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Abstract 

For Industry 4.0, tool condition monitoring (TCM) of machining processes aims to increase process efficiency and quality and lower tool 

maintenance costs. To this end, TCM systems monitor variables of interest, such as tool wear. In this paper, a novel meta-learning strategy based 

on ensemble learning and deep learning (DL) is proposed for tool wear monitoring and is compared with state-of-the-art DL models selected 

from recent literature, using open-access datasets as input validating its implementation in an industrial scenario. As a result of this study, a novel 

meta-learning strategy for tool wear monitoring with minimum error is proposed and validated. 
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1. Introduction 

Machining processes, such as milling, are widely used in 

manufacturing to achieve highly accurate machine parts and 

good surface integrity [1]. To satisfy the quality requirements 

of the finished piece, tool condition monitoring (TCM) systems 

are required to improve product quality, process dependability, 

and production efficiency [2]. The primary aim of TCM is to 

identify the appropriate time to replace cutting tools. Changing 

tools too soon disrupts production times, and too late can cause 

damage to equipment, machines, and workpieces.  

However, TCM of machining processes, and in particular 

deep learning (DL)-based TCM, is yet to fully reach the shop 

floor [2]. This is because DL models usually require big data 

for training, which is challenging in machining processes where 

data is generally not publicly available or is unlabelled [3].  

Aiming to mitigate the problem of data availability, open-

access datasets have been published in the literature, such as the 

NASA Ames/UC Berkeley milling dataset [4]. As a result, 

several authors have proposed DL models trained with this 

dataset.  

Aghazadeh et al. (2018) implemented a convolutional neural 

network (CNN) model in combination with spectral subtraction 

of wavelet packets, using the current signals of the dataset, 

achieving a root-mean-squared error (RMSE) of 0.088 mm [5]. 

More recently, Cai et al. (2020) presented a hybrid model based 

on long short-term memory (LSTM) networks. The model was 

trained with all signals and cutting conditions of the dataset, 

using 4 cases for testing and the remaining 12 for training and 

achieving a RMSE of 0.0456 mm. The LSTM layer was used 

for temporal encoding of features, and thereafter, a non-linear 

regression network combined the temporal features obtained 

from the LSTM with the cutting conditions to perform the 

predictions [6]. Another hybrid LSTM model, comprised of 

bidirectional LSTM and encoder-decoder LSTM layers, was 

proposed by Kumar et al. (2022). The model used time and 

frequency features extracted from the vibration signals of the 

dataset, achieving a RMSE of 0.0364 mm [7]. Finally, Pillai and 
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Vadakkepat (2022) presented a temporal multivariate 3D 

convolutional network model, trained with 3D features from the 

signals obtained from kernel-based transformations, and 

achieving a RMSE of 0.0424 mm [8].  

Although good performance has been obtained from the 

models in scientific experiments, the margin of error is still not 

acceptable for industrial implementations. Furthermore, the 

selection of signals from the dataset to be used as inputs 

requires a systematic approach. Therefore, the potential of 

applying DL to TCM requires further research, such as meta-

learning strategies that combine DL models with ensemble 

learning techniques [9].  

In this paper, a novel meta-learning strategy based on deep 

ensemble learning (DEL) is proposed for tool wear monitoring. 

The strategy was compared with state-of-the-art DL models 

selected from recent literature, using the NASA Ames/UC 

Berkeley open-access dataset as input. As such, the contribution 

of this paper is twofold: 

 

• Meta-learning strategy: A novel meta-learning strategy 

based on deep ensemble learning (DEL) compared against 

state-of-the-art DL models selected from recent literature, 

proving a superior prediction performance. 

• An analysis of the signals from the NASA Ames/UC 

Berkeley dataset to identify ideal signals to be used as 

inputs for DL learning models. The signals are analysed, 

cleaned, and augmented. Then, four combinations of 

signals (all signals, current and acoustic emission signals, 

current signal, and vibration signal) are compared in 

relation to their effect on DL model performance. 

