3

The MANTIS Reference Architecture

Csaba Hegediis!, Patricia Dominguez Arroyo?, Giovanni Di Orio®,

José Luis Flores?, Karmele Intxausti4, Erkki Jantunen®,

Félix Larrinaga®, Pedro Malé®, Istvan Moldovan’,

and Soren Schneickert®

LAITIA International Inc., Hungary

2University of Groningen, The Netherlands

3FCT-UNL, UNINOVA-CTS, Caparica, Portugal
4IK4-Ikerlan, Arrasate-Mondragén, Spain

SVTT Technical Research Centre of Finland Ltd, Finland
6Mondragon Unibertsitatea, Arrasate-Mondragén, Spain
"Budapest University of Technology and Economics, Hungary
8Fraunhofer IESE, Germany

The purpose of this chapter is to describe the MANTIS reference
architecture. The generic focus here is on an architecture that enables
service-based business models and improved asset availability at lower costs
through continuous process and equipment monitoring, aided by big data
analysis. This architecture takes into account needs of various industries
in the forefront of service-based business and operations models. It also
takes into account less mature industrial domains, where improvements
in maintenance can be only achieved gradually and consistently. The
higher level requirements for the whole project are described by [The
MANTIS Consortium, 2018] and further tuned for the architecture
in [Jantunen et al., 2016].

37

38 The MANTIS Reference Architecture

3.1 Introduction

The MANTIS proactive service maintenance platform and its associated
architecture draws inspiration from the CPS approach. Physical systems
(e.g., industrial machines, vehicles, renewable energy assets) operate in an
environment, where everything is continuously monitored by a broad and
diverse range of intelligent sensors.

This continuous, high resolution monitoring eventually results in massive
amounts of data. Systems are characterized, for example, by their usage
history, operational conditions, location, movements and other physical
properties. These systems and machines form larger collaborative systems-
of-systems over heterogeneous networks (e.g., vehicle fleets, photo-voltaic or
windmill parks), and hence should be connected via robust communication
mechanisms able to operate in challenging (industrial) environments.
Here, sophisticated, distributed sensing and decision making functions are
performed at different levels in a collaborative way ranging from:

e the local nodes (that pre-process raw sensor data and extract
relevant information before transmitting it, thereby reducing bandwidth
requirements of communication);

e over intermediate nodes (that offer asset-specific analytics to locally
optimize performance and maintenance);

e into cloud-based platforms (that integrate information from ERP, CRM
and CMMS systems and execute distributed processing and analytic
algorithms for supporting global decision making processes).

For the optimal maintenance of assets, different systems, and stakeholders
will have to share information, resources, and responsibilities. In other words,
collaboration is required. Such a Collaborative Maintenance Ecosystem
will have to be able to reduce the adverse impacts of maintenance on
productivity and costs, increase the availability of assets, reduce time required
for maintenance tasks, improve the quality of the maintenance service and
products, improve labor working conditions, and maintenance performance,
increase sustainability by preventing material loss (due to out-of-tolerance
production), and help optimizing spare part management.

The overall concept of MANTIS aims to provide a proactive maintenance
service platform architecture that allows the precise forecasting of future
performance, the prediction and prevention of imminent failures, and
should also be able to schedule proactive maintenance tasks. This proactive
maintenance service platform will consist of distributed processing chains

3.1 Introduction 39

that can efficiently transform raw data into knowledge while minimizing the
need for transfer bandwidth, as already mentioned in Chapter 1.

Reference architectures provide a template, often based on the
generalization of a set of solutions. This is also the case for MANTIS. These
solutions may have been generalized and structured for the depiction of one
or more architecture structures based on the harvesting of a set of patterns
that have been observed in a number of successful implementations. Further,
it shows how to compose these parts together into a solution. Reference
architectures can be instantiated for a particular domain or for specific
projects.

The role of the reference architecture in MANTIS is to provide guidance
on how to instantiate an architecture for a particular MANTIS domain
or specific MANTIS task, and to ensure consistency and applicability of
technologies, interoperability mechanisms, data formats and models, and data
analysis tools to be used in the different MANTIS use cases.

Based on requirements and use case descriptions, the reference service
platform architecture and overall design needs to address a number of aspects.
Important aspects addressed by this chapter are:

o Interface, protocol, and functional interoperability ensuring that
several cooperating vendors can effectively assemble the complete
MANTIS service platform. Includes the need to identify or develop
standards for data semantic representation and exploitation;

e Data validation ensuring that data analyses are made on data that give
clean, correct and useful data information about the system;

¢ Distributed data, and information processing, and decision-making
ensuring consistent behavior and avoid contradicting actions, e.g.,
between local and distributed data analysis and decision making;

e Information validation ensuring that created information still is
relevant for the system analyzed;

¢ System and service level security ensuring that the system incorporates
means to hinder misconfiguration and can be protected from wire-
tapping and various attacks;

e System engineering and re-usability of defined and existing services;

e System verification and validation of the service platform architecture
and overall design, covering both functional and non-functional
properties.

40 The MANTIS Reference Architecture

3.1.1 MANTIS Platform Architecture Overview

The development of a specific implementation of the reference architecture
can make use of any of the generalized artifacts, described in this Chapter.
All of them help in various ways to avoid having to create a whole reference
architecture from scratch, and help to leverage the knowledge and experience
that went into the formation and definition of the generalized models,
architectures, and patterns.

Adopting a reference architecture within an organization accelerates
delivery through the re-use of an effective solution and provides a basis for
governance to ensure the consistency and applicability of technology use
within an organization. In the field of software architecture, empirical studies
have shown the following common benefits and drawbacks from adopting
a software reference architecture within organizations [Martinez-Fernandez
et al., 2015]:

e improvement of the interoperability of the software systems by
establishing a standard solution and common mechanisms for
information exchange;

e reduction of the development costs of software projects through the
reuse of common assets;

e improvement of the communication inside the organization because
stakeholders share the same architectural mind-set;

¢ influencing the learning curve of developers due to the need of learning
its features.

The purpose of the MANTIS ecosystem is to make proactive maintenance
possible in a scalable, multi-leveled way. We are targeting CBM: the
processes are defined by the ISO 13374 standard [ISO, 2012].

In order to enable maintenance optimization and new business models
within MANTIS, appropriate utility services and modules are elaborated and
implemented. Within these, data mining and analytic services are created,
which are mainly related to these functions [Jantunen et al., 2016]:

e RUL of components: continuous tracking of telemetry (usage) data and
estimating how much time the given device or component has left before
needs to be replaced;

e FP: the system shall predict based on diagnostic data an inbound failure
mode (different to wear-out to be detected by RUL);

e RCA: when an unpredicted, complex failure occurs, the system shall
deduct the actual module, the rout caused of the issue;

3.2 The MANTIS Reference Architecture 41

e MSO: provide a decision making support on better maintenance
planning.

To facilitate the requirements and business goals, the MANTIS ARM consists
of five elements from high-level design to implementation of the architecture
in various use cases:

e Reference Model: a reference model is an abstract framework for
understanding significant relationships among the entities of some
environment;

e Reference Architecture: provide a template solution for the architecture
(aka. architectural blueprint) for a particular domain;

e Feature model: Introduces key concepts to characterize common and
varying aspects in the architectures to be derived from the reference
architecture;

e Guidelines: discusses how the provided models, views and perspectives
are to be used;

e Reference applications: show the diversity of the included solution
variants, and thus illustrate architecture signification features and related
design decisions.

The approach for architecting MANTIS use cases follows the principle
of architecting for concrete stakeholder concerns (based on Architecture
Drivers). These stakeholder concerns will drive the eventual architecture
design, which is based in the approach follow by the SPES consortium [Pohl
et al., 2012]. This approach suggests to start by delineating system and its
context, then to continue with the functional decomposition of the system.
The next step is the software realization. The final steps consider the hardware
realization of functions and the deployment of software entities, as depicted
in Figure 3.1.

3.2 The MANTIS Reference Architecture

As discussed in Chapter 2, many of the requirement categories are related
to the operating environment of the MANTIS architecture: communication
restrictions and expectations, design principles, the need for web clients,
integration of legacy human-machine interfaces, and so on. These have not
been addressed by MANTIS on an implementation level (since being a
reference architecture model), although, when designing an installation, we
have to keep in mind that the final, integrated systems has to cover these
as well. These categories included (i) data handling, (ii) event handling,
(iii) guarantee-related, and (iv) security issues.

42 The MANTIS Reference Architecture

/ Architecture Design \

Architecture Drivers

[Business Driver 1 [Quality] drive
Requirements

[FunFtlonaI J [Constraints J
Requirements

il

Data Model
Technologies

[
|
¢

Figure 3.1 Mantis architecture construction approach.

The most important implementation-related requirements are aimed
towards scalability and fault tolerance in the data collection and processing.
The inputs of the platform are coming from so-called edge devices,
and the output is utilized by various enterprise systems and maintenance
operations personnel. It is worth noting that the scope of MANTIS platform
architecture does not include or target the actual life-cycle management
of the devices. To do that, MANTIS relies on the already existing
corporate systems, and resources. However, these interactions with external
systems is planned and designed into the framework via standardized
secure communications between platform modules using the interoperability
guidelines set [Di Orio et al., 2018].

3.2.1 Related Work and Technologies

Every novel result is based on previous work, which acts as background for
the novel advances. In fact, background information lays the foundations
for the MANTIS architecture, which is built over novel and existing
technologies that are composed to allow for the MANTIS maintenance
strategies. Moreover, other related work acts as reference and comparison for
the MANTIS architecture. This section describes this plethora of information
to support the description and discussion on the architecture.

3.2 The MANTIS Reference Architecture 43

3.2.1.1 Reference architecture for the industrial internet
of things

CPSs are nowadays built together within some form of IoT architectures. A
“usual” IoT application employs various things collecting enormous amounts
of data from a number of places and sending them to an I7 cloud for a specific
purpose. A survey of 39 IoT platforms [Mineraud et al., 2016] concluded
in a generic architecture and common characteristics of IoT platforms.
Figure 3.2 depicts a generalized commercial IoT platform in its fullest form,
and two possibilities are shown. The various IoT modules and services can
be deployed on local premises — or within a global IT cloud, depending on
the restrictions made by the use case.

The generic modules in such a platform are the following [Mineraud et al.,
2016]:

e Sensor or actuator nodes, i.e., “motes” or “things” that create and then
send in the data — or act based on the received data;

e Gateways that “hide” constrained devices that might be communica-
ting via non-IP based networking (“legacy”) and/or incapable of
implementing the platform interface on their own;

e A platform interface that receives the data from the devices and passes
it to other modules (gateway and data distributor);

e Data storage, often distributed, which is accessible by other modules of
the platform;

e Various service modules that can access the historical or even the current
inbound data streams and generate insights and various processing tasks
(i.e., “big data applications”);

Constrained &
passive devices

Sensors & actuators . l \
~

SaaS$ or PaaS GUI | Storage / & A
\
Services REST API \ /
] \ Gateway
Gat — b Users ‘ ‘
i ? e}”a\y Intemet Server GUI | Storage
L | @) \\ Services RESTAPI
Dbl | AN
/ \ ” Internet
Users -
Sensors & actuators
(a) Cloud-based platform (b) Local platform

Figure 3.2 A generalized [oT framework [Mineraud et al., 2016].

44 The MANTIS Reference Architecture

e Graphical interfaces for operators to manage the system and validate the
output (i.e., “Business Insights™).

The data gathering and processing viewpoint shown by Figure 3.3
corresponds to that of the IloT reference architecture proposed by the
IIC [Industrial Internet Consortium, 2017]. However, three additional
architecture patterns are proposed to better suite the targeted environments,
extending the general standalone IoT solutions. These include (i) a three-tier
architecture pattern; aided by (ii) gateway-mediated edge processing; and a
(iii) layered databus pattern.

