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Fig. 6 Confusion matrices applying strategies 2 and 3 for
the IBK algorithm and the TV 2 and Fz signals

5 Conclusions

In this work a comparative study of the sensibility of the
most commonly used signals for tool wear detection in drilling
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Fig. 7 Confusion matrix: J48 algorithm for TV 2 signal

processes has been carried out. Tests were performed with
two different types of drill bits under a complete setup in
which multiple signals were acquired for an evaluation of
their sensitivity to tool wear in drilling processes. The meth-
odology used has made it possible to identify the most sens-
itive signals in the time domain, with the Z-axis motor torque
and thrust force being the most sensitive to tool wear. In ad-
dition, based on the training phase of the algorithms with the
TV 2 signal of R204.6D type drill bits, tool wear of BH04.5D
type drills has been predicted.

• The methodology used has made it possible to identify
the variables of interest for this study. This methodology
has helped to identify the extent to which the different
signals collected are capable of detecting tool wear.

• The most sensitive signals are TV 2 and Fz. Once the
sensitivity analysis has been carried out, it has been pos-
sible to see that the most affected signals by tool wear
are the thrust force and the torque of the Z axis motor.
With the above mentioned signals, quite precise results
have been achieved by predicting tool wear with both
types of drill bits.

• The TV 2 signal shows great predictability in terms of
other tools. The model created with the TV 2 signal from
R204.6D drill bits shows great accuracy in predicting
tool wear for BH04.5D drill bits. The Fz signal does not
perform as well as TV2 in this respect.

• The strategy of segmenting the signals with a 1 mm hole
depth window means an increase in the number of in-
stances available for the algorithm training phase. In both
cases (TV 2 and Fz) a better result is achieved with the
added voting system than in the first pursued strategy.

• The signals have been analysed in the time domain, they
need to be analysed further to obtain accurate indicators
of tool wear. It is necessary to apply different treatments
to the signals to obtain better indicators for the detection
of tool wear.

• With this work it has been possible to identify the TV 2
signal as the most predictive internal signal for a given

material, two different types of tool geometry and two
different cutting conditions.

• In case of wanting to develop a real wear detection sys-
tem, it would be based on signals selected from the res-
ults of this study, but taking into account the convenience
of the use of each sensor in each specific case. In addi-
tion, models that consider more than one signal at a time
to improve accuracy and reduce false positives or true
negatives should participate in the final system.
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