 

The reminder of this paper is structured as follows. Section 

2 describes the open-access dataset used in this study. Section 

3 describes the methodology followed to implement the meta-

learning strategy. Thereafter, Section 4 presents results and 

discussion. Finally, Section 5 presents conclusions and outlook 

on future work. 

2. Dataset description 

The NASA Ames/UC Berkeley open-access dataset [4] was 

used in this study as input for training the meta-learning 

strategy based on DEL. The dataset encompasses 16 face 

milling experiments that were performed on a milling machine 

under varying cutting conditions. Three types of sensors, i.e., 

acoustic emission (AE) sensors, vibration sensors, and current 

sensors were employed to collect data with a sampling rate of 

250 Hz. Specifically, the sensors collected signals including 

spindle motor current AC (smcAC), spindle motor current DC 

(smcDC), table vibration (vib_table), spindle vibration 

(vib_spindle), table AE (AE_table), and spindle AE 

(AE_spindle). In addition, the dataset was enriched with 

process information, such as case number, experimental run 

count, tool wear (VB), experiment duration, and cutting 

conditions. Cutting conditions included depth of cut (DOC), 

feed rate, and material type.  

A total of 167 runs were performed for approximately 36 s 

each, containing 9000 measurement points per run. The number 

of runs per case varied according to the extent of VB assessed 

between runs at variable intervals. Specifically, VB was not 

recorded for all runs. Moreover, the degree of tool wear 

surpassed the manufacturer recommended VB limit in some 

cases.  

The experimental conditions of the cases are presented in 

Table 1, and include two values for DOC (1.5 and 0.25 mm), 

two values for feed rate (0.5 and 0.25 mm/rev), and two 

material types (1-cast iron and 2-stainless steel). The cutting 

tools used were KC710 inserts, the cutting speed was 200 

m/min (or 826 rev/min), and the workpiece size was 483 mm x 

178 mm x 51 mm. Eight combinations of cutting conditions 

were defined, and each combination was repeated a second time 

with a new set of cutting tools. 

Table 1. Experimental conditions of the NASA Ames/UC Berkeley dataset. 

Case DOC Feed 

rate 

Material Case DOC Feed 

rate 

Material 

1 1.5 0.5 1 9 1.5 0.5 1 

2 0.75 0.5 1 10 1.5 0.25 1 

3 0.75 0.25 1 11 0.75 0.25 1 

4 1.5 0.25 1 12 0.75 0.5 1 

5 1.5 0.5 2 13 0.75 0.25 2 

6 1.5 0.25 2 14 0.75 0.5 2 

7 0.75 0.25 2 15 1.5 0.25 2 

8 0.75 0.5 2 16 1.5 0.5 2 

 

Pearson correlation coefficient was applied to the dataset, 

obtaining the correlations between the dataset features, and is 

depicted as a correlation matrix in Fig. 1. Of the signals, smcDC 

reported the highest correlation with VB, and also presented a 

high correlation with AE signals. Fig. 2 illustrates the VB 

histogram of the dataset, in which an exponential distribution is 

observed. VB progressed slowly in both the break-in and 

regular wear stages of the cutting tool. The VB curve increased 

exponentially in the high and critical wear stages, until the tool 

was no longer usable. 

 

 

Fig. 1. Correlation matrix of the NASA Ames/UC Berkeley dataset. 
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Fig. 2. VB histogram of the NASA Ames/UC Berkeley dataset. 

3. Methodology 

The methodology to achieve TCM using the novel meta-

learning strategy was comprised of three steps. First, data pre-

processing was performed on the NASA Ames/UC Berkeley 

open-access dataset to clean and prepare it for training the DEL 

model. Second, machine learning (ML) models were developed 

and implemented as baseline models. Finally, the meta-learning 

strategy based on DEL was developed and implemented.  

3.1. Data pre-processing 

The dataset containes measurements collected during entry, 

regular, and exit cuts of the experiments. In this study, the entry 

and exit cut portions of the signals were omitted, focusing only 

on the regular cut portion of the machining process. 