This latter term is related to one of fundamental value added of the
IIoT approach: enhancing “legacy” production systems by “making them
smart” with additional, usually non-invasive components. This additional
device (i.e., gateway) shall utilize e.g., the management interfaces of the
machines, and represent the functionalities provided there using IP-based
interfaces. Nevertheless, this results in the physical machines being connected
to the network, their operations offered as “services” — hence creating
CPSs [Cengarle et al., 2013] out of them.

Therefore, we also have to create a logical space that implements a
common schema, while it also has to provide a “language” used in the
communications between endpoints (i.e., translation between various data
description ontologies into one understanding). Such a logical data bus design

Edge Tier Platform Tier Enterprise Tier
Proximity Network
:{ O \“,2(Edge Access Network Service Platform Service Network
s Gateway
Data Flow Data . Data Flow
j‘ | M » A N T Analytics i Domain Applications
=3
— Control Flow Control Flow
56 &] &
“ e N 1
Edge Operations
‘]l Gateway Rules & Controls

Device Management

Data Aggregation

Figure 3.3 The industrial internet of things reference architecture.

3.2 The MANTIS Reference Architecture 45

pattern hence supports communication between applications and devices:
semantics and translation are the basis for interoperability within MANTIS,
and in IIoT, in general.

Moreover, this architecture is therefore dissected into three Tiers. The
first one is the Edge Tier, where the sensors and actuators are located
(e.g., production floors). In here, we are tapping out information from
the communications within the (real-time) control loops between the
given CPSs (cf. ISA9S systems [International Electrotechnical Commission,
2003-2007]). This way, we are collecting mostly process telemetry, then
aggregating and preprocessing it locally. This is usually supported by an
application gateway that provides the connectivity: it bridges to a WAN
towards the platform level(s). It also acts as an endpoint for the WAN, while
isolating the local network of edge nodes (i.e., the involved local CPSs). This
architecture pattern allows for localizing operations and controls (i.e., edge
analytics and computing). Its main benefit, however, is that this way, we are
breaking down the complexity of IIoT systems, so that they may scale up both
in the numbers of managed assets as well as in networking.

The access network enables connectivity for data and control flows
between the edge and the platform tiers. It may be a corporate network, or
an overlay private network over the public Internet or a 4G/5G network.

The Platform Tier receives the streams of telemetry data from the Edge
tier. It is also executing the control commands coming from the Enterprise
Tier, and may forward some of these commands to the Edge Tier in a cloud-
to-device manner. It consolidates and analyzes the data flows from the Edge
Tier and other systems. It provides management functions for devices and
assets (e.g., Over The Air firmware updates for the application gateways).
It also offers non-domain specific services such as data query and analytics.
The functional blocks of the cloud platform are the same as in any generic
IoT platform.

Meanwhile, the Enterprise Tier receives the processed data flows (i.e.,
business insights) coming from the Edge devices towards Platform Tiers. It
might also issue control commands to the Platform and Edge Tiers. This tier
is the main beneficiary of the IIoT system. However, the utilization of a well-
built MANTIS platform is also not an easy task on the corporate side either.
The issues are presented and tackled in Chapter 8.

3.2.1.2 Data processing in Lambda
The primary purpose of any (DIoT systems is to create value added by
processing the collected data in a cloud platform. To do so, there are many

46 The MANTIS Reference Architecture

paradigms, software stacks (both open source and commercial), consultant
firms. However, in general, the data processing usually follows the same
logic. Within MANTIS, the Lambda architecture [Hausenblas and Bijnens,
2017] is considered, however, there are many, similar “competitors” of it as
well [Kappa, 2018].

According to the generalized Lambda architecture pattern [Hausenblas
and Bijnens, 2017] defined by industry experts, data can be processed either
as soon as it reaches the platform (stream processing), or later on, on demand
fetched from storage (batch processing). Figure 3.4 depicts the overview of a
generic analytic platform.

In here, the “speed layer” comprises of stream processing technologies,
that are processing inbound data real time. This is an event-driven
programming paradigm, where the processing functionality receives touples
periodically, and executes the same function over them (e.g., creating a
counter for a specific message type or classifying them using a well-taught
machine learning algorithm). The other type of processing is asynchronous
to the inbound data, and can be called on batched, already stored datasets.
These tasks are run once at a time and might take long to complete — such
as the training phase of a machine learning algorithm. An other major
responsibility of the batch layer is to maintain the (distributed) data storage,
aided by the serving (database) layer. These modules are naturally part of

batch layer serving layer

master dataset query

new data

\ 4 %

/ . L g
| {\
\ \
\
|
/ |
/ .

- —s

speed layer e g query

real-time view real-time view

\ y

Figure 3.4 The Lambda data processing architecture.

3.2 The MANTIS Reference Architecture 47

any IIoT application. Many commercial products and platforms support these
operations.

The batch layer has two major tasks: (a) managing historical data; and
(b) recomputing results such as machine learning models. Specifically, the
batch layer receives arriving data, combines it with historical data and
recomputes results by iterating over the entire combined data set. The batch
layer operates on the full data and thus allows the system to produce the most
accurate results. However, the results come at the cost of high latency due to
high computation time. The speed layer is used in order to provide results in
a low-latency, near real-time fashion. The speed layer receives the arriving
data and performs incremental updates to the batch layer results. Thanks
to the incremental algorithms implemented at the speed layer, computation
cost is significantly reduced. This is an event-driven programming paradigm,
where the processing functionality receives touples periodically, and executes
the same function over them (e.g., creating a counter for a specific
message type or classifying them using a well-taught machine learning
algorithm).

3.2.1.3 Maintenance based on MIMOSA

OSA-CBM has developed an system architecture for condition-based
maintenance, i.e., a way to enhance the modularization of different vendor
systems, while not locking customers into a single-source solution. The
MIMOSA has since the middle of the 1990’s hosted open conventions for
information exchange between plant and machinery information systems,
namely a way to enhance, amongst other things, the compatibility issue
between different vendor products [MIMOSA consortium, 2016].

The OSA-CBM and MIMOSA are two major standard organizations
and they claim that an accepted non-proprietary open system architectural
standard is important, since it would bring an improved ease of upgrading
system components, a broader supplier community, more rapid technology
development, and reduced prices [Lebold and Thurston, 2001].

One of MIMOSA’s most valuable contributions are the development of
a CRIS. It is a relational database model for different data types that need
to be processed in a CBM application. The system interfaces are defined
according to the database schema based on CRIS. The interfaces’ definitions
developed by MIMOSA are an open data exchange convention to use for
data sharing in today’s CBM systems. In addition, defined by MIMOSA Cris
is also MIMOSA’s OSA-EAI, which provides an open exchange standard,

48 The MANTIS Reference Architecture

for technology types, in key asset management areas, such as asset register
management, work management, diagnostic and prognostic assessment,
vibration and sound data, oil, fluid and gas data, thermographic data and
reliability information.

Besides supporting all the data needed for a CBM application it also
considers for instance the CMMS handling, to be precise work management
of a maintenance department. The structure of data in a relational database
is predefined by the layout of the tables and the fixed names and types
of the columns, which is the case of the MIMOSA CRIS database model.
In addition, during 2012 the OSA-EAI V3.2.3 released a complete UML
model and XML schema implementation called CCOM-ML for the CCOM,
in addition to continued support and updates for CRIS.

Within MANTIS, MIMOSA [MIMOSA consortium, 2016] is providing
the common understanding and data ontology between partners and
applications (Figure 3.5). It is presented as a defining standard format for the
data exchange, while it also provides the data meta-model structure together
with the definition of the ontologies of the data. In fact, one of the greatest
benefits in using MIMOSA is this definition of semantics and ontologies
so that parties developing their MANTIS solutions do not need to worry
about how different types of information need to get linked together. In
here, therefore, MIMOSA serves the role of the common data bus [Industrial
Internet Consortium, 2017], while remaining loosely coupled. MANTIS has
developed a full stack of message models extending the MIMOSA ontology

Registry Management/
Enterprise information

N
N\
@‘\'o

Diagnostics/
Prognostics

Figure 3.5 MIMOSA data model diagram [MIMOSA consortium, 2016].

3.2 The MANTIS Reference Architecture 49

that are designed to facilitate communications between edge and cloud, and
also between the various cloud modules.

Moreover, MANTIS follows the ISO-17359 standard in terms of
the scope of functionality as a specific, maintenance-related IIoT
implementation. According to this standard, a CBM system should be
composed of various functional blocks, which then corresponds well to a
general [oT system architecture with edge computing, as the implementations
of the MANTIS architecture. In Figure 3.6 can the three parts be visualized
against the OSA-CBM architecture.

3.2.2 Architecture Model and Components

As Figure 3.7 suggests, the architecture follows the IEC IIoT [Industrial
Internet Consortium, 2017] reference architecture model in general, in
the sense of using the edge computing paradigm in connection with the
gateway mediated pattern; and the MANTIS architecture is also planned for
multiple tier levels. However, certain features are added to support additional,
maintenance-related tasks, as well.

3.2.2.1 Edge tier

Within the MANTIS use cases, there are primarily two main types of edge
level devices: closed, fully fledged (i.e., production) sites and standalone
devices (e.g., vehicles or outdoor measurement points). These two cases
require completely different approaches, and completely different design in
the edge-cloud interface.

Advisory generation (AG)

Prognostics Assessment (PA) Decision support

Health Assessment (HA)

State Detection (SD) 7

Other 1CTs

L | Data processing

Data Manipulation (DM)

Data Acquisition (DA

il |

| | Data collection
Sensors

Figure 3.6 A three-part CBM architecture in the light of the OSA-CBM [Lebold and
Thurston, 2001].

50 The MANTIS Reference Architecture

Local clouds with MANTIS gateway
Central MANTIS

platform

L]

Edge HMI

.

Entity Cyber 'u'b
entity ¥

- Local

storage

Sha : I IoT-A CEP Events -
i Publish,
4+i My MANTIS g
Physical Edgeﬂ‘o Edge
Entity Cyber ﬂb gateway @ brokers
entity & M
i 10T-A CEP Events tailored for,
communication constraint
4= ¥ MANTIS
Cyberﬂ-
Entltv G
Orchestration Service Authorization
Smart sensor Constrained System Registry System
nodes sensor nodes
w A) B) o) bt s =
Standalone edge device types Arrowhead Core Framework External

systems

Figure 3.7 Overview of the MANTIS reference architecture.

e Standalone Devices

In this case, there can be standalone machines, CPSs, vehicular system
or other outdoors systems that are equipped with various sensors. Their
communication capability is mostly wireless (i.e., via mobile networks) and
therefore limited due to the radio interface capabilities. To these cases,
MANTIS proposes an alleviated implementation of the edge-cloud interface,
still relying on the MIMOSA ontology model. In these use cases, the
standalone edge devices implement some pre-processing and aggregation
algorithms, and only transmit an extract of the high frequency information
available locally in order to save traffic.

Meanwhile, it is also possible that besides the periodical uploads
from these devices, the platform level can still request additional, on
demand, temporary data streams from the devices. This might help with the
verification of a prediction provided by an analytic module. This measure is
also implemented to save bandwidth. However, this might be limited in some
use cases, since the nature of the edge device being a low power embedded
system operating on battery (e.g., a sensor mote), attached to a machine. It
is worth noting here from a development point of view, that these use cases
require extensive training and familiarization phases, where all available data
from all possible sources are collected. This phase is required in order to
develop the necessary local analytic models that allows to decide what pre-
processing is viable on-board (what information is necessary to transmit and
what is redundant).

3.2 The MANTIS Reference Architecture 51

Furthermore, in these cases, the standalone devices (motes) are also
expected to have intelligent functions on their own. These include intelligent
sensor management, self diagnostics, and resilience to the unreliable nature
of the communications. MANTIS does not propose limitations on these
matters, but provides guidelines based on the lessons learned in the sensor
developments of the project.

o Cyber-Physical Production Systems

In many of the cases, the Edge Tier includes complex CPSoS, based on legacy
production machines (“made smarter’) that are are connected through closed,
self-contained networks. The primary data source consists in these CPSs, by
means of their continuous (telemetry) output. Within MANTIS, building the
automation based on the CPS context is out of scope.

