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Capturing near-field circular dichroism enhancements from far-field measurements
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Molecular circular dichroism (CD) spectroscopy faces significant limitations due to the inherent weakness
of chiroptical light-matter interactions. In this view, resonant optical antennas constitute a promising solution
to this problem, since they can be tuned to increase the CD enhancement factor, fCD, a magnitude describing
the electromagnetic near-field enhancement of scatterers associated with a given helicity. However, an exact
analytical expression of fCD remains elusive. Here, we derive an exact multipolar expansion of fCD, which is
valid to deduce the integrated near-field CD enhancements of chiral molecules in the presence of scatterers of any
size and shape under general illumination conditions. Our exact analytical findings extend previous approximate
expressions of fCD that are restricted to the dipolar regime. In addition to this, and based on our exact analytical
findings, we show that the near-field fCD factor can be related to magnitudes that can be computed in the far field,
i.e., the scattering cross-section and the helicity expectation value. Strikingly, we show that in the case of lossless
cylindrically symmetric samples, the near-field fCD factor can be inferred experimentally only from two far-field
measurements at specific scattering angles. Our contribution paves the way for the experimental characterization
of devices capable of enhancing molecular CD spectroscopy from far-field measurements.
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Chirality is a geometrical property of objects which are not
superimposable with its mirror image. Chiral objects are ubiq-
uitous in nature. Many organic molecules, such as glucose and
most biological amino acids, are chiral. Not to mention the
DNA double helix, which, in its standard form, always twists
like a right-handed screw [1]. In the pharmaceutical industry,
chiral specificity is critical because opposite enantiomers, i.e.,
mirror pairs of chiral molecules, can have beneficial or detri-
mental biological effects on our organism depending on their
handedness. Even if they share the same atomic composition,
enantiomer pairs are indistinguishable when measuring their
scalar molecular properties. Their chiral nature is revealed
only when interacting with other chiral entities.

In electromagnetism, the most common chiral observable
is helicity [2]. Chiral molecules show a preferential absorption
for fields of opposite helicities (left- or right-handed polarized
waves with helicity eigenvalues of σ = ±1). In a conven-
tional Circular dichroism (CD) spectroscopy setup, a chiral
molecular solution is sequentially illuminated by fields of
opposite helicities, and the total transmitted power is recorded
for each case. The CD signal is then computed by taking
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the difference between these two power measurements in
transmission. However, the inherent weakness of chiroptical
responses strongly limits the sensitivity of CD spectroscopy.

Optical antennas, designed to control the properties of light
[3], are promising candidates to enhance the spectroscopic
signals of chiral samples. The underlying phenomenon is
that optical antennas can be engineered to enhance electro-
magnetic fields while preserving the electromagnetic helicity
[4–6]. Many works have explored optical antennas [7–9] and
metasurfaces, namely, flat planar arrays of optical antennas,
made of metallic [10–13] or/and high refractive index materi-
als [14,15] for enhanced chiral sensing, meaning, enhancing
the CD signal of the measured chiral molecules [16–21].
Examples of such works can be found in the ultraviolet
[22], visible [23–29], or near -and far-infrared spectral range
[30–36].

Moreover, and quite recently, optical cavities have also
been proposed as efficient platforms for enhanced chiral sens-
ing [37–39]. However, researchers rely on numerical methods
to design enhanced chiral sensing devices, as capturing the
vector character of the near-field contribution can be challeng-
ing. In this work, we derive an exact multipolar expansion of
fCD, which is valid to deduce the integrated near-field CD en-
hancements of chiral molecules in the presence of scatterers of
any size and shape under general illumination conditions. To
the best of our knowledge, this is the most general expression
of fCD that can be found in the literature.

Based on analytical findings, we demonstrate that fCD is
proportional to the product of the scattering cross-section and
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FIG. 1. Scattering process in which an incident field with well-
defined helicity (red beam) impinges on an optical (achiral) antenna,
represented by a Silicon sphere of radii a = 75 nm. The dashed
region represents the integrating sphere r = 76 nm where the exact
fCD is calculated. Enantiomers are also depicted surrounding the
integrating sphere. Two measurements are proposed to capture CD
enhancements: Exact fCD computed from Eq. (8) and fCD computed
from a far-field measurement [see Eq. (18)] of extinction σext (θ = 0)
and helicity 〈�〉 at the right-angle (θ = 90).

the helicity expectation value, both of which can be mea-
sured experimentally in the far-field limit. This enables us to
bridge near-field magnitudes, such as fCD, to experimentally
accessible Stokes parameters in the far field for the first time.
In addition to this, we reveal that it is possible to infer fCD

for lossless and cylindrically symmetric scatterers using only
two far-field measurements: the extinction cross-section and
the helicity density at specific scattering angles θ . This is
particularly noteworthy for dipolar achiral antennas under
plane-wave illumination, which is the most commonly studied
scenario in the field of chiral light-matter interactions. In this
particular case, we anticipate that the two required scattering
angles to capture fCD in far field are the forward θ = 0◦ (for
computing extinction) and the right angle θ = 90◦ (for ob-
taining helicity). In this regard, please check Fig. 1 for further
clarification.