Furthermore, since some cases did not record VB, linear 

interpolation was performed to use all data available. Thereafter, 

signals for each run were evaluated. Data acquired in eight runs 

were corrupted or had undocumented events and were omitted 

in this study, resulting in 159 runs for training and testing. In 

addition, 22 runs had signals with noisy values, which could 

have a negative impact on the prediction capabilities of the 

meta-learning strategy. For predicting tool wear, the global 

behaviour of the signal is more important than localized events 

(e.g., chipping). Therefore, a moving average with size 20 was 

applied to average out the noisy values, while maintaining the 

global behaviour of the signals. The following are the two 

groups of runs that were treated: 

• Omitted 

○ Case 1 - Runs 16 and 17: VB lowers after run 15. 

○ Case 2 - Run 5: Missing data in AE_table. 

○ Case 2 - Run 6: Corrupt data in AE_spindle. 

○ Case 7 - Run 4: Corrupt data in AE_table. 

○ Case 8 - Run 3: Missing data in AE_table. 

○ Case 12 - Run 1: Corrupt data in all signals 

○ Case 12 - Run 12: Undocumented event in all signals. 

• Noise 

○ Case 3 - Run 9. 

○ Case 7 - Run 8. 

○ Case 8 - Run 4. 

○ Case 10 - Runs 2 and 10. 

○ Case 11 - Runs 10 and 21. 

○ Case 12 - Runs 3 and 7. 

○ Case 13 - Runs 3, 6, 8, 9, 13, and 14. 

○ Case 14 - Runs 1, 2, 3, 6, and 10. 

○ Case 15 - Runs 1, 2, 3, 4, 6, and 7. 

3.2. Machine learning baseline models 

Six ML models were trained with the input data as baseline 

models: (i) decision tree, (ii) random forest, (iii) support vector 

machine (SVM), (iv) gradient boosting, (v) XGBoost, and (vi) 

k-nearest neighbours (kNN). For the sake of brevity, detailed 

descriptions of the algorithms are omitted but can be found in 

[10,11]. 

The feature extraction methodology proposed in [12] was 

adopted to train the baseline ML models. Time domain, 

frequency domain, and time-frequency domain features were 

extracted, and are presented in Table 2, with a total of 54 

extracted features. A more detailed description of the extracted 

features can be found in [12]. Afterwards, the features were 

normalized with z-normalization using the standard z-score, 

calculated as z = (x - μ) / σ, where μ is the mean of the feature, 

x is the value of the feature, and σ is the standard deviation of 

the feature.  

Table 2. Extracted features of the time, frequency, and time-frequency 

domains. 

Domain Feature 

Time RMS 

Variance 

Maximum 

Kurtosis 

Skewness 

Peak-to-peak 

Frequency Spectral skewness 

Spectral kurtosis 

Time-frequency Wavelet energy 

 

Given the high quantity of features and the inherent high 

correlation among them, a dimensionality reduction approach 

was required. To this end, the principal component analysis 

(PCA) technique was used [13]. The variance of the dataset that 

each component represents was analysed to determine the 

number of principal components to be chosen. At least 95% of 

variance was considered to properly represent the dataset [12]. 

3.3. Meta-learning strategy based on deep ensemble learning 

Ensemble learning trains multiple ML or DL models, called 

base learners, to output several weak predictions from the same 

problem. The predictions are generally combined using voting 

and averaging mechanisms, which results in better performance 

than those of the models by themselves [14]. Recently, meta-

learning has been proposed for combining predictions, to 

improve the performance of ensemble learning. Meta-learning 

consists of learning from the outputs of each of the learners and 
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making predictions based on the outputs combined. Hence, well 

performing base learners help offset those that perform badly 

for some problems, and vice versa for other problems. The most 

commonly used meta-learning strategy is stacked 

generalization (or stacking), which learns how to best combine 

the outputs of the base learners by using another ML or DL 

model [15]. 

A heterogeneous DEL approach was implemented, 

comprised of LSTM, bidirectional gated recurrent unit 

(BiGRU), and CNN models as base learners. Moreover, a deep 

neural network (DNN) was used as meta-learner, combining the 

predictions from the base learners.  