Here, the choice fell on the gateway-mediated edge connectivity design,
where a gateway is responsible for communications towards the platform
level. These systems are usually not constrained by processing or power
limitations. Rather the communications need to be efficient for different
purposes: to increase the scalability of the overall platform. There was
also the need to design various pre-processing and analytical modules
that have to be put locally for at least three reasons. Firstly, raw process
telemetry information is too much to send to any outside platform. Secondly,
companies are reluctant to share critical real-time information about their core
business, while also legal restrictions might apply [Donnelly, 2015]. Finally,
maintenance personnel is usually located on-site. In a sense, therefore, these
edge setups are complete on their own.

3.2.2.2 Platform tier
When realizing the Platform Tier, MANTIS initially employs five modules.
These are:

o the edge broker;

e multi-purpose (distributed) data storage and management;
e stream processors;

e batch processors;

e HMIL

The speed and batch layers are dedicated towards the three main
maintenance-related objectives. The development of these modules are
iterated over two phases: first an off-line, manual establishment of the
algorithms with expert and data analyst knowledge is carried out, and then
the developed solutions are deployed into the on-line system, taking the

52 The MANTIS Reference Architecture

specific use case dependent constraints into account. The modules in the
Platform Tier are generally intended to scale well: there can be multiple
modules of each type resulting in a large distributed system. In such
cases, a big data processing platform is needed for the implementation.
Possible implementations build on commercial solutions, but open source
implementations can also be applied. Within MANTIS, the following
platforms have been used, without being exhaustive:

e Microsoft Azure [Microsoft, 2017];

e Amazon AWS [Amazon, 2017];

e Apache ecosystem (Kafka [Apache Community, 2017], Storm [Apache
Community, 2017] and Spark [Apache, 2017]);

e Wapice IoT-Ticket [Wapice, 2018].

The Edge Broker is responsible for keeping the direct communication
with the edge level devices and gateways. It provides translation between
the data format used in the edge-cloud interface, and within the platform
level. Its primary purpose is to forward the inbound data towards the
various cloud modules. It also includes the addition of all the required
asset information to the upstream data to be MIMOSA compliant. Based
on the added information, all the processing and database nodes in the
platform can identify and process the inbound data. Moreover, since the
edge-cloud interface is not restricted to one implementation, the edge broker
usually implements multiple transport protocols. Therefore, edge devices can
communicate via publish-subscribe protocols [Curry, 2004] (such as MQTT)
or request-response type of protocols (such as RESTful HTTP). In a sense,
the edge broker is fulfilling the role of an enterprise service bus [IBM, 2011],
and here consists of three major components:

e Protocol facades (e.g., an MQTT broker or an HTTP server, to receive
the messages from the edge);

e Message parser and translator (from the edge-cloud interface to the data
distributor feed);

e Client to the data distributor module (to push the translated message into
the various platform modules).

Within MANTIS, the Edge Broker has been implemented in a multitude
of ways. One cornerstone of this module is that it might be use case
and edge device dependent. The MANTIS platform does not wish to
rule out legacy or COTS implementations for brown field use cases: the
cost of deployment for MANTIS is intentionally kept to the minimum.
Therefore, the edge broker is modular, and its main purpose is to translate

3.2 The MANTIS Reference Architecture 53

between the various ways of communication formats within the framework,
using the interoperability messaging schema of the framework. Moreover,
since bidirectional communication is expected for some use cases in the edge-
cloud interface, the edge broker is addressable by the cloud modules and can
send messages (i.e., commands) towards the edge devices, as well.

The Data Management system (or data distributor) is needed when a large
system is being implemented, to ensure scalability and robustness. In smaller
deployments, the edge broker can forward the inbound data to other modules
in the cloud, directly as well. Basically, this module is a message oriented
middleware on its own. Its purpose is to collect the inbound data stream
from the edge brokers, and build a data pipeline towards the other modules
in the platform. One popular solution for data distribution is the Apache
Kafka [Apache Community, 2017]. Section 3.3 further discusses the issues
and design decisions to be made regarding data management and collection
tasks necessary to build such IIoT big data systems as MANTIS.

The main data storage and everything connected to data descriptions
within MANTIS is based on MIMOSA. The reference implementation of
this domain ontology is provided in a Microsoft SQL database, deploying
the MIMOSA structure. MANTIS has developed a RESTful HTTP interface
for the database as well. This database is used for handling various types
of information: from raw sensory data to the scheduled maintenance events,
as discussed in section 3.2.1.3. This central database provides storage of the
historical data (per asset and measurement point) for the analytic modules.
The MANTIS reference HMI solutions also utilize it to fetch all information
required for the overview of the system.

It is worth noting, that fully fledged production edge systems (i.e.,
CPPSs) can also have their own local storage, local MIMOSA instance.
This enables easy operation and implementation: every level/tier utilizes its
own MIMOSA instance, and when further interaction is needed between
levels, it can happen via simple database synchronization, using the same
semantics. This is one of the great advantages brought by MIMOSA,
besides the implemented standard-compliant domain expertise (operational
management) and affiliated information ontologies.

The Stream Processing functionality is required for several maintenance
functions and features, that can be executed in real-time. Such functions
include the detection and triggering of different types of events, based on
simple rules such as thresholds. A typical example is when a measurement
exceeds a threshold indicating a failure condition, and further investigation is
needed to confirm the failure (hence fault prediction and root cause analysis).
Moreover, various KPIs for predictive maintenance are also computed

54 The MANTIS Reference Architecture

on-the-fly by the stream processor. Such KPIs include for example the RUL
of the main components.

The Batch processors are designated to run asynchronous tasks (such
as machine learning jobs) on big bulks of data. Such functions here
include training root-cause analysis, prognosis estimation on historical data
and possible recalibration of the applied machine learning models when
sufficient new information has been collected. These typically require further
information or historical data, fetched from the MIMOSA storage. These
processes might be triggered by the stream processors during runtime or
run periodically, and they perform complex tasks that are not needed to be
real-time. An example scenario here is the detection of a possible failure: a
value in the streaming data passing a threshold initiates a longer (i.e., batch)
analysis on the system logs, for example looking for an known failure pattern
beforehand.

3.2.2.3 Enterprise tier
The Enterprise Tier consists of the following elements:

e Analysis Applications provide result dashboards, as well as analysis
request HMI for the operators and other experts at the enterprise level;

e Service Management Applications enable configuration and tracking of
the services provided by the overall architecture in the given domain
with all of its applications;

e Service Execution Applications support service deployment and
execution;

e Management Applications enable configuration and tracking of the
status for the platform, interfacing the Cloud- and Edge management
functions at the Platform Tier;

e Edge IDE supports the configuration of the Edge Tier equipment and
network setup through an Integrated Development Environment.

The Enterprise tier provides the usual features of HMI applications such
as presentation and processing of information, and moreover it adds
mechanisms for explanation and adaptability based on user and application
models. Therefore, these are knowledge-based systems for decision support
as well. While MANTIS strongly emphasizes autonomy, self-testing, and
self-adaptation, the human role remains one of the important factors in
the system operation. It is however twofold: controlling, which comprises
continuous and discrete tasks of open- and closed-loop activities and problem
solving which includes the higher cognitive tasks of fault management
and planning. These issues are further described in the next Chapters,

3.3 Data Management 55

as considerations are made for the generic parts (e.g., HMI) and installation-
specific issues as well.

The HMI also benefits from the MIMOSA based implementation of the
MANTIS architecture. As all information are stored in a database in a well-
defined format, the relevant information can be easily extracted and presented
in a unified manner. Furthermore, participating in the distribution process by
subscribing to the relevant channels, an efficient HMI can be implemented.
It supports decision making by proactively pushing relevant information to
the right people at the right time, by intelligently filtering and summarizing
information to prevent information overload through context awareness, by
automatically and dynamically scheduling and adapting maintenance plans,
thereby keeping the human in the loop at all times.

3.2.2.4 Multi stakeholder interactions

One major issue tackled by MANTIS is the realization of multi-stakeholder
integration and support for collaborative (maintenance) decision making:
external and other corporate internal parties should be able access information
tailored for them. One exemplary use case is the establishment of the
necessary collaboration between the supplier of replacement parts and
the service departments, since these have high stakes in the maintenance
operations, as described in [Jantunen et al., 2018]. This requires a service-
oriented approach [Bell, 2008].

Multiple Platform or Enterprise Tiers are enabled to access information
coming from one single production site or edge device, in a controlled way.
The same goes vice versa, one edge deployment shall be able to locate
and connect to additional (external) services, once local decision making
algorithms are deployed. An example case for this might be that a production
plant shall be able to inquire replacement part orders if it detects the need
for it (based on RUL estimation). All this can be aided by the architecture,
so that multiple stakeholders can run-time receive and request information
they need, in an asynchronous way. For this matter, the integration of the
Arrowhead framework [Delsing, 2017] is proposed since it also supports
other capabilities that are useful for advanced maintenance operations, such
as Quality of Service [Albano, 2017].

3.3 Data Management

Since MANTIS is proposing big data based analytic solutions to solve
Maintenance 4.0 problems, the data storage solutions are essential to discuss

56 The MANTIS Reference Architecture

and design into the framework’s core architecture. Cisco has forecasted
that by 2020, 92 percent of the workloads will be processed by cloud data
centers of which 68 percent will be in public data centers [Cisco, 2016].
Within project MANTIS, Big Data are collections of data entries having the
following characteristics [Munshi and Yasser, 2017; Laney, 2001; Assun¢do
et al., 2015] (while adding the newest and oriented interpretation [Fan and
Bifet, 2013; Grover and Kar, 2017] dimensions as well):

e Volume: big data implies enormous volumes independently of the data
source: machine or environmental sensors, event logs, external data
sources;

e Variety: the diversity in source and format of the data collections.
Although data repositories or processing may allow a restricted amount
of heterogeneity, it is safe to include variety as one of the implicit
features of big data as a whole;

e Velocity (i.e., data generation rate): Notwithstanding that collections
and repositories may be static at a certain point, data is generated
over time and that is what is referred to as velocity. Data might also
be geographically distributed to make geographic static classifications,
however such static representations of geographic distribution in an
isolated or discrete point in time are more on the statistical side than
in the big data spectrum;

e Variability in the units, data structures and formats that hold an
equivalent representation of a measurement, state or data entries from
different sources. Data transformations have to guarantee that input as
output are equally faithful to the information they account for;

e Value is the engineering process behind that converts any piece of
information into a mercantile asset that has enterprise value;

e Veracity makes reference to the quality of data. Raw data is often
preprocessed to fit a particular data process. The veracity of the data
refers to the appropriate handling of data formats and preprocessing
transformations. Data transformations should always keep the relative
real representation of the truth status they represent.

For data to be turned into an economic asset, so called Big Data,
engineers, architects and scientists are involved in the data gathering and
engineering processes that collect and convert the terabytes of information
into meaningful added value. One of the well recognized obstacles that
prevents potential useful data from being exploited is that 60% to 80% of data
mining efforts is strictly dedicated to the preparatory work. This is yet another

3.3 Data Management 57

motivation to carefully study the needs of a data exploitation infrastructure
and put attention to data engineering process before turning data into insights
and building a MANTIS (or alike) architecture deployment.

3.3.1 Data Quality Considerations

Thorough the data life cycle, data transformations and data source integration
processes, original data entries might suffer from inadequate handling,
leading to misleading data analysis results. Some highlighted threats to data
integrity are found in the literature [Singh et al., 2010].

Completeness here makes reference to whether data values are missing or
that some data points are noisy. Besides that, completeness is a data quality
issue that goes beyond the strict integrity of the data entries themselves. It
also makes reference to the context information necessary to make adequate
interpretations to the data. Meanwhile, validity refers to the correctness and
reasonableness of data as the capability to faithfully represent the piece of
reality it describes. As a title of example, it implies that data is describing
reality in a scientifically accepted manner. Accuracy is the exactness with
which data represents the real world. The concern here is whether a specific
piece or collection of data or reading “makes sense” in comparison with the
actual state of what originates that data. Meanwhile integrity: this entails in
the broader sense the lack of corruption of data through the entire life cycle.