Let us now introduce the theoretical framework of our
work. To describe the excitation of chiral molecules, we adopt
the formalism introduced by Tang and Cohen [40]. The CD
signal of a chiral molecule under the illumination of a well-
defined helicity field (σ = ±1) can be computed in vacuum as

CDinc(r) = −4

ε
Im{G}Cσ

inc(r), (1)

where G is the chiral polarizability of the molecule and
Cσ

inc(r) is the incident local density of optical chirality [40],

Cσ
inc(r) = kε

2
Im

{
Eσ

inc(r) · ZHσ
inc

∗(r)
}
. (2)

Here, k is the radiation wave number, ε is the electric
permittivity of the medium. Moreover, Eσ

inc(r) and Hσ
inc(r)

refer to incident electromagnetic fields with well-defined
helicity [41] (see Appendix A 1 for more details).

In the presence of optical antennas (see Fig. 1) and in
the helicity basis [42], the total electromagnetic fields can
be generally written as Eσσ ′

tot (r) = Eσσ ′
sca (r) + Eσ

inc(r)δσσ ′ . Here
Eσσ ′

sca (r) is the scattered electromagnetic field written in terms
of the electromagnetic modes with well-defined helicity σ ′ =
±1 (see Appendix A 2 for more details). In analogy with
Eq. (1), we can express the total CD signal of a chiral molecule
in the presence of an optical antenna as [43]

CDtot (r) = −4

ε
Im{G}Cσ

tot (r) = k

2
Im{G}

∑
σ ′=±1

σ ′∣∣Eσσ ′
tot (r)

∣∣2
.

(3)

We seek to maximize CDtot (r) with Eq. (3). However, such
enhancements cannot be achieved through G since it is a fixed
chiral molecular parameter that cannot be engineered upon
illumination. In contrast, the total density of optical chirality,
Cσ

tot (r), can be tuned to enhance light-matter interactions and,
thus, increase the sensitivity of CD spectroscopy [44]. To
get a deeper insight into the total density of optical chirality,
let us split Cσ

tot (r) into three contributions; namely, Cσ
tot (r) =

Cσ
inc(r) + Cσ

sca (r) + Cσ
int (r), with

Cσ
inc(r) = σ

∣∣Eσ
inc(r)

∣∣2
, (4)

Cσ
sca (r) = ∣∣Eσ+

sca (r)
∣∣2 − ∣∣Eσ−

sca (r)
∣∣2

, (5)

Cσ
int (r) = 2σRe

{
Eσ

inc
∗(r) · Eσσ

sca (r)
}
. (6)

Here Cσ
sca (r) and Cσ

int (r) account for the scattering and inter-
ference contributions to the optical chirality in the presence of
achiral optical antennas, respectively. Now, it is experimen-
tally challenging to place enantiomers at will, namely, at a
desired spatial coordinate r. Accordingly, it is more conve-
nient to introduce an averaged expression of the local CD
enhancement factor that gives insight into how efficient the
optical antenna might be at enhancing CD spectroscopy [34].
To that end, let us first integrate both Eqs. (1) and (3) over an
imaginary sphere of radius r surrounding the optical antenna
to then calculate the ratio between these integrals, namely,

fCD =
∫

CDtot (r)dS∫
CDinc(r)dS

= 1 +
∫

Cσ
sca (r)dS + ∫

Cσ
int (r)dS∫

Cσ
inc(r)dS

,

(7)

where dS = r2 sin θdϕdθ . To compute Eq. (7), we need
the orthogonality relations that the incident and scattered
electromagnetic fields satisfy when written in terms of the
multipoles with well-defined helicity. Fortunately, these can
be derived from Jackson’s book in its third edition [45] (see
Appendix B 1 for the explicit derivation).
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Now, by considering these relations, and after some algebra
(see Appendix B 2 for more details), we arrive at

fCD = 1 + C̃σ
sca + C̃σ

int

C̃σ
inc

, (8)

where

C̃σ
inc = σ

∑
lm

∣∣Cσ
lm

∣∣2
Gjl jl , (9)

C̃σ
sca = −2

∑
lm

Im
{
aσ

lmbσ
lm

∗}Ghl hl , (10)

C̃σ
int =

√
2

∑
lm

Re
{
Cσ

lm
∗(aσ

lm − iσbσ
lm

)
Gjl hl

}
. (11)

Here C̃ denotes the average of C over a spherical surface, aσ
lm

and bσ
lm are the electric and magnetic scattering coefficients of

an arbitrary sample while Cσ
lm denotes the incident coefficients

characterizing the nature of the wave. Moreover,

G fl gl = 1

2

(
2 f ∗

l (u)gl (u) + 1

u2

∂

∂u

{
u f ∗

l (u)
∂

∂u
[ugl (u)]

})
.

(12)

Here G fl gl is a scalar function that depends on spherical Bessel
and Hankel functions. In particular, we may have { fl , gl} =
{ jl , jl}, {hl , hl}, { jl , hl}, jl and hl being the spherical Bessel
and Hankel functions, respectively [45]. Note that u = kr
represents the normalized radius of an imaginary sphere sur-
rounding the achiral object, where the averaging integral
is carried out. For the mathematical details, please check
Appendix B 1.

Equation (8), together with Eqs. (9)–(12), is one of the first
main results of this paper. These equations describe the inte-
grated CD enhancement in the presence of scatterers of any
size and shape under the excitation of fields with well-defined
helicity. Our results overcome previous approximations, such
as the widely used system of a circularly polarized plane-
wave illuminating dipolar objects [25–36]. In this regard, it
is crucial to highlight that the results we have obtained, as
summarized in Eqs. (8)–(12), represent an extension of prior
analytical (but approximate) expressions for fCD [8,27,46].
These previous expressions of the fCD factor were originally
derived within the dipolar regime, considering fields in the
near-field limit with fCD scaling as 1/(kr)6, and were estab-
lished under the illumination of a circularly polarized plane
wave. Thus, our findings, summarized in Eqs (8)–(12), may
find applications in chiral sensing and chiral spectroscopy
techniques beyond the current state-of-the-art.