First, the base learners were trained with the signals as input 

data. A DL stacking meta-learner was subsequently defined and 

trained, where the trained base learners were used as initial 

layers. As a result, the weak predictions were the input features 

of the meta-learner. Fig. 3 depicts the architecture of the meta-

learning model. 

The model was evaluated using all available signals, owing 

to the benefits of sensor fusion [2]. Moreover, other 

combinations were explored as well. Fig. 1 shows that smcDC 

had the highest correlation to VB, followed by both AE signals. 

In general, AE signals have high accuracy and resolution and 

have proven to be reliable for detecting events in machining 

processes [1]. Therefore, a combination of smcDC with 

AE_table and AE_spindle signals was explored to evaluate the 

performance of the approach with less signals but with a 

relatively high correlation among them. The performance of the 

approach was compared with state-of-the-art DL models 

selected from recent literature [5–8]. Since some of the DL 

models were trained only with either the vibration or the current 

signals, the use of smcDC as single input, as well as vib_spindle, 

were also explored for training the meta-learning strategy. 

Consequently, four strategies for training meta-learning models 

with varied input data were explored: (i) all sensor signals, (ii) 

AE_table, AE_spindle and smcDC sensor signals, (iii) smcDC 

sensor signal, and (iv) vib_spindle sensor signal. 

4. Results and discussion 

Six ML baseline models and a meta-learning model based 

on DEL were trained and tested. For the baseline models, time, 

frequency, and time-frequency domain features were extracted 

and z-normalized, for a total of 54 features (nine features per 

signal). PCA was selected for dimensionality reduction and the 

explained variance of the components is presented in Fig. 4. 

Fig. 3. Meta-learning model architecture. 

Fig. 4. Explained variance of PCA of the NASA Ames/UC Berkeley dataset. 
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The first 25 components were selected, as they represent 95% 

of the variance in the dataset. 

Table 3 presents the hyperparameters of the baseline models, 

as well as performance metrics during testing. The 

hyperparameters were obtained using a randomized search 

cross validation method. Coefficient of determination (R2), 

mean absolute error (MAE) and root-mean-squared error 

(RMSE) were chosen as performance metrics. The performance 

of the models is best when closest to one for R2 and closest to 

zero for MAE and RMSE. The best performing model was kNN, 

followed closely by XGBoost. However, the scores indicate 

that the models could have an error in average of 0.0739 mm in 

its prediction. In industrial scenarios, a maximum tool wear of 

0.3 mm is recommended by manufacturers. Thus, the error in 

the predictions represents a 25% of the industrial tool life and 

would not be acceptable in shop floors. 

After training and testing the baseline models, the meta-

learning model based on DEL was implemented. As with the 

baseline models, the data was z-normalized. Furthermore, since 

DL models require big data, a sliding window approach was 

adopted to augment the dataset. The sliding window was of size 

250 (one second) and stride 25 (1/10 of a second), increasing 

the dataset size from 166 datapoints with a sequence length of 

5400, to 31323 datapoints with a sequence length of 250. 

All strategies shared the same model hyperparameters. The 

LSTM, BiGRU, and DEL models were trained for 1000 epochs, 

with an early stop after 50 epochs without model improvement. 

The CNN model required more epochs to generalize knowledge, 

so 4000 epochs with an early stop after 200 epochs were defined. 

All models used the ADAM optimizer with a learning rate of 

0.0001 and RMSE as loss function. To avoid overfitting, a 

dropout of 10% and L2 regularization factor of 0.00001 were 

implemented. The dataset was split stochastically into 48% for 

training, 12% for validation, and 40% for testing. The split was 

made stochastically to account for the variability in cutting 

conditions and tools that may occur in industrial shop floors.  

The performance results of the meta-learning model grouped 

by input data strategies, as well as a comparison with state-of-

the-art DL models, is presented in Table 4. Results in the table 

prove the meta-learning strategy benefits, improving the quality 

of the predictions by combining the predictions of the base 

learners. For the base learners, the LSTM and BiGRU models 

performed better than the CNN model with combinations of 

signals. However, when using individual signals, the LSTM 

model was the worst predictor. 