3.3.2 Utilization of Cloud Technologies

Cloud services do not necessarily have to be outsourced to third parties
entirely and in industrial cases they are not. Within an organization, cloud
services can be provided internally, as private clouds; as shared, as hybrid
clouds or fully hosted in a third party infrastructure, as commercial solutions.
This classification entails the following [Lenk et al., 2009; Hashem et al.,
2015]:

e Private/Local clouds: all services, infrastructure, platform and software
on which a solution runs, are hosted entirely by the party that exploits
the solution. This does not imply that all the services in the system
are proprietary solutions, there can be commercial, licensed products
(services) hosted in a private environment;

e Hybrid clouds: the solution is partially hosted by a third party service
provider and partially hosted by the same entity that exploits the service.
The distribution of who hosts what does not affect the classification;

58 The MANTIS Reference Architecture

e Public or Commercial clouds: these are fully hosted by a service
provider that is a different entity than the entity exploiting or consuming
the service. In this case the differentiation between service provider and
user/consumer is complete.

It is possible, however, that a particular implementation has a service
provider to fully host one of the layers of a system architecture (i.e.,
infrastructure, platform, software), in which case, the specific terminology
to refer to the cloud hosting scheme can be used differently for each of those
layers.

MANTIS promotes the utilization of distributed data storage solutions,
regardless on how the solution shares its resources between the various types
of CSP and on what level it is utilizing a COTS technology (i.e., provided
infrastructure, software or platform “as a Service” [Bermbach et al., 2017]).
The interoperability issues and how they can be tackled the MANTIS way
when using different solutions and products in the data pipelines is presented
in Section 3.4.

3.3.3 Data Storages in MANTIS

The Central Data Storage is the main storage system where all maintenance
related data is collected. It should be a scalable, possibly cloud based.
Its implementation should be possible using both open source tools (e.g.,
Apache big data framework) or vendor specific (like Microsoft Azure). The
adoption of MIMOSA (see Section 3.2.1.3) is recommended in the MANTIS
architecture.

High granularity measurement data is usually not needed to be uploaded
to the central database. However, local databases are maintained (in a CPPS
for example), and in case when needed, the data can be accessed from the
local database. Such high granularity measurement data can be for example
raw vibration measurement data.

Although, in some cases local storage is not practical or it is not possible.
However, diagnostics and prediction would benefit of the high granularity
data. In these cases, it can be considered the possibility of ad-hoc data
request in between the tiers of the MANTIS architecture (e.g., between
edge-platform, where the CPS performs a high granularity measurement and
provides the data as a response).

The MANTIS reference architecture proposes to encapsulate the actual
storage technology behind a respective data management facade in order to
mitigate the impact of technology changes of the data storage on the data
analysis functions. There are several other databases that may be needed

3.3 Data Management 59

for the main functions of MANTIS (i.e., RUL, RCA, FP and MSO). Such
databases include for example:

¢ Environmental database (e.g., weather): to complete the diagnostics data
environmental conditions may be taken into consideration;
e Component stock database at subcontractors: needed for efficient
planning;
e Other examples: Safety/regulatory databases, etc.
Scalability is the service property of the system to adapt to larger workloads
(storage or cloud service) such as to “serve X% more requests when deployed
on X% more resources” [Bermbach et al., 2017]. This is at least the general
concept of scalability, which is also known as vertical scalability.

However, another aspect of scalability concerns the way a system is able
to accommodate new functional requirements over time. This characteristic
has been given the name of horizontal scalability, it played an important role
in the evolution from RDBMS to NoSQL paradigms, with a lower threshold
for system adaptation in the latter.

It is also worth noting that many enterprises are not only migrating
their database systems to the cloud but also shifting their original relational
databases to non structured NoSQL databases. One of the main reasons to
adopt this new paradigm is the ability of the services in the digital system
to handle real-time data, with high agility and flexibility. The problem is
well posed in [Hecht and Jablonski, 2011]: “In the past SQL databases were
used for nearly every storage problem, even if a data model did not match
the relational model well. The object-relational impedance mismatch is one
example, the transformation of graphs into tables another one for using a
data model in a wrong way. This leads to increasing complexity by using
expensive mapping frameworks and complex algorithms”.

3.3.4 Storage Types

MANTIS relies on already existing data sources, or promotes the
development of new data collection and storage if legacy sources are
insufficient for the targeted analytic services.This section introduces some
of the most popular storage solutions classified in a taxonomy of
storage infrastructures. Although there are more technologies available both
commercial and open source, the following have been researched to take in
consideration for possible use. In this section, the following database types
are considered for implementation of the MANTIS platform:

60 The MANTIS Reference Architecture

e Traditional SQL databases: Microsoft SQL, MySQL, etc;

e Big Data File Systems: Google File System, Hadoop File System, Disco
File System;

e NoSQL: Key-Value, Column-Oriented, Documents, Graph.

3.3.4.1 Big data file systems

Big data file systems in this section are easily scalable and can support a
variety of data formats, and databases in both structured and unstructured data
models. These are the most widely spread and flexible data storage systems,
also the most rudimentary in terms of pre-packaged functionality.

The Google File System is a scalable distributed file system for large
distributed data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers high aggregate
performance to a large number of clients [Ghemawat et al., 2015]. A Google
File System cluster consists of a single master and multiple chunkservers and
is accessed by multiple clients. Chunkservers store chunks on local disks as
Linux files and read or write chunk data specified by a chunk handle and byte
range.

The HDFS [Apache, 2017] is also a distributed file system designed to run
on commodity hardware. It has many similarities with existing distributed
file systems. However, the differences from other distributed file systems
are significant. HDFS is highly fault-tolerant and is designed to be deployed
on low-cost hardware. HDFS provides high throughput access to application
data and is suitable for applications that have large data sets. HDFS relaxes a
few POSIX requirements to enable streaming access to file system data.

Disco Distributed Filesystem (DDFS) [Nokia, 2017] provides a
distributed storage layer for Disco. DDFS is designed specifically to support
use cases that are typical for Disco and MapReduce in general: Storage and
processing of massive amounts of immutable data. This makes it very suitable
for storing, for instance: log data, large binary objects (photos, videos,
indices), or incrementally collected raw data such as web crawls. Although
DDEFS stands for Disco Distributed filesystem, it is not a general-purpose
POSIX-compatible filesystem.

3.3.4.2 NoSQL databases

In line with what the acronym indicates (Not Only SQL) NoSQL data
storage systems integrate structured and not-structured or semistructured
data structures. NoSQL is becoming increasingly popular for its
compatibility with the object oriented programming paradigm that many

3.3 Data Management 61

application use nowadays [Assuncdo et al., 2015]. NoSQL technologies
avoid the architectural friction called Impedance Mismatch [Sahafizadeh and
Nematbakhsh, 2015] between object oriented data generation at edge and
hard-shaped relational database information storages. In here, the data types
under consideration can be enumerated as (i) key-value, (ii) column-oriented,
(iii) document-oriented, (iv) graph-oriented and (v) time-series.

Cassandra [Apache, 2017] is an open source distributed storage for
managing key-value typed data. The properties mentioned in [Han et al.,
2011] for Cassandra are the flexibility of the schema, supporting range query
and high scalability. Cassandra, among others, sadly has the potential for
denial of service attacks because it performs one thread per one client and
it does not support inline auditing [Noiumkar and Chomsiri, 2014].

Other key-value typed database implementations are the Voldemolt!,
Redis? and DynamoDB?.

Meanwhile, HBase* is an open source column oriented database modeled
after Google big table and implemented in Java. Hbase can manage structured
and semi-structured data and it uses distributed configuration and write ahead
logging.

HyperTable’ is also an open source high performance column oriented
database that can be deployed on HDFS. Hypertable does not support data
encryption and authentication [Noiumkar and Chomsiri, 2014]. Eventhough
Hypertbale uses HQL which is similar to SQL, it has no vulnerabilities for
the injection [Noiumkar and Chomsiri, 2014]. Additionally, no denial of
service vulnerability is reported to work against Hypertable [Noiumkar and
Chomsiri, 2014].

MongoDB?® belongs to the third category here, namely it is a document-
based database. It supports complex datatypes and has high speed access to
huge data [Han et al., 2011]. All data in MongoDB is stored as plain text and
there is no encryption mechanism to encrypt data files.

There are also databases that are tailored to store time series. In here,
arrays of numbers are indexed by time (a range of datetime). In some fields
these time series are called profiles, curves, or traces. A time series of stock

"Project Voldemort. A distributed database. Online: http://www.project-voldemort.com

2Redislabs. Redis. Online: http://redis.io/

3Amazon Web Services, Inc. Amazon DynamoDB. Online: http://aws.amazon.com/
dynamodb

* Apache HBase, Online: https://hbase.apache.org/

SHyperTable. Online: http://www.hypertable.org

®MongoDB. Online: https://www.mongodb.com/

62 The MANTIS Reference Architecture

prices might be called a price curve. A time series of energy consumption
might be called a load profile. A log of temperature values over time might
be called a temperature trace. Popular implementations are eXtremeDB’ and
Graphite?.

Other document-typed NoSQL database implementations are the
CouchDb and DynamoDB®. Meanwhile, Neo4J'? is an open source graph
database, for example.

3.4 Interoperability and Runtime System Properties

The MANTIS approach for interoperability specifications and guidance
definition builds up on the main assumption that the identification of a
reference model for the interoperability of CPS systems cannot be established
without any link to the concrete, instantiated architectures. Therefore, in
order to extract the main requirements and models for interoperability and
its level of application, the steps presented in Figure 3.8 have been followed.

Generic
Specification and
Use Case Analysis Guidelines for
Interoperability
%)
Concrete System Global
Unified Interoperability
Description reference model

— —\ Y

[

> Platform Platform

3 Interoperability Interoperability

c needs reference model

.2 . ry——

L

% Edge Edge

- Interoperability Interoperability

17 needs reference model

Q2

2 — y—

Component Component
Interoperability Interoperability
needs reference model
— Y
New Tools and

Concrete T ——

Figure 3.8 MANTIS interoperability proposed approach.

"eXtremeDB. Online: http://www.mcobject.com/extremedbfamily.shtml
8Graphite. Online: https://graphiteapp.org/

“DynamoDB. Online: http://aws.amazon.com/dynamodb

!"Neo Technology, Inc. Neo4j. Online: http://neo4j.com

3.4 Interoperability and Runtime System Properties 63

These steps provide the interoperability requirements that are used to create
reference models for interoperability, i.e., to define specification and guidance
to respond to the main interoperability requirements. The main steps of the
proposed approach are the following:

e Use Case Analysis: characterization of the use case concrete architecture
in which the MANTIS platform will be integrated;

e Concrete System Unified Description: unique description of the
overall system, i.e., concrete use case architecture plus MANTIS
platform;

e Platform Interoperability needs: identification of the interoperability
issues at platform;

e Edge Interoperability needs: identification of the interoperability issues
at edge level;

e Component Interoperability needs: identification of the interoperability
issues at component level;

e Base technology: identification of the base technologies.

In here, various reference models for interoperability are taken into account
and utilized. It is necessary to identify elements on the tools and technology
level that could potentially help the integration of the MANTIS platform
within the use case ecosystems. Interoperability needs to be handled on
four different levels that are component, edge, platform, and on the global
level as well.

The component level focuses on how physical entities should be
virtualized, i.e., how physical entities can be “cyberized” in terms of the
functionalities and/or services that they are able to provide or in other
words how to create MANTIS-enabled CPS. The edge level issues revolve
around a set of physical entities belonging to the same local system logically
represented by a LAN. At this level, the data extracted from physical entities
is used to model and analyze the behavior of the system. The edge level
also includes a sub-level that is the component level where physical entities
are analyzed singularly. At the machine and component sub-level the data
extracted from a physical entity is used to model and analyze the behavior of
a physical entity singularly.