To get a deeper insight into the generality of our results,
let us briefly comment on some aspects of fCD with respect
to chiral molecules. In our study of dipolar chiral molecules,
we must consider the multipolar contributions of the incom-
ing field in the fCD factor. This is true even though chiral
molecules only react to the local values of the electric and
magnetic fields, neglecting derivatives of the fields that would
play a role with quadrupolar transitions in the chiral molecule.
This is because chiral molecules are placed outside the sphere
surrounding the origin of coordinates, where the optical an-
tenna is located. In short, the description of the fCD outside

the origin requires the full multipolar distribution of the field,
especially if the point is at a distance large compared with the
wavelength.

At this point, we provide the steps to find fCD around any
optical antenna:

(1) First, we need the solution of the electromagnetic
fields under the illumination of a well-defined helicity beam.
These can be obtained by any Maxwell’s solver.

(2) Then, we project in the far field the exact solution of
the scattered fields to obtain the scattering coefficients (see
Eq. (9.123) in Jackson’s book in its third edition [45]).

(3) Finally, we can compute fCD via Eq. (8), together with
Eqs. (9)–(12).

Let us briefly state the practical value of our work. On the
theoretical side, we might notice that we can directly compute
the fCD factor from the exact solution of the fields under the
illumination of a well-defined helicity beam using standard
Maxwell solvers. However, we would lose track of the role of
the multipoles contributing to the fCD factor. Moreover, by us-
ing standard Maxwell solvers, imaginary integrating spheres
surrounding the object would be needed at each calculation of
the fields to perform the averaging integral surrounding the
object. In contrast, our formalism allows inferring the role
of the multipoles contributing to the fCD factor, which is an
averaged magnitude itself.

From an experimental perspective, one approach to opti-
mize the design of an optical antenna so that it maximizes
the CD spectra of chiral molecules would be to measure
iteratively the CD signal of suspended chiral molecules
with and without different antenna designs. However, this
trial-and-error optimization procedure would require multiple
measurements and, thus, would not be cost-effective. Our
results, which are based on Eq. (8), along with Eqs. (9)–
(12), offer a far more efficient method to optimize optical
antenna designs for enhanced CD spectroscopy without the
need to perform multiple CD experiments with suspended
chiral molecules in the presence of the designed structures.

As an illustrative example of our method and based on
the aforementioned recipe, we depict the exact expression of
fCD for a sphere sustaining several multipoles under plane-
wave illumination [see Fig. 2(a)]. Note that in Fig. 2, we
have defined u = kr = k(a + δx ), being δx = 1 nm the incre-
ment with respect to the radius a of the achiral sphere. As
a result, we calculate fCD in the near field. Moreover, we
also depict in Fig. 2(b) the scattering contribution to fCD.
That is, fCD − C̃σ

int/C̃σ
inc. From now on, the latter quantity

will be referred to as the scattering approximation. For the
sake of clarity, we summarize the exact multipolar expansion
and the scattering approximation of fCD for Mie scatterers
under the illumination of a circularly polarized plane wave in
Table I. Now, we infer, by comparing Fig. 2(a) with Fig. 2(b),
that the exact solution of fCD can be fairly approximated
to just the scattering approximation. We understand the va-
lidity of the scattering approximation of fCD based on the
following:

(1) On mathematical grounds, and according to Eq. (B3),
it can be checked that Ghl hl � |Gjl hl | for u < l . That is, funda-
mental properties of spherical Bessel functions dictate that the
scattering contribution dominates over the interference term
for u < l .
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FIG. 2. CD enhancements for achiral sphere under the illumi-
nation of a circularly polarized plane-wave. (a) fCD (exact) and
(b) fCD − C̃σ

int/C̃σ
inc (scattering). Here u = kr = k(a + δx ), with δx =

1 nm, ka being the optical size and m the refractive index contrast.
The exact and scattering multipolar expansions for Mie scatterers are
given in Table I. The dashed green lines correspond to a cut depicted
in Fig. 3.

(2) On physical grounds, we notice that there are no strong
resonances of the lth multipole for u > l . For example, dipolar
and quadrupolar resonances typically arise for u < 1 and 1 <

u < 2, respectively.
At this point, we will delve into Eq. (10), which approxi-

mates the efficiency of an optical antenna to enhance the fCD

factor. In particular, let us examine its physical meaning when

just one multipole order (electric and magnetic) contributes
to the optical response of the antenna. In this regard, it is es-
sential to note that the one multipole approximation includes
the most studied scenario by the nanophotonic community
devoted to enhanced chiral sensing: a circularly polarized
plane wave incident on dipolar objects [25–36].

Now, when the optical response of the antenna can be
described by just one multipole order l , Eq. (10) reads

C̃σ
sca = −2Ghl hl

m=l∑
m=−l

Im
{
aσ

lmbσ
lm

∗}
. (13)

By inspecting Eq. (13), we notice that C̃σ
sca is proportional

to Ghl hl (evaluated in the near field), and the interference
between the electric and magnetic scattering coefficients
Re{aσ

lmbσ
lm

∗}. Now, let us introduce the (V/I)-Stokes parame-
ter, which can be inferred using conventional waveplates in the
far field [48,49]. That is, let us introduce the normalized (and
unit-less) electromagnetic helicity expectation value, which
reads [50–52]

〈�〉 =
∫
	

(∣∣Eσ+
sca

∣∣2 − ∣∣Eσ−
sca

∣∣2)
d	∫

	

(∣∣Eσ+
sca

∣∣2 + ∣∣Eσ−
sca

∣∣2)
d	

. (14)

Computing 〈�〉 in the case in which the optical response can
be described by a single multipolar order l [50–52], we can
write

〈�〉 = −2

∑
m Im

{
aσ

lmbσ
lm

∗}∑
m

(∣∣aσ
lm

∣∣2 + ∣∣bσ
lm

∣∣2) = −2

∑
m Im

{
aσ

lmbσ
lm

∗}
k2σsca

,

(15)

where σsca is the scattering cross section [47,53]. At this
point, we notice that the expression for C̃σ

sca resembles 〈�〉.
In fact, and without loss of generality, we can write C̃σ

sca =
Ghl hl 〈�〉k2σsca. As a result, fCD yields

fCD ∼ 1 + C̃σ
sca

C̃σ
inc

= 1 + Ghl hl 〈�〉k2σsca

C̃σ
inc

. (16)

This is another significant result of the present work. We
have linked the averaged optical chirality associated with
scattered fields, C̃σ

sca, which is usually computed in the near
field (through Ghl hl ), with quantities that can be evaluated or

TABLE I. Analytic expressions for the CD enhancement factor, fCD, depending on the interaction between an incident plane-wave and an
achiral spherical particle. Here al and bl denote the electric and magnetic scattering Mie coefficients [47] and {Ghl hl , Gjl hl } can be computed
from Eq. (12); �θ the helicity density; σsca and σext are the scattering and extinction cross-sections; and λ the radiation wavelength.

Approximation in the calculation of fCD Plane wave illumination

Exact multipolar expansion [see Fig. 2(a)] fCD = 1 + ∑
l (2l + 1)(Re{al bl

∗}Ghl hl − Re{(al + bl )Gjl hl })

Scattering approximation [see Fig. 2(b)] fCD ∼ 1 + ∑
l (2l + 1)Re{al bl

∗}Ghl hl

Scattering approximation for arbitrary samples

well-described by a single multipolar order l fCD ∼ 1 + πGhl hl
λ2 〈�〉σsca −→︸︷︷︸

Lossless

fCD ∼ 1 + πGhl hl
λ2 〈�〉σext

Scattering approximation for cylindrical samples
well-described by a single multipolar order l
and total angular momentum m (see Fig. 3)

fCD ∼ 1 + πGhl hl
λ2 �θσsca −→︸︷︷︸

Lossless

fCD ∼ 1 + πGhl hl
λ2 �θσext
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measured in far field, i.e., the helicity expectation value, 〈�〉
and the scattering cross-section, σsca.

Our findings align with previous works devoted to iden-
tifying far-field observables for characterizing chiral optical
near fields [12]. In Ref. [12] the far-field observable is the
optical chirality flux. In our work, we connect the averaged
local density of chirality to the helicity expectation value and
the scattering cross-section, quantities that can be directly
inferred from measurements of the Stokes parameters [49].

At this stage, let us remark on a fundamental feature
that is embedded in Eq. (16). For both lossless and helicity-
preserving objects, we can write C̃σ

sca ∼ Ghl hl k
2σext, with

σext = σsca, σext being the extinction cross-section [47]. That
is, the CD enhancement captured by the fCD factor is related
to a single measurement of the extinct power in the for-
ward direction whenever 〈�〉 ∼ 1. The relation between fCD

and σext for helicity-preserving achiral objects significantly
reduces eventual experimental and numerical calculations
devoted to enhanced chiral sensing. As a matter of fact, a loss-
less, helicity-preserving, and cylindrically symmetry building
block has shown to be desirable to achieve high values of fCD,
as shown, for instance, in Refs. [29,32,34].

So far, we have shown an alternative way to infer local
CD enhancements close to the achiral antenna by computing
far-field magnitudes such as the helicity expectation value,
the scattering cross-section, or the extinction cross-section.
In particular, a scenario of major interest for the purpose of
enhanced chiral detection occurs when the achiral antenna
preserves the helicity of the incident illumination, i.e., when-
ever 〈�〉 ∼ 1. Such objects satisfy |Eσσ ′

sca (r)| ∼ 0 for σ �= σ ′,
thus, the local sign of optical chirality is preserved.

Experimentally, identifying helicity-preserving scatterers
requires measuring the polarization of all the scattered field
components, something which is not feasible in practice.
Thus, our question is: can we infer the helicity expectation
value, 〈�〉, from a single measurement of its local density
in the far field? We will discuss scenarios in which the he-
licity density at a given scattering angle can be identical to
its expected value. In particular, we will focus on cylindri-
cally symmetric scatterers which preserve the total angular
momentum in the incident direction (m = m′) and whose op-
tical response can be well-described by a single multipolar
order (l = l ′), e.g., nanodisks at normal incidence or spherical
particles under the illumination of tightly focused Laguerre-
Gaussian beams [54].