The platform level needs to describe the information exchange and data
integration in the cyberspace. At this level, the data coming from the edge
level is organized in order to be processed by MANTIS digital artifacts, i.e.,
integration between digital artifacts that are responsible to analyze the data

64 The MANTIS Reference Architecture

provided by CPS located at edge level. Moreover, the global interoperability
reference model needs to provide a unique model that is the confluence of the
platform, edge and component interoperability reference models.

3.4.1 Interoperability Reference Model

Inspired by [oT-A [IoT-A Reference Architecture Model, 2018], a MANTIS-
ARM has been created to provide the cornerstone for designing, developing
and deploying MANTIS-enabled solutions.

The reference architecture provides views and perspectives on distinct
architectural aspects that provide the foundation for building compliant
architectures. A perspective here defines a collection of activities, tactics,
and guidelines that are used to ensure that a system exhibits a particular
set of related quality properties that require consideration across a
number of the system’s architectural views [International Electrotechnical
Commission, 1993]. Therefore, the interoperability perspective is something
orthogonal to the several other views defined within the MANTIS reference
architecture building blocks: interoperability is considered in all tiers of the
architecture.

Considering a complex system (e.g., industrial production system) it is
composed of a huge number of machines and their related components.
Thus, the machine or component level comprises of physical entities that are
part of the same functional unit. At machine and component level the main
interoperability issues are related to

e the definition of the granularity level for CPSs;
e the design and development of communication library for extracting raw
data from physical entities and appending it into the cyber entity.

The edge level comprises physical entities that belong to the same local
network and functional area. The topology and the intrinsic characteristics
of the edge level strictly depend on the particular architectural pattern that is
used for designing the MANTIS platform. As a matter of fact, the edge level
can be as simple as an elementary gateway that delivers data to the platform
level (where the intelligence is installed and deployed) or as complex as a
network of digital artifacts that provide advanced edge data analytics and
knowledge generation functionalities as well as transmission of the data to
the platform level for more accurate and resource consuming tasks. In both
of the cases, the main interoperability issues are related to:

3.4 Interoperability and Runtime System Properties 65

e the integration of the CPS entities into the edge: It implies the
virtualization of the physical entities into CPS (component level
interoperability) to be integrated within the edge;

e data extraction, translation and pre-processing from the available edge
nodes;

e provisioning of the data extracted from the CPSs (i.e., edge nodes) to the
platform level.

The platform level receives, processes and forwards commands from/to the
edge level. It provides more complex and resource consuming data analytics
and knowledge generation functionalities wrapped into digital artefacts
than the edge level. At platform level data received from the edge level
are organized according to a common ontology and/or data model that
supports the data flow and exchange between the digital artefacts. Therefore,
at platform level there are two main interoperability issues. The first one
is concerned with the semantic data representation and exchange, to allow
the digital artefacts of data analyitics to process the data. The second
interoperability issue is on how to represent the knowledge models generated
by the digital artefacts of data analytics, in order to enable the usage of such
models back to the edge level for local control.

Finally, there are several interoperability issues that are orthogonal to the
considered interoperability levels, i.e., models, guidelines and specifications
that can be applied to all the interoperability levels without any restriction.
These topics reveal interoperability issues that are related on how CPS and,
more in general, digital artefacts are connected together. This includes the
definition of the communication protocol and message exchange pattern to
use in both edge and platform levels and the definition of an ontology of
events to support systems interactions at both edge and platform levels.

3.4.2 MANTIS Interoperability Guidelines

The MANTIS Interoperability Guidelines have been structured into three
main parts:

e Conceptual integration (modeling and design stage): it is focused on
concepts and their relationships, models and meta-models. It provides
the modeling foundation for systemizing the relevant interoperability
aspects for the specific application domain;

o Application integration (guidance to instantiate the models): it is focused
on methodologies, guidance and patterns to support the design and
development of their own MANTIS concrete instantiations;

66 The MANTIS Reference Architecture

e Technical integration (specific implementation and integration): it is
focused on technical aspects related to the networking (protocols,
connectivity, etc.), hardware (CPU/memory power preferably low-cost
and low-power consumption) and more in general to integration of
heterogeneous data sources.

3.4.2.1 Conceptual and application integration
The model for conceptual integration (see Figure 3.9) has been created
following a model-driven development approach to enable the design of
interoperable and interconnected CPS-populated systems. It starts with the
definition of a domain model (see Figure 3.10) that is aimed to capture
the essence of the CPS while enabling the specification of the services
and interfaces that the CPS must provide. The domain model is then
complemented with the semantic data representation and exchange model
and the system interaction model. The former is aimed to define and specify
the structure of all the data and/or the information handled by CPS at the
network level. The latter is aimed to define and specify the relevant events
produced/consumed within the MANTIS platform, as well as, the distinct
patterns for system interactions.

Architectural aspects are related to the use case specific, concrete
architectural pattern used to design the MANTIS platform. Interoperability

MIMOSA
Domain Model OSA-EAl Domain Model
compliant Architectural
K P

Database Dimension

Sematic Data

Mantis Representation and
Informatio CcPS
Dimension Interop. Dimension Ex'&hznlge
Framework eels

.

Interactions
Dimension

Sematic Data
Representation and
Exchange
Model

System Interaction
Model

System Interaction
Model

Event Patterns for Patterns for
nteractions
MANTIS Predictive p! ' MANTIS Predictive
Maintenance Platform \N y Maintenance Platform
Concrete Instantiation v Concrete Instantiation

Figure 3.9 Model for conceptual integration.

3.4 Interoperability and Runtime System Properties 67

0.* |User 0.*

Invokes /

contains
0.*

ICyber Physical System|

IPhysical Entity

-

is Associated with
*

has information about/
acts on

Exposes

contai

Figure 3.10 Domain model for MANTIS CPS.

issues are different in number, type and location if a cloud-based or an
edge-based pattern is used and/or a facade, broker or mediator [Martin,
2002] pattern is applied. While the CPS level issues are related to the
design and development of a given CPS, i.e., to provide guidance and
guidelines on how to virtualize physical entities (i.e., machines) in terms
of services/functionalities, especially for those that are low-tech. This is
connected to the information level that is related to the description of
the data and the messages/structures exchanged, processed and stored. The
messages/structures exchanged here are connected to a MIMOSA-compliant

68 The MANTIS Reference Architecture

database that models the specific application context by using the MIMOSA
OSA-EAI standard. Finally,interaction modeling is related to the definition
and the identification of the necessary MEPs, i.e., how messages/structures
are exchanged within the MANTIS platform.

The semantic data representation and exchange (see Figure 3.11) is
aimed to describe the structure of all the data and/or information handled
by cyber entities at a network level. Thus, the provided model details the
way information should be modeled inside the cyber entity of a CPS and
represents a necessary condition to guarantee that all the data circulating
within the MANTIS platform cyberspace satisfies a well-defined structure
to assure interoperability between different digital artifacts.

In here, the user can be a human person or some kind of a Digital Artefact
(e.g., a Service, an application, or a software agent) that needs to interact with
a Physical Entity, where a digital artifact is a software component.

Figure 3.11 Semantic Data representation and information exchange model.

3.4 Interoperability and Runtime System Properties 69

A Cyber Entity is represented in the digital world of Physical Entities. The
Cyber Entities have two fundamental properties: (i) they are digital artifacts
and (ii) they are the synchronized representation of a given set of aspects of
their Physical Entities. Any change in the Physical Entity affects the Cyber
Entity and vice-versa.

A resource is a software component that provides data from or is used in
the actuation of Physical Entities. Since it is the Functionality that makes a
Resource accessible, the relations between Resources and Cyber Entities are
modeled as associations between Cyber Entities and Functionality. Resources
can run on Devices or somewhere in the network (Network Resources).
Devices host the technological interface (Native Communication Library) for
interacting with, or gaining information about the Physical Entity.

The obvious similarities between IoT and CPS-based systems are always
pushing the merging of the two research streams. The main aspects are
represented by the elements Cyber Entity, Functionality Description and
Association. A Cyber Entity is the cyber counterpart of a Physical Entity
and the Functionality Description describes the set of functionalities the
cyber entities are sharing within the virtual space. Actually, a functionality
can be mapped to a service if the SOA technology [Thomas, 2008] is used
or a skill/capability in a MAS [Jacques, 1999]. The Association is used
to establish the connection between the Atfribute of a cyber entity and
the Functionality Description. As an example, for a temperature sensor a
functionality could be the getTemperature function that provides information
about the temperature Aftribute value. A cyber entity can have zero to many
different attributes.

Each Attribute has a name (attributeName), a type (attributeType),
and one to many values (Value Containers). The attributeType specifies
the semantic type of an attribute, for example, that the value represents
temperature. Each value container groups one Value and zero to many
Metadata fields that belongs to the given value. The metadata can, for
instance, be used to save the timestamp of the value, or other quality
parameters, such as accuracy or the unit of measurement. The cyber entity
is also connected to the functionality description via the Functionality
Description — Cyber Entity association. Additionally, it may contain one
(or more) Resource Description(s). Finally, the resource description might
contain information about the physical entity. The concept of Value within the
MANTIS information model is specified according to the OSA-CBM open
standard (see Figure 3.12).

70 The MANTIS Reference Architecture

|Value

A
] 1 1] A 1 1 |
Byte ByteArray Short ShortArray Int IntArray Long LongArray
+value : byte #values : byte +value : short #values : short +value : int #values : int +value : long #values : long
1 1 1 1 1 B
Float FloatArray Double DoubleArray IComplex IComplexArray
+value : float #values : float +value : double #values : double +realValue : double #realValues : double
+imagValue: double #imagValues: double
] 1 1 Bl 1 Bl
Char CharArray Boolean BooleanArray String StringArray
+value : char #values : char +value : boolean #values : boolean +value : String. #values : String

Figure 3.12 Value concept specification.

3.4.2.2 System interaction model

Significant actions, incidents or episodes need to be registered and stored
in the MANTIS platform that promotes monitoring or data analysis for
performance improvement. Those events store data relevant to the entities
related in the process (e.g., temperature of a surface) but additionally
must collect both spatial and temporal information and associate them
to entities/measures (e.g., Cyber Entity controlling rolling sheets or
temperature). Events might be triggered and/or should be created after a given
situation (such as after sensor reading, an operational action, a breakdown or
other maintenance actions).

3.4.2.2.1 MANTIS event model
Events are a fundamental part within MANTIS for supporting system
interactions (at cyber level) at both edge and platform levels while
interlinking data and automatic machine data processing. Consequently, a
generic event model (see Figure 3.13 has been designed to provide the
skeleton for the definition of all the events produced/consumed within the
MANTIS platform.

The base type of all events is the Abstract CEP Event type. It
provides the skeleton and basic information for modelling all the events
within the MANTIS platform. This basic information is the DateTime,

3.4 Interoperability and Runtime System Properties 71

1
1

@—+#hasTimeStamp

1
#haSLocaﬁLl-

0.* 1.*
taggregatedFrom
1

#Attribute #Attributes

Figure 3.13 MANTIS event model (based on the [oT-A event information model).

the EventDescription and the MeasurementLocation. The concepts/classes
DateTime and MeasurementLocation are defined to adhere to the OSA-CBM
standard (the same is for the unique identifier type UUID).

There are two very generic concrete events type: 1) the Simple CEP Event,
that contains atomic event information and ii) the Complex CEP Event that

72 The MANTIS Reference Architecture

contains information derived by a complex event processing application. The
Value Container, Value and MetaData concepts/classes are used to model the
content of each event that in turn can be as simple as a temperature value to
complex strings that are serialized objects.

3.4.2.2.2 Patterns for interactions

The definition of the most suited MEPs in the context of distributed computed
is a typical problem [Martin, 2002]. MEPs refers to the way messages
are exchanged between distributed components. It is worth noting that the
selection and usage of a message exchange pattern can affect the way digital
artifact should be implemented in order to be interoperable. In the context of
MANTIS, three type of MEPs are considered, namely:

e Push/Fire-and-forget: messages are sent in between digital artefacts and
with CPSs. The sender sends the message and the receiver receives the
message and ends the message exchange activity;

e Request/Response-Reply: request response messages are sent in
between digital artefacts and with CPSs. The sender sends a request
message and the receiver receives the message and informs the sender
with a response;

e Publish/Subscribe: messages are sent in between digital artefacts and
with CPSs in the form of events. The event source publishes a topic
and all the digital artefacts and/or CPS that are interested to the topic
subscribe to it and will receive events.