Mathematically, we can express the aforementioned condi-
tion as 〈�〉 = �θ , where �θ denotes the helicity density at an
angle θ . After some algebra (see Appendix C), we obtain

Pm
l (cos θ )

∂Pm
l (cos θ )

∂ cos θ
= 0 �⇒ 〈�〉 = �θ, (17)

where Pm
l (cos θ ) are the associated Legendre polynomials

[45]. This is another key result of the present work. The helic-
ity expectation value can indeed be computed from a single
measurement of the helicity density at a specific angle θ .
Our result implies that for a cylindrically symmetric scatterer
whose response can be well-described by a single multipolar
order, l , if we excite it with an illumination with a fixed total
angular momentum, m, Eq. (17) specifies the angle at which
the helicity density is equal to its expected value. Thus, and

FIG. 3. fCD for a Germanium dipolar sphere (m = 4.25) with
radii a = 118 nm under the illumination of a circularly polarized
plane-wave. The integrating sphere has a radius of 121 nm. Exact
fCD (solid black). Scattering fCD (dashed red) with � = m = 1, so
Eq. (18) is used. fCD calculated only from the near field of the
scattered field (dashed blue). The maximum value of fCD occurs at
λ = 1064 nm.

according to Eq. (16), for lossless and cylindrically symmetric
targets, we can infer the fCD factor by just considering two
far-field measurements: extinction cross-section, in the for-
ward direction, and helicity density, at an angle θ specified
by Eq. (17) [55].

For instance, if we consider the typical case of a cylindri-
cally symmetric dipolar target (l = 1) under a circularly polar-
ized plane-wave illumination (m = ±1), Eq. (17) yields that
the angle we should look at is θ = π/2. In this case, the fCD

factor reads for lossless and cylindrical dipolar antennas as

fCD ∼ 1 + πGhl hl

λ2
�π/2σext. (18)

Table I summarizes the primary expressions discussed
in this letter, particularized for plane-wave illumination and
spherical Mie scatterers. Note that the electric and magnetic
Mie coefficients emerge since we are dealing with a high
refractive index spherical object [47]. Nonetheless, one can
tackle other geometries using the T-matrix formalism [56,57].
It is important to emphasize that in Table I, one can find the
exact multipolar expansion and the scattering approximation
for fCD. Moreover, one can also see the expressions to capture
fCD from far-field measurements for both lossy and lossless
achiral spherical objects. Hence, Table I can help researchers
to capture the fCD factor without the need to perform multiple
CD experiments with suspended chiral molecules.

Interestingly, the presence of a substrate does not modify
the cylindrical symmetry of the system. Hence, Eq. (17) can
be applied when the cylindrical object is placed on a sub-
strate. Thus, our expression for calculating fCD, summarized
in Eq. (18), can be used when a substrate is considered.

To conclude this work, we present an illustrative example
that encompasses our findings. Indeed, in Fig. 3, we compare
different approximations for the fCD factor of a Germanium
(Ge) dipolar sphere with a radius of a = 118 nm. Note that
r = a + δx = 121 nm, so δx = 3 nm. As shown in Fig. 3, the
exact result (solid black) and the scattering approximation
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for � = m = 1 (dashed red) agree well, with a relative error
always below 10%. This indicates that our method, which
involves measuring helicity at the right angle and the ex-
tinction cross-section, can accurately capture the fCD factor
for spherical dipolar particles [58]. However, the near-field
contribution of the scattered field produces worse results, as
shown by the blue dashed curve in Fig. 3. Previous studies
have used the near-field approximation of the scattered fields
to provide analytical expressions for the fCD factor [8,27,46],
but our findings suggest that this approach may not be suitable
for accurate calculations. In this regard, see Appendix D for
more details on the near-field approximation of the fCD factor.

In conclusion, we have derived an exact multipolar expres-
sion of fCD for scatterers of any form, shape, and material.
This is the very first exact expression of fCD that allows
researchers to anticipate experimentally how efficient is an
achiral antenna in enhancing molecular CD signals prior to
running CD measurements involving any chiral molecules.
As a matter of fact, we have derived fCD under general il-
lumination conditions. In other words, we have not restricted
ourselves to a circularly polarized plane-wave excitation in
our derivation. Hence, our results can find potential applica-
tions in developing novel enhanced chiral sensing techniques
using structured fields.

In addition to this, our work unveils a new experimental
method to determine the capability of an optical antenna to
enhance the CD spectra of a set of molecules surrounding it.
This experimental method only requires two measurements
in the far field: the scattering cross-section and the helicity
expectation value. Moreover, we proved that by measuring
extinction (in the foward direction) and the density of helicity
at the perpendicular direction to the incident wave, one could
anticipate how efficient the achiral dipolar antenna would
be at enhancing molecular CD spectra. In fact, it has been
recently demonstrated that a local and single measurement
of the degree of circular polarization in the far-field enables
quantifying near-field CD enhancements [59]. In particular,
it has been proved for a monodisperse solution of Silicon
nanoresonators. We believe that the simplicity of these
measurements will pave the way for experimental verification
and characterization of building blocks for CD enhancement
from far-field measurements and, thus, may give rise to novel
developments in the field of chiral light-matter interactions.
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APPENDIX A: MULTIPOLAR ELECTROMAGNETIC
FIELDS IN A WELL-DEFINED HELICITY BASIS

1. Incident electromagnetic fields

First, we need to write down the electromagnetic fields to
calculate the surface-enhanced circular dichroism (CD). The
most generic expression of the incident electromagnetic fields
are given by

Einc(r) =
∞∑

l=0

+l∑
m=−l

ge
lmN j

lm(r) + gm
lmM j

lm(r), (A1)

ZHinc(r) =
∞∑

l=0

+l∑
m=−l

ge
lmM j

lm(r) − gm
lmN j

lm(r), (A2)

where ge
lm and gm

lm stands for the incident electric and magnetic
beam’s shape coefficients, respectively, and

M j
lm(r) = jl (kr)X lm(r), N j

lm(r) = i∇ × M j
lm(r)

k
,

X lm(r) = LYlm(θ, ϕ)√
l (l + 1)

. (A3)

Here M j
lm(r) and N j

lm(r) are (incident) Hansen’s multipoles
[45], jl (kr) are the spherical Bessel functions, k being the
radiation wavelength, and r the observation point. Moreover,
Ylm(θ, ϕ) are the spherical harmonics, θ and ϕ being the polar
and azimuthal angles, and L = {−ir × ∇} is the total angular
momentum operator. At this point, let us consider an arbitrary
incident electromagnetic field with well-defined helicity, σ =
±1. Mathematically, we can write this well-defined helicity
field as

Eσ
inc(r) = Einc(r) + σ iZHinc(r)

2

=
∞∑

l=0

+l∑
m=−l

(
ge

lm − iσgm
lm√

2

)(
N j

lm(r) + iσM j
lm(r)√

2

)

=
∞∑

l=0

+l∑
m=−l

Cσ
lm�σ

lm(r), (A4)

where

Cσ
lm = ge

lm − iσgm
lm√

2
and �σ

lm(r) = N j
lm(r) + iσM j

lm(r)√
2

.

(A5)

Note that Cσ
lm = ge

lm = −iσgm
lm. Also, let us recall that the

multipoles �σ
lm(r) are eigenvectors of the square of the total

angular momentum J2, the projection of the total angular mo-
mentum in the OZ direction, Jz, and helicity � = (1/k)∇×
operators [60–62] with eigenvalues l (l + 1), m, σ , respec-
tively.
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2. Scattered and total electromagnetic fields

At this point, let us consider the scattered electromag-
netic fields. The most generic expression of these fields is
given by

Eσ
sca (r) =

∞∑
l=0

+l∑
m=−l

aσ
lmNh

lm(r) + bσ
lmMh

lm(r), (A6)

ZHσ
sca (r) =

∞∑
l=0

+l∑
m=−l

aσ
lmMh

lm(r) − bσ
lmNh

lm(r), (A7)

where aσ
lm and bσ

lm stand for the electric and magnetic scatter-
ing coefficients, respectively. Notice that aσ

lm and bσ
lm depend

on the incident illumination. As a result, we have explicitly
indicated the σ -dependency. Moreover,

Mh
lm(r) = hl (kr)X lm(r), Nh

lm(r) = i∇ × Mh
lm(r)

k
, (A8)

where Mh
lm(r) and Nh

lm(r) are (scattered) Hansen’s multipoles
[45] and hl (kr) are the spherical Hankel functions. Following
the steps done in Eq. (A4), the electric field reads as

Eσσ ′
sca (r) = Eσ

sca (r) + σ ′iZHσ
sca(r)

2

=
∞∑

l=0

+l∑
m=−l

(
aσ

lm − iσ ′bσ
lm√

2

)(
Nh

lm(r) + iσ ′Mh
lm(r)√

2

)

=
∞∑

l=0

+l∑
m=−l

Dσσ ′
lm �σ ′

lm(r), (A9)

where

Dσσ ′
lm = aσ

lm − iσ ′bσ
lm√

2
and �σ ′

lm(r) = Nh
lm(r) + iσ ′Mh

lm(r)√
2

.

(A10)

To conclude Appendix A, let us write the total electromagnetic
fields. These are given by the additive sum of the incident

and scattered electromagnetic fields. Hence, by taking into
account both Eqs. (A4) and (A9), we can straightforwardly
write

Eσ
tot (r) =

∑
σ ′=±1

Eσσ ′
tot (r), iZHσ

tot (r) =
∑

σ ′=±1

σ ′Eσσ ′
tot (r),

(A11)

with

Eσσ ′
tot (r) = Eσσ ′

sca (r) + Eσ
inc(r)δσσ ′, (A12)

where δσσ ′ is a Kronecker δ. Next, we will use the orthogo-
nality expressions that satisfy both the incident and scattered
electromagnetic fields to compute the exact multipolar expan-
sion of the CD enhancement factor.

APPENDIX B: AN EXACT MULTIPOLAR EXPANSION
OF fCD BEYOND THE PLANE-WAVE PICTURE

1. An exact multipolar expansion of fCD: Orthogonality
relations of well-defined helicity multipoles

To derive an exact multipolar expansion of the CD en-
hancement factor, fCD, beyond the plane-wave picture, we
need to know the orthogonality relations that satisfy both
incident and scattered electromagnetic fields over an inte-
grating sphere surrounding the object under illumination.
To that end, we need first to calculate the set of orthog-
onality relations fulfilled by multipoles with well-defined
helicity. That is, we need the orthogonality relations be-
tween incident {�σ

lm,�σ
l ′m′ }, interference {�σ

lm,�σ
l ′m′ }, and

scattering {�σ
lm,�σ

l ′m′ } terms, according to Eq. (7). Fortu-
nately, all these relations can be derived from Jackson’s
third edition book. Let us start this section by tran-
scribing Eq. (10.48) that can be found on page 472
of Ref. [45]:

∫
	

N f
lm

∗ · Ng
l ′m′d	 = δll ′δmm′

(
f ∗
l (u)gl (u) + 1

u2

∂

∂u

{
u f ∗

l (u)
∂

∂u
[ugl (u)]

})
,

∫
	

M f
lm

∗ · Mg
l ′m′d	 = f ∗

l (u)gl (u)δll ′δmm′ . (B1)

Here u = kr denotes the optical radius of the integrating sphere and {δll ′ , δmm′ } are Kronecker δs. Notice that { fl (u), gl (u)}
denote either Bessel or Hankel spherical functions, namely, jl (u) and hl (u) [45], depending on the nature of the field: incident
or scattered, respectively.