The types of CPS and/or more in general digital artefacts that can be found
within the MANTIS platform are: MANTIS-enabled that are supposed to be
natively MANTIS platform compatible. These CPSs and/or digital artefacts
already support the MANTIS interoperability specifications and can be
immediately integrated within the MANTIS platform. These digital artefacts
and/or resources need mechanisms and/or additional work in order to be
integrated within the MANTIS platform. In this case, external adapters are
needed to harmonize and bring together them within the MANTIS platform,
i.e., translations from native to common protocols used in MANTIS.

3.4.2.3 Implementation integration

The model for implementation integration (see Figure 3.14) has been
developed to capture and show how the provided interoperability models
can be related to a concrete MANTIS platform instantiation with specifying
and/or establishing technologies used.

3.4 Interoperability and Runtime System Properties T3

I[EI]I[NI | P | P Y

Maintenance Applications

. @ o) L O Decsion

Data
Storage

Streaming Data
Service for) i
[Execution i TR AEL EIStlrlb'umr:i
fOLESac Processors il
Decision

Making

Engine Messaging
Systems

MANTIS Services/Functionalities

AR Patterns for
Services Domain Model Service Framework : SOA
) Interaction Infrastructure

MANTIS Events }‘[MANTIS Metadata

Data Access
and
Translation

Semantic Data
Representation &
Exchange Model

Transformations/ w
Translation J‘

(

Figure 3.14 Model for technical integration.

The business model describes the specific domain for the software
solution that needs to be implemented. The software model represents
the instantiation of the semantic data representation and exchange model
and system interaction model in the specific domain derived from the
business model. Therefore, in the software model all the necessary aspects
of the conceptual integration are included. Finally, the technical architecture
represents and describes the concrete environment, infrastructure and related
technologies for supporting the platform/application.

The technical framework of the MANTIS platform can be distilled into
a model (see Figure 3.14) focused on the interoperability perspective. The
model is represented by a 4-tier model that covers all the necessary issues and

74 The MANTIS Reference Architecture

aspects that developers need to consider whenever they want to implement
MANTIS-compliant systems, i.e., data representation and exchange, system
interactions (event models and patterns for interaction), data transformation
and translation and services and functionalities definition, as well as, physical
entities virtualization (domain model). A central part of the framework is
the MIMOSA data storage that acts as a facilitator for the design and
implementation of maintenance applications within the business tier.

3.5 Information Security Model

Traditionally, security has been just a commodity but along the years this
perception has being changing to become an integral and an inseparable
part of any system. Indeed, security nowadays is a functional requirement
to become interoperable with many existing systems. In this sense, MANTIS
addresses these requirements and has been not only focusing in providing
functionalities but being secure by design. This aim can only be accomplished
by means of a modern secure information model and the most suitable access
control information system. In order to achieve this goal is necessary to
understand the basic pillars of the information security [Rahalkar, 2016]:

e [ntegrity: to maintain the completeness and accuracy of data over its
entire lifecycle;

e Confidentiality: to guarantee the privacy of data over its entire lifecycle
to unauthorized individuals, entities or processes;

e Availability: to guarantee that the information is available when is
needed.

Nevertheless, these principles impose various requirements towards the
architecture. The system must be defined with having

e its every relevant element supplied with a digital identity;

e a specific information model for managing different levels of
confidentiality;

e that is enforced by a security policy model.

From these requirements the right process for obtaining a realistic and
effective security management system involves the following processes:

e Process 1. Digitization or the process of obtaining a unique and
distinguishable digital identity;
e Process 2. Definition of an information model;

3.5 Information Security Model 75

e Process 3. Definition of a control access policy specification;
e Process 4. Definition of additional requirements associated with
MANTIS.

Finally, practical consideration is detailed in order to fulfill with existing
security technologies such as advanced threat detection techniques.

3.5.1 Digital Identity

In MANTIS every object, subject and action must have a digital reflect
recorded. Therefore, it is necessary to establish a specification and
classification of the elements of the system, that can be involved in the
processing of the information. In this context, digital identities are the key to
be able to establish effective and realistic security policies, without them it is
not possible to control the behavior of the system. Having in mind, MANTIS
associates every element of the platform with one of the following categories:

e Subject is the element in charge of requesting operations (actions)
with objects. These are the actors of the system. In many situations
the subjects are processes intermediated by users but there are other
situations where the processes are not associated with users;

e Action is the definition of an operation; every operation must be defined
in order to control the behavior of the system;

e Object are the elements, which receive the actions. In this category,
certain elements can be subjects and/or objects such as processes.

Nowadays, the process of giving an identity to an object/subject is performed
by generating a digital certificate, and an unique identifier [Vacca, 2004], as
depicted in Figure 3.15.

Digital Unique
Certificate Identifier
= #923045#

Subject

Figure 3.15 Elements having their digital identity (certificate).

76 The MANTIS Reference Architecture

3.5.2 Information Model

In previous steps, the digital identity for every element of MANTIS
was defined. Now, it is necessary to define the security classifications of
information while taking into account the potential of the platform under two
challenging situations:

e Industrial environments. The companies try to maintain the availability
of the system as well as the confidentiality of the information of the
processes (key performance indication, KPI), the model of machines,
the technology used, etc. In addition to this, there are two factors that
become very important:

e The integrity of the industrial processes is very important for taking
right decisions on processes;

e The system must respect operational safety systems. MANTIS
cannot interfere with real-time systems, since that may produce
personal injuries or catastrophic losses.

e Medical environments. The personal health information is one of
the most critical assets, very restrictive legislation exist a in many
countries related to that (c.f. GDPR [Donnelly, 2015]). MANTIS
should implement a model, which guarantees this confidentiality of the
information.

The assessment of these two challenging environments leads the use of
restrictive security information models. A priori, the first candidate is the
most restrictive information model known as Bell LaPadula (BLP) [Hansche
et al., 2003]. This model is used in government and military applications and
it is focused in enforcing the access control to confidential data. This model
has the following properties, see Figure 3.16:

e The simple security property. This establishes that a subject of a specific
level cannot read information at a higher security level;

e The *(star) property. This establishes that a subject of a specific level
cannot write to any object at a lower security level;

e The discretionary security property. In this the specification of the
discretionary access control is made by means an access matrix;

e Security levels introduced: Top Secret, Secret, Confidential and
Unclassified.

3.5 Information Security Model 77

Layer of higher Bel Lapadullas ‘rules clarified

secrecy

READING

SECRETS FEADING

SECRETS

READ/WRITE

DIVULGING DIVULGING
SECRETS SECRETS

Layer of lower S"np'le Star Strong
secrecy Security ProDert Star
Property perty Property

Figure 3.16 Elements of the BLP model [Hansche et al., 2003].

3.5.3 Control Access Policy Specification

The information model requires an access control policy to ensure security
of the system. With this aim in mind, the original model specified (BLP)
establishes the policies as a matrix where the access to every element is
specified. The main drawback of the original specification here is related
to the inherent complexity of MANTIS, which requires a more complex
specification of security, and at the same time, a way to facilitate the
management of the security. The direct application of this matrix will
conclude in a huge matrix and poses significant problems to manage the
policy in real life. With the aim of overcoming this drawback, an initial
approach is trying to facilitate with the use of the concept of Roles. It is a
mechanism for grouping sets of subjects with the same level of security but
with some other interesting properties in terms of manageability:

e Encapsulating the organizational functions/duties of a user;

e Different roles can be defined, each for different types of competences,
which are then assigned to users;

e Realizing the security principle of “least privilege” [Rahalkar, 2016];

e [t is consistent with BLP model.

Therefore, in MANTIS, the first approach to manage the security will be
the use of roles and BLP for establishing the security policy. The NIST

78 The MANTIS Reference Architecture

establishes some subdivisions of the original model such as: Core RBAC,
Hierarchical RBAC, Constraint RBAC and Consolidated Model [Ferraiolo
and Kuhn, 1992]. An RBAC model can formally be described by the tuple
RBAC=< U, R, P, O, >, the most important elements of this tuple are:

e U: User;

e R: Role;

e P: Permission;
e O: Object.

The model that best suits to MANTIS is the Hierarchical and Constrained
RBAC model [Ferraiolo and Kuhn, 1992], which supports challenging
environments and situations. The joint use with the BLP model facilitates
the management of the security of the system. MANTIS uses the standard
for specifying the security policy called eXtensible Access Control Markup
Language (XACML) [OASIS, 2018]. This standard provides

e a Policy Language;
e a Request and Response Language;
e Standard data-types, functions, combining algorithms.

It is extensible, where there can be privacy profiles, with architecture defining
the major components in an implementation. The structure of a security
policy is specified in Figure 3.17 and the relevant, general terms within
XACML are the following:

e Resource: Data, system component or service;

e Subject: An actor who requests to access certain Resources;

e Action: An action on resource;

e Environment: The set of attributes that are relevant to an authorization
decision and are independent of a particular subject, resource or action;

o Attributes: Characteristics of a subject, resource, action or environment;

e Target: Defines conditions that determine whether policy applies to
request.

3.5.4 Additional Requirements

MANTIS is an agnostic reference architecture, which can be applied in
many environments, but like many technologies it is necessary to have high
adaptibility. In this sense, many situations might exist where the classic
security information model and their corresponding access control policies

3.5 Information Security Model 79

Policy Set

TARGET]
Policy

TARGET
Rule

TARGET

‘ Policy Set ‘

| conpiTiONS | |

Figure 3.17 Policy hierarchy.

are instantiated; however there might be other situations involve relevant
additional changes (e.g., the integration of new sensors in every machine that
the company sells). This innocent change might cause a nightmare in terms
of efficiency when only classic security access controls are in place. Taking
these aspects in MANTIS into account, it will be necessary to consider the
nature of changes to be introduced for improving the efficiency of the security
management.

MANTIS considers not only the joining of the RBAC [Ferraiolo and
Kuhn, 1992] and BLP [Hansche et al., 2003], but the use of modern
approaches, that is, an ABAC model. The solution relies on the use of
additional PKI [Vacca, 2004] in a different way to support the sharing
of responsibilities. With these, emphasis is put on having a controlled
but shared access model. The access to information is conditioned by the
security policy defined in the cloud, managed by the company. This allows
controlling situations such as validity periods for accessing the information
but also it would be beneficial to the original company to be able to control
external parties interesting in their data. This leads to work with a federated
PKI for sharing Certification Authorities and to introduce the concept of
secret sharing schemes. An increase in the number of sensors also requires
additional considerations. In order to alleviate this, MANTIS introduces the
concept of attributes in final elements for controlling the access by using
existing RBAC based policies.

80 The MANTIS Reference Architecture

3.6 Architecture Evaluation

Software and systems design, in its core essence, is the creative activity
of software engineers making principal design decisions about a software
system to be built or to be evolved. It translates the concerns and drivers
in the problem space into design decisions and solution concepts in the
solution space. Architecture evaluation is a valuable, useful, and a worthwhile
instrument to manage risks in software engineering. It provides confidence
for decision-making at any time in the lifecycle of a software system [Knodel
and Naab, 2016].

3.6.1 Architecture Evaluation Goals, Benefits and Activities

Architecture evaluation is the key quality-engineering instrument in software
and systems design. Its goal is to make sure that the resulting systems really
exhibit the desired qualities. To this end, it pursues two major objectives:

On the one hand, architecture evaluation aims at improving the overall
quality of software and systems design. Architecture evaluations challenge
the decisions made. They help clarifying quality requirements and enable
to analyse the adequacy of the architecture solution. Further, they allow
predictions of the impact of the architecture solutions and consequently the
decisions made on the quality of the resulting system. As the architecture
sets the course for the resulting system, quality problems and drawbacks
of decisions can be detected early. Thus, architecture evaluation serves to
mitigate risks. Eventually, it enables the improvement of the architecture by
correcting and adapting the decisions made. Furthermore, architecture
evaluation comes along with the side effect of increased architecture
awareness in the development organization. While reasoning about and
communicating the decisions made, their understanding in the organization
is improved. Architecture evaluation reveals the rationales for the decisions,
and their justification allows achieving a common understanding in the
development organization. In short, architecture evaluation determines how
well suited the architecture of the system for its purpose is.