At this point, we have already learned that multipoles with well-defined helicity {�σ
lm,�σ

lm} are constructed by a linear
combination of the Hansel multipoles [see the right-hand side of Eqs. (A5) and (A10)]. As a result, we can write from Eq. (B1)∫

	

(
�σ

l ′m′
)∗ · �σ

lm d	 = Gjl jl δll ′δmm′ ,

∫
	

(
�σ

l ′m′
)∗ · �σ

lm d	 = Ghl hl δll ′δmm′ ,

∫
	

(
�σ

l ′m′
)∗ · �σ

lm d	 = Gjl hl δll ′δmm′ , (B2)

with

G fl gl = 1

2

(
2 f ∗

l (u)gl (u) + 1

u2

∂

∂u

{
u f ∗

l (u)
∂

∂u
[ugl (u)]

})
. (B3)

Now, we can rewrite Eq. (B3) to get rid of second derivatives by making use of fundamental properties of the Ricatti-Bessel
functions [63]. In particular, we can write

Gjl jl = 1

2

(
j2
l (u)

[
1 + l (l + 1)

u2

]
+ 1

u2

{
∂

∂u
[u jl (u)]

}2
)

Ghl hl = 1

2

{
|hl (u)|2

[
1 + l (l + 1)

u2

]
+ 1

u2

∣∣∣∣ ∂

∂u
[uhl (u)]

∣∣∣∣2
}

, (B4)
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Gjl hl = 1

2

(
jl (u)hl (u)

[
1 + l (l + 1)

u2

]
+ 1

u2

{
∂

∂u
[u jl (u)]

∂

∂u
[uhl (u)]

})
, (B5)

where ∂
∂u [u fl (u)] = u fl−1(u) − l fl (u) is satisfied for f (u) = { jl (u), hl (u)}.

2. An exact multipolar expansion of fCD: From the helicity basis
to the standard electric and magnetic multipolar expansion

At this stage, we have all ingredients to calculate the ex-
act multipolar expansion of fCD. The starting point of this
section will be Eq. (7). According to Eq. (7), we need the
orthogonality relations that satisfy the Rieman-Silberstein
representation of the incident and scattered electromagnetic
fields:

C̃σ
inc =

∫
	

Cσ
inc(r)d	 =

∫
	

σ
∣∣Eσ

inc(r)
∣∣2

d	, (B6)

C̃σ
sca =

∫
	

Cσ
sca (r)d	 =

∫
	

(∣∣Eσ+
sca (r)

∣∣2 − ∣∣Eσ−
sca (r)

∣∣2)
d	,

(B7)

Cσ
int =

∫
	

C̃σ
int (r)d	 = 2σ

∫
	

Re
{
Eσ

inc
∗(r) · Eσσ

sca (r)
}
d	.

(B8)

These orthogonality relations can be computed by combining
Eqs. (A4) and (A9) with Eq. (B2). In fact, and after some
algebraic manipulations, it can be shown that

C̃σ
inc = σ

∑
lm

∣∣Cσ
lm

∣∣2
Gjl jl ,

C̃σ
sca =

∑
lm

(∣∣Dσ+
lm

∣∣2 − ∣∣Dσ−
lm

∣∣2)
Ghl hl ,

C̃σ
int = 2σ

∑
lm

Re
{
Cσ

lm
∗Dσσ

lm Gjl hl

}
. (B9)

Now, let us obtain a closed relation of the optical chirality
enhancements in terms of the electric and magnetic scattering
coefficients. After some algebra, we arrive to

fCD = 1 + C̃σ
sca + C̃σ

int

C̃σ
inc

, (B10)

with

C̃σ
inc = σ

∑
lm

∣∣Cσ
lm

∣∣2
Gjl jl , C̃σ

sca = −2
∑
lm

Im
{
aσ

lmbσ
lm

∗}Ghl hl ,

C̃σ
int =

√
2

∑
lm

Re
{
Cσ

lm
∗(aσ

lm − iσbσ
lm

)
Gjl hl

}
. (B11)

APPENDIX C: EXTRACTING THE HELICITY
EXPECTATION VALUE FROM A SINGLE

MEASUREMENT OF ITS LOCAL DENSITY

In this Appendix, we derive the condition given in Eq. (17),
that relates the local density of helicity at a certain angle,
�θ,φ , with the helicity expectation value, 〈�〉. For that aim,
we should first define the local density of helicity, which we
consider to be given in the far field by

�θ,ϕ ≡ lim
kr→∞

∣∣Eσ+
sca (r, θ, ϕ)

∣∣2 − ∣∣Eσ−
sca (r, θ, ϕ)

∣∣2∣∣Eσ+
sca (r, θ, ϕ)

∣∣2 + ∣∣Eσ−
sca (r, θ, ϕ)