On the other hand — once having a well-designed architecture —
architecture evaluation aims as well at preserving architectural decisions
and quality in the evolution of software systems. The follow-up activities
in the lifecycle of a software system first translate architectural decisions
into component models, detailed design models, and eventually source code
including data structures and algorithms. At later points in time, evolving
requirements and change requests yield modified system artefacts. However,
to reap the architectural investment benefits, the managed software system

3.6 Architecture Evaluation 81

lifecycle needs to enforce and preserve the architectural decisions made. This
sustainment of architectural decisions assures that the architecture is in fact
the conceptual tool to cope with challenges in its evolution. To be able to
evaluate the decision enforcement, architecture documentation must trace
all decisions to the system artefacts. Traceability of architectural decisions
breaks down into the accuracy of their description and the distance of the
system to its architecture.

With this said, the benefits of architecture evaluation turn out to be
an improved software architecture, improved architecture documentation,
and improved implementations of architectural solutions. The evaluation
activities help to mitigate risks by raising the likelihood to detect problems
early and to clarify the required system qualities. Evaluation also improves
the understanding of design decisions and leads to a higher awareness
of the architecture in organizations. As needed for input, the traces from
architectural decisions to the system artefacts help their preservation and
allow for higher compliance in implementations.

To achieve the above-mentioned objectives, MANTIS follows the RATE
approach [Knodel and Naab, 2016], developed by Fraunhofer. RATE is a
compilation and collection of best practices of existing evaluation approaches
tailored towards a pragmatic (or rapid) application in industry. It comprises
five checks, whereby each check serves for a distinct purpose. All checks
follow the same working principle: to reveal findings to confirm and improve
the system quality and/or the artifact quality.

3.6.2 Concepts and Definitions
RATE uses the following concepts and definitions in its analysis:

Stakeholder: A stakeholder in a software architecture is a person, group,
or entity, with an interest in or concerns about the realization of the
architecture [ISO/IEC/IEEE, 2011].

Concern: A concern about an architecture is a requirement, an
objective, an intention, or an aspiration that the stakeholder has for the
architecture [ISO/IEC/IEEE, 2011].

Usually the stakeholder concerns are not consolidated or validated. This
makes dealing with the stakeholder concerns challenging, since concerns
might be ambiguous, conflicting with other stakeholders’ concerns, and
are likely to be incomplete. In case a concern is specific, unambiguous,
and measurable, it is possible to call it a requirement concern; otherwise,
architecture scenarios can capture concerns. In either case, stakeholder

82 The MANTIS Reference Architecture

concerns form the product and drive the architecture, which explains the need
for compensation of missing and too complex concerns, for their aggregation
and consolidation as well as their negotiation in case of ambiguity and
inconsistency. This the architect does by deriving architecture drivers from
the concerns.

Architecture Driver: In general, it can be drawn a distinction between four
main classes of architecture drivers: business goals, functional requirements,
constraints, and quality requirements. Each of these classes might have its
individual stakeholders that articulate concerns belonging to that particular
class. In other words, all drivers originate from stakeholders in one way
or another. The identification and analysis of stakeholders for further
requirements elicitation and their stake within the architecture development
is therefore key to any architecture definition or evaluation.

Business Goals: are the first class (and most abstract) of architectural drivers.
Business goals are goals that are important for the overall enterprise that is
developing the respective architecture or has placed an order to build the
system. Usually the business goals are quite abstract and are only partially
depending on the architecture under consideration. However, the business
goals are the most essential ones, since without the business goals there would
be no need to think about creating an architecture of (a set of) products that
end up in supporting a business goal. Examples for business goals are time to
market (denoting the strategy in terms of time), the market scope, or costs.

Functional Requirements: are drivers for the architecture as well. However,
there are differences in functional requirements: some drive the architecture —
some do not. It depends on characteristics like “Does this particular function
separate us from competitors’ products?” In some sense, the functional
requirements that make the product unique and worth building are the
ones that influence the architecture development the most. These kinds
of functional requirements the architecture needs to explicitly support;
otherwise, the endeavour of building an architecture would be meaningless.

Quality Requirements: Quality is not only about correctness of functionality.
Successful software systems have to assure additional properties such as
performance, security, extensibility, maintainability, and so forth. In general,
it is possible to distinguish between run-time and development-time quality
attributes. Run-time quality attributes can be measured by watching the
respective system in operation. Examples for run-time quality attributes are
performance, security, safety, availability, and reliability. Development-time

3.6 Architecture Evaluation 83

quality attributes can be measured by watching a team in operation. Examples
for development-time quality attributes are extensibility, modifiability, and
portability. One problem, however, is that there is no standard measurable
meaning of quality attributes. Besides naming issues, people also tend to
create new notions on their own. The solution towards this problem is to
utilize the so-called architectural scenarios (see Architecture Scenario) that
make the meaning of the quality attribute in the system context clearer and
that lower the chance for misinterpretations.

Constraints: One important but easily overlooked input for software and
systems design are constraints that influence the design decisions of
subsequent steps. Constraints can be organizational, technical, regulatory, or
political. Organizational constraints might arise from the resources available
for a particular system development effort. Technical constraints might arise
from legacy systems that are already deployed in the field. Regulatory
constraints usually stem from obligations to comply with particular standards.
Depending on the domain, there might be different standards to consider.
Political constraints are most of the time disguised as technical constraints.
There might be different (more or less reasonable) roots for the existence
of the constraint, however, since the source of the constraint is most likely
higher management there is only low negotiability of the constraint from the
perspective of the architects. Making them explicit, however, provides a solid
basis for subsequent decision making in design.

Architecture Scenario: An architectural scenario is a crisp, concise
description of a situation that the system is likely to face, along with a
definition of the response required of the system [Rozanski and Woods,
2011]. Architecture scenarios could be used to document both, functional
and quality drivers in a measurable way, but are especially used for capturing
software and system qualities. Functional requirements are usually clearer
than quality requirements. However, it is the quality requirements that drive
the architecture most. Therefore, it is crucial to elicit required qualities
using scenarios in a measurable way, so that architects or evaluators can
find a baseline to work with. The scenarios are the input for creating,
designing and evolving architectural solutions, which have to be preserved in
follow-up activities. Thereby scenarios evolve over distinct states: Unknown,
Elicited, Designed, Documented, Implemented, and Sustained. Depending
on the state of the scenario, different types of architecture evaluations are
possible. Architecture scenarios should be documented in a structured way
(cf. [Clements et al., 2010]), rendering data on the following aspects:

84 The MANTIS Reference Architecture

e Scenario: Representative name (and ID) of the scenario;

e Quality: Related quality attribute;

e Environment: Context applying to this scenario (if possible provide
quantifications);

e Stimulus: The event or condition arising from this scenario (if possible
provide quantifications);

e Response: The expected reaction of the system to the scenario event;

e Response Measure: The measurable effects showing if the scenario is
fulfilled by the architecture.

3.6.3 Architecture Evaluation Types

RATE (Figure 3.18) comprises five checks on three evaluation levels,
whereby each check focuses on different aspects. The main levels are
stakeholder level, architecture level and implementation level. In the
stakeholder level, architecture drivers are validated, in the architecture level,
the architecture and its documentation are checked and in the implementation
level, the compliance and code quality is checked.

All checks performed come with a related rating of the confidence level
of the findings.

Stakeholder Level

Concerns Interpretation
Driver Integrity Check (DIC)

Architectural Drivers Ratings
Architecture Level e

e

Knowledge .
—>] Solution Adequacy Check (SAC)

Models

D eris mmma Documentation Quality Check (DQC)

: Architecture Compliance Check (ACC)
System/Implementation Level

Source Code —] Code Quality Check (CQC)

Figure 3.18 Architecture evaluation with Fraunhofer RATE [Knodel and Naab, 2016].

3.6 Architecture Evaluation 85

The rating comprises

e the severity of findings that expresses the criticality of the findings
aggregated over all findings per goal;

o the balance of findings that expresses the ratio of positive vs. negative
findings aggregated per goal.

The combination of the ratings results in a rating of N/A (Not Applicable),
or an assignment to one of the target achievement levels NO, PARTIAL,
LARGE, and FULL where each check defines its own target achievements.

Driver Integrity Check (DIC): The goal of the Driver Integrity Check is to
get confidence that an architecture is built based on a set of architecture
drivers that is agreed among stakeholders and to clarify unclear or not agreed
architecture drivers. DIC also aims to compensate not elicited requirements
and to aggregate a large set of requirements into a manageable set for
an architecture evaluation. Inputs of the DIC are stakeholder information
(if available), existing documentation (if available), and a template for
documenting architecture drivers (mandatory). It is crucial to elicit required
qualities using scenarios in a measurable way, so that architects or evaluators
can find a baseline to work with. One can use architecture scenarios to
document both, functional and quality drivers in a measurable way.

Solution Adequacy Check (SAC): The Solution Adequacy Check can be
done as soon as there is a first idea of the architecture, and tries to answer
the question how well suited the architecture for the intended purpose is.
The SAC

e can determine whether an architecture permits or precludes the
achievement of targeted functional and quality requirements;

e can determine whether an architecture or part of it is concrete enough or
redundant for the purpose it will be used for;

e enables the identification of problematic design decisions;

e enables the early prediction;

e cnables a timely reaction and correction.

That is, the main purpose of the SAC is to gain confidence, to predict the
future behaviour of the system or to get some evidences. Inputs for the SAC
are architecture drivers and architecture documentation. Besides findings on
the adequacy of architecture decisions to fulfil architecture drivers (explicit
rationales, risks, trade-offs, assumptions) SAC puts out revised architecture
decisions, driver solutions, and diagrams.

86 The MANTIS Reference Architecture

Documentation Quality Check (DQC): The Documentation Quality Check
can be done as soon as there is a first draft of the architecture description, and
tries to answer the question how well documented the architecture solution
for its audience and purposes is. The DQC

e can determine whether or not an architecture documentation allows
understanding the solution;

e enables information sharing on architecture;

e enables consistency checks;

e cnables the detection of gaps in architecture and its documentation.

The main purpose of the DQC is to ease information sharing within
architectural stakeholders. Inputs for the DQC are the documentation
purposes, architecture documents, models, wikis, sketches, API document-
ation, and the targeted audience. It feeds back findings on adequacy of the
documentation and its adherence to best practices.

Architecture Compliance Check (ACC): The Architecture Compliance Check
can be done as soon as there is a first skeleton of the implementation, however,
it should be iterated, as there may be modified implementations during the
lifecycle of the system. The ACC tries to answer the question how well
realized the architectural solution by the implementation is. The ACC

e can determine whether or not the implementation violates architectural
solutions;

e cnables traceability;

e cnables compliance checking (as-is vs. planned intention);

e cnables delta tracking (as-is vs. envisioned target).

The main purposes for ACC are to identify the structural and behavioural
compliances between the architecture and the implemented system. Inputs
for the ACC are architecture documents, models, wikis, sketches, API
documentation, source code, and the running system (if applicable). It results
in findings on the compliance of the implementation with respect to the
intended architecture, convergences, divergences (violations) and absences
(violations).

Code Quality Check (CQC): The Code Quality Check’s main goal is to
gather data about the source code base. As such, the CQC is not a direct
part of architecture evaluation. However, reasoning about quality attributes

3.7 Conclusions 87

(in particular maintainability) requires the CQC results in order to make valid
statements about the software system under evaluation. CQC helps to

e improve the implementation of a software system;
e monitor (and fix) anomalies over time;

e derive common metrics and coding best practices;
e define team-specific coding guidelines;

e improve the overall understanding of the code base;
e make the development organization more robust.