∣∣2 , (C1)

where Eσσ ′
sca (r, θ, ϕ) is the scattered field written in terms

of electromagnetic modes with well-defined helicity. From
Eq. (C1), we notice that we require the asymptotic behavior
of Eσσ ′

sca (r, θ, ϕ) in the far-field limit. For that aim, we need
first to calculate how Hansel multipoles behave in the far-field
limit. After some algebra, we arrive to

lim
kr→∞

Nh
lm(r) = −i

eikr

kr

(−i)l+1

√
l (l + 1

ξlm(θ, ϕ),

lim
kr→∞

Mh
lm(r) = −i

eikr

kr

(−i)l+1

√
l (l + 1

ηlm(θ, ϕ), (C2)

where ξlm(θ, ϕ) = r∇Ylm(θ, ϕ) and ηlm(θ, ϕ) = r̂ ×
ξlm(θ, ϕ). Now, the far-field expression of the electromagnetic
field scattered by an arbitrary sample can be computed [64]:

Eσσ ′
sca (r, θ, ϕ) = −i

eikr

kr

(−i)�+1

√
�(� + 1)

Dσσ ′
�m

(
ξ�m(θ, ϕ) + iσ ′η�m(θ, ϕ)√

2

)
. (C3)

Substituting the scattered field in Eq. (C3) into the expression of the helicity density given by Eq. (C1), we obtain for fixed l and
m values:

�θ = 2
Im

(
aσ∗

lm bσ
lm

)
[|ξlm|2 + |ηlm|2] − [∣∣aσ

lm

∣∣2 + ∣∣bσ
lm

∣∣2]
Im(ξ∗

lm · ηlm)[∣∣aσ
lm

∣∣2 + ∣∣bσ
lm

∣∣2][∣∣ξlm

∣∣2 + ∣∣ηlm

∣∣2] − 4Im
(
aσ∗

lm bσ
lm

)
Im(ξ∗

lm · ηlm)
. (C4)

The type of scatterers which may be described by fixed l and m values are cylindrically symmetric particles, illuminated by a
beam with a well-defined angular momentum, m, and with a non multipolar response. Due to the cylindrical symmetry of the
scatterers, helicity density cannot depend on ϕ variable. This is the reason why we have chosen to write helicity density as �θ

in Eq. (C4). Crucially, whenever Im(ξ∗
lm · ηlm) = 0, one recovers the expression of the helicity expectation value, i.e.,

Im(ξ∗
lm · ηlm) = 0 �⇒ �θ = 〈�〉 = 2

Im
(
aσ∗

lm bσ
lm

)
|alm|2 + |blm|2 . (C5)
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Importantly, the condition Im(ξ∗
lm · ηlm) = 0 is purely geo-

metrical, i.e., does not depend on the particular response of
the scatterer. This fact makes the expression completely gen-
eral and applicable to any type of cylindrical sample whose
response is well-described by a fixed l . Thus, for this type
of scatterers, there are locations in the far field at which the
helicity density is equal to the helicity expectation value. The
specific sites at which 〈�〉 = �θ are obtained by finding the
solutions to the equation Im(ξ∗

lm · ηlm) = 0. More explicitly,
we have that the vector and scalar spherical harmonics are
written as

ξlm(θ, ϕ) = ∂Ylm(θ, ϕ)

∂θ
ûθ + 1

sin θ

∂Ylm(θ, ϕ)

∂ϕ
ûϕ, (C6)

ηlm(θ, ϕ) = ∂Ylm(θ, ϕ)

∂θ
ûϕ − 1

sin θ

∂Ylm(θ, ϕ)

∂ϕ
ûθ , (C7)

Ylm(θ, ϕ) =
√

2l + 1

4π

(l − m)!

(l + m)!
Pm

l (cos θ )eimϕ, (C8)

where Pm
l (cos θ ) are the associated Legendre polynomials.

With the definitions above it is straightforward to check
that

Pm
l (cos θ )

∂Pm
l (cos θ )

∂ cos θ
= 0 �⇒ Im(ξ∗

lm · ηlm) = 0. (C9)

In conclusion, for fixed values of l and m, there is an an-
gle θ , given by the transcendental equation above, at which
the helicity density, �θ , is equal to the helicity expectation
value, 〈�〉.

APPENDIX D: NEAR-FIELD APPROXIMATION OF Ghl hl

Let us consider the following limit,

lim
u�1

Ghl hl = lim
u�1

1

2

[
2|hl (u)|2 + 1

u2

∂

∂u

(
uh∗

l (u)
∂

∂u
(uhl (u))

)]

= lim
u�1

[|hl (u)|2 + l (l + 1)|hl (u)|2]

2u2
, (D1)

where u = kr. Now, let us consider l = 1 in the previous
expression. That is

lim
kr�1

Gh1h1 = lim
kr�1

3

2

( |h1(kr)|2
(kr)2

)
= 3

2

(
1

(kr)6

)
, since

h1(u) = e−iu

u

(
1 + 1

u

)
. (D2)

At this point, let us insert the near-field limit of Ghl hl into the
fCD factor of a dipolar sphere under plane-wave illumination.
This operation yields

fCD = 1 + 9Re{a1b1
∗}

2(kr)6
. (D3)

Equation (D3) is exactly Eq. (9) of Ref. [8]. Note that we
have performed many approximations to get Equation (D3)
from the exact expression of fCD. These are: (1) electric
and magnetic dipolar regime, (2) plane-wave illumination,
(3) homogeneous sphere, and (4) near-field limit. Note that
Equation (D3) corresponds to the dashed blue curve
(ScatteringNF) in Fig. 3.
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