Inputs for the CQC are the source code, and build scripts (if applicable). It
puts out findings on quality of the source code, best practice violations, code
clones, quality warnings (maintainability, security), code metrics, and more.

3.7 Conclusions

Proactive maintenance for the CPS domain requires solutions that cover
data gathering, storage, processing, feedback and presentation to the human
operator. While examples of custom-tailored systems are appearing, this
chapter presents a generic platform together with specific toolset to cover
the problem space. Typical target areas of proactive maintenance include FP,
calculation of the RUL, RCA, among others.

Beside providing an architectural view on data gathering and handling
for the given area, the MANTIS architecture for CPS-based proactive
maintenance provides solutions for the Egde Tier, for the Platform Tier,
and for the Enterprise Tier, as well. The main building blocks of the Edge
Tier are physical sensors and actuators, as well as local, edge-level data
processing entities. These also communicate with the elements of a system-
wide view at the Platform Tier. Depending on the targeted area (i.e., FP,
RUL, RCA), stream processing or batch processing entities handle the data
and provide meaningful output that either gets feed back to the physical
entities as control information, or gets presented towards the Enterprise Tier
for further processing or action (e.g., ordering spare equipment, scheduling
jobs, visualizing trends, etc.). There are various issues to tackle on each of
the tiers, and even within the communications between the various actors
and tiers. Therefore, the interoperability and security aspects must be focal
points when such an installation is made, and hence their place in this
Chapter.

88 The MANTIS Reference Architecture

Moreover, such an architecture has to be evaluated and has to facilitate
the requirements of every actor and stakeholder. To this end, evaluation
techniques are instruments to increase the confidence level in the architecture
solutions, where the confidence level expresses trust in the architecture
designed and the system derived from it. In addition, architecture evaluation
allows the prediction of the impact of decisions made and helps secure the
consistency across decisions in descriptions. It helps to check the structural
and behavioral compliance of the implemented as-is architecture with the
intended one, and makes possible the assertion of qualities in the system at
execution. Therefore, architecture evaluation is the key quality-engineering
instrument in software and systems design, and it provides confidence for
decision-making at any time in the life cycle of a software system.

This architecture already has been successfully utilized in various use-
cases from industrial utility vehicles (forklifts) through railway control
system to CPPSs [Ferreira et al., 2017; Hegediis et al., 2018], as part of the
ECSEL MANTIS project [The MANTIS Consortium, 2018]. These use case
instantiations are presented in Chapter 7.

References

Albano, M., Barbosa, P. M., Silva, J., Duarte, R., Ferreira, L. L., and Delsing,
J. (2017). Quality of service on the Arrowhead Framework. In 2017 IEEE
13th International Workshop on Factory Communication Systems (WFCS),
(pp- 1-8). IEEE.

Amazon. (2017) Amazon web services. https://aws.amazon.com/products/
analytics/.

Apache. (2017) Cassandra database. http://cassandra.apache.org/.

Apache. (2017) Hadoop distributed file system. http://hadoop.apache.org/.

Apache. (2017) Spark. https://spark.apache.org/.

Apache Community’. (2017) The kafka distributed streaming platform. http:
/fkafka.apache.org/.

Apache Community. (2017) Storm stream processor. http://storm.apache.
org/.

Assuncao, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. S., and Buyya,
R. (2015) ‘Big data computing and clouds: Trends and future directions’,
Journal of Parallel and Distributed Computing, 79, pp. 3—15.

Bell, M. (2008) Introduction to Service-Oriented Modeling. Wiley and Sons.

Bermbach, D., Wittern, E., and Tai, S. (2017) Cloud Service Benchmarking:
Measuring Quality of Cloud Services from a Client Perspective. Springer.

References 89

Cengarle, M., Bensalen, S., McDermid, J., Passerone, R., Sangiovanni-
Vincetelli, A., and Torngren, M. (2013) Characteristics, Capabilities,
Potential Applications of Cyber-physical Systems: A Preliminary Analysis.

Cisco. (2016) Global cloud index: Forecast and methodo-
logy. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
global-cloud-index-gci/white-paper-c11-738085.html.

Clements, P., et al. (2010) Documenting Software Architectures: Views and
Beyond. p. 608.

Curry, E. (2004) ‘Message-oriented middleware,” Middleware for
Communications, pp. 1-26.

Delsing, J. (2017) IoT Automation: Arrowhead Framework, CRC Press.

Di Orio, G., Malé, P, Barata, J., Albano, M., and Ferreira, L. L. (2018, July).
Towards a Framework for Interoperable and Interconnected CPS-populated
Systems for Proactive Maintenance. In 2018 IEEE 16th International
Conference on Industrial Informatics (INDIN), (pp. 146—151). IEEE.

Donnelly, C. (2015) Eu data protection regulation: What the ec legislation
means for cloud providers. http://www.computerweekly.com/.

Fan, W. and Bifet, A. (2013) ‘Mining big data: Current status, and forecast to
the future,” ACM sIGKDD Explorations Newsletter, 14(2), pp. 1-5.

Ferraiolo, D. F. and Kuhn, D. R. (1992) ‘Role-based access control,” In
15th National Computer Security Conference, Baltimore, October 1316,
pp- 554-563.

Ferreira, L. L., Albano, M., Silva, J., Martinho, D., Marreiros, G., di Orio,
G., Mal6, P, and Ferreira, H. (2017) A pilot for proactive maintenance
in industry 4.0. In [3th IEEE International Workshop on Factory
Communication Systems (WFCS 2017), pp. 1-9.

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2015) Systems and Methods for
Replicating Data. US Patent 9,047,307.

Grover, P. and Kar, A. K. (2017) ‘Big data analytics: A review on theoretical
contributions and tools used in literature’, Global Journal of Flexible
Systems Management, pp. 1-27.

Han, J., Haihong, E., Le, G., and Du, J. (2011) ‘Survey on nosql database,’
In 2011 6th International Conference on Pervasive Computing and
Applications (ICPCA), pp. 363-366.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., and Khan,
S. U. (2015) “The rise of big data on cloud computing: Review and open
research issues,” Information Systems, 47, pp. 98-115.

Hansche, S., Berti, J., and Hare, C. (2003) Official (1SC)2 Guide to the CISSP
Exam. CRC Press. p. 104. ISBN 978-0-8493-1707-1.

90 The MANTIS Reference Architecture

Hausenblas, M. and Bijnens, N. (2017) ‘The lambda architecture website,’
http://lambda-architecture.net/.

Hecht, R. and Jablonski, S. (2011) ‘Nosql evaluation: A use case
oriented survey,” In 2011 International Conference on Cloud and Service
Computing (CSC), pp. 336-341.

Hegediis, C., Ciancarini, P., Franko, A., Kancilija, A., Moldovan, 1., Papa,
G., Poklukar, S., Riccardi, M., Sillitti, A., and Varga, P. (2018) ‘Proactive
maintenance of railway switches,” In Proceedings of the 5th International
Conference on Control, Decision and Information Technology (CoDIT),
Thessaloniki, Greece.

IBM. ‘The enterprise service bus, re-examined: Updating concepts
and terminology for an evolved technology,” https://www.ibm.com/
developerworks/websphere/techjournal/1105 _flurry/1105 _flurry.html.

Industrial Internet Consortium. (2017) The industrial internet of things
reference architecture.

International Electrotechnical Commission. (1993) Information Technology —
Vocabulary — Part 1: Fundamental terms.

International Electrotechnical Commission. (2003-2007). Enterprise-control
System Integration.

IoT-A Reference Architecture Model. (2018) http://open-platforms.eu/
standard_protocol/iot-a-architectural-reference-model/.

ISO. (2012) Condition monitoring and diagnostics of machines — data
processing, communication and presentation.

ISO/IEC/IEEE. (2011) ‘Systems and software engineering — architecture
description,” ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), pp. 1-46.

Jacques, F. (1999) Multi-agent Systems: An Introduction to Distributed
Artificial Intelligence. Addison-Wesley.

Jantunen, E., Di Orio, G., Hegedus, C., Varga, P., Moldovan, 1., Larrinaga,
F., Becker, M., Albano, M., and Malo, P. (2018) Maintenance 4.0 world of
integrated information.

Jantunen, E., Zurutuza, U., Ferreira, L. L. and Varga, P. (2016) ‘Optimising
maintenance: What are the expectations for cyber physical systems,’
In 2016 3rd International Workshop on Emerging ldeas and Trends in
Engineering of Cyber-Physical Systems (EITEC), pp. 53-58. IEEE.

Kappa. (2018) ‘The kappa architecture site,” https://www.talend.com/blog/
2017/08/28/lambda-kappa-real-time-big-data-architectures/.

Knodel, J. and Naab, M. (2016) Pragmatic Evaluation of Software
Architectures, p. 132.

References 91

Laney, D. (2001) ‘3d data management: Controlling data volume, velocity
and variety, META Group Research Note, 6, p. 70.

Lebold, M. and Thurston, M. (2001) ‘Open standards for condition-based
maintenance and prognostic system,” In Proceedings of MARCON 2001 —
Fifth annual maintenance and reliability conference, Gatlinburg, USA.

Lenk, A., Klems, M., Nimis, J., Tai, S., and Sandholm, T. (2009) ‘What’s
inside the cloud? An architectural map of the cloud landscape,” In
Proceedings of the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing, pp. 23-31. IEEE Computer Society.

Martin, R. C. (2002) Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall.

Martinez-Fernandez, S., Dos Santos, P. M., Ayala, C., Franch, X., and
Travassos, G. (2015) ‘Aggregating empirical evidence about the benefits
and drawbacks of software reference architectures, In ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), Beijing.

Microsoft. (2017) ‘Azure web services,” https://azure.microsoft.com.

MIMOSA consortium. (2016) ‘The mimosa project site,” http://www.
mimosa.org/.

Mineraud, J., Mazhelis, O., Su, X., and Tarkoma, S. (2016) ‘A gap analysis
of internet-of-things platforms,” Computer Communications, 89, pp. 5-16.

Munshi, A. A. and Yasser, A.-R. I. M. (2017) ‘Big data framework for
analytics in smart grids,” Electric Power Systems Research, 151, pp. 369—
380.

Noiumkar, P. and Chomsiri, T. (2014) ‘A comparison the level of security on
top 5 open source nosql databases,” In The 9th International Conference on
Information Technology and Applications (ICITA2014).

Nokia. (2017) ‘Disco distributed file system,” https://disco.readthedocs.io.

OASIS. (2018) ‘eXtensible Access Control Markup Language (XACML),
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml#
CURRENT.

Pohl, K., Honninger, H., Achatz, R., and Broy, M. (2012) Model-
Based Engineering of Embedded Systems: The SPES 2020 Methodology.
Springer, 2012.

Rahalkar, S. A. (2016) Information Security Basics. In Certified Ethical
Hacker (CEH) Foundation Guide, Apress, Berkeley, CA, pp. 85-95.

Rozanski, N. and Woods, E. (2011) Software Systems Architecture: Working
with Stakeholders Using Viewpoints and Perspectives, p. 678.

92 The MANTIS Reference Architecture

Sahafizadeh, E. and Nematbakhsh, M. A. (2015) ‘A survey on security issues
in big data and nosql,” Advances in Computer Science: an International
Journal, 4(4), pp. 68-72.

Singh, R., Singh, K., et al. (2010) ‘A descriptive classification of causes
of data quality problems in data warehousing,’ International Journal of
Computer Science Issues, 7(3), pp. 41-50.

The MANTIS Consortium. (2018) “The mantis project website,” http://www.
mantis-project.eu/.

Thomas, E. R. L. (2008) SOA: Principles of Service Design. Upper Saddle
River: Prentice Hall.

Vacca, J. R. (2004) Public Key Infrastructure: Building Trusted Applications
and Web Services, CRC Press. ISBN 978-0-8493-0822-2.

Wapice. (2018) IoT-Ticket. https://iot-ticket.com/.