The model outperformed the results of the two reference 

models that used all signals in the dataset, with an RMSE of 

0.0145 mm and an R2 score of 0.9967. Moreover, it is shown 

that the LSTM and BiGRU base learners also outperformed the 

reference models with RMSE of 0.0207 and 0.0149 mm, 

respectively. Thus, the efficiency of the data cleaning and 

augmentation process before training DL models was proven.  

The performance results for the meta-learning model when 

trained with smcDC and AE signals showed a bigger margin of 

error with an RMSE of 0.0473 mm and an R2 score of 0.9660. 

Nevertheless, the model required less inputs and the results are 

comparable to the reference models that use all signals. Finally, 

the results when using individual signals were underperforming. 

To achieve good results, the architecture of the models was 

expanded, adding two extra layers to the base learners. With 

smcDC, the model had an RMSE of 0.1699 mm and an R2 score 

of 0.5715, and, with vib_spindle, the model had an RMSE of 

Table 3. Hyperparameters and performance metrics of baseline models. 

Model Hyperparameters R2 RMSE MAE 

Decision 

tree 

Default parameters  0.7225 0.1371 0.0534 

SVM C = 9.8143, ε = 0.0012, 

Kernel = RBF 

0.8639 0.0961 0.0595 

Random 

forest 

Max. depth = 20, No. 

estimators = 437 

0.8471 0.1018 0.0610 

Gradient 

boosting 

Learning rate = 0.0975, 

Max. depth = 13, No. 

estimators = 169 

0.8570 0.0984 0.0623 

XGBoost Learning rate = 0.0098, 

Max. depth = 12, No. 

estimators = 577, Min. 

child weight = 4 

0.8952 0.0843 0.0478 

kNN No. neighbours = 2, 

Weights = Distance 

0.9195 0.0739 0.0224 

 

Table 4. Performance results of the meta-learning model. Best performing models are highlighted in bold. 

 All signals DC and AE signals DC signal Vibration signals 

Model R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

LSTM 0.9935 0.0207 0.006 0.9454 0.0601 0.0225 0.3606 0.2078 0.1435 0.4712 0.1910 0.1348 

CNN 0.9611 0.0507 0.0308 0.8597 0.0963 0.0632 0.5114 0.1815 0.1119 0.5778 0.1707 0.1169 

BiGRU 0.9966 0.0149 0.0042 0.9630 0.0494 0.0229 0.3650 0.2067 0.1433 0.7997 0.1176 0.0748 

Meta-learning 0.9967 0.0145 0.0055 0.9660 0.0473 0.0220 0.5715 0.1699 0.1048 0.8072 0.1130 0.0714 

CNN with spectral 

subtraction [5] 

       0.088     

LSTM with 

process 

information [6] 

 0.0456 0.0322          

Hybrid LSTM [7]          0.9837 0.0364 0.0258 

TM3C-KT [8]  0.0424           
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0.1130 mm and an R2 score of 0.8072. Consequently, further 

research efforts should be given to improve the performance of 

the meta-learning model when using individual signals.  

Fig. 5 presents a comparison of the VB curve for both the 

ground truth values, as well as the predicted values of the meta-

learning model, when using all inputs. The data was ordered by 

ground truth value, as all cases and runs were augmented and 

shuffled stochastically during splitting. It may be observed that 

the model predicted values very close to the ground truth 

throughout the wear curve, proving the effectiveness and good 

performance of the approach when using sensor fusion. 

5. Summary and conclusions 

In this paper, a tool wear monitoring approach based on 

meta-learning using deep ensemble learning has been presented. 

The meta-learning approach is proposed for improving 

performance when predicting tool wear in machining. The 

approach uses deep ensemble learning to combine the outputs 

of multiple deep neural network models, i.e., LSTM, CNN, and 

BiGRU models, resulting in improved accuracy and robustness. 

The meta-learning approach has been validated using the 

NASA Ames/UC Berkeley open access milling dataset, which 

was augmented and denoised. A combination of all the signals, 

smcDC and AE signals, and individual signals (smcDC and 

vib_table) were used for the validation tests. The best results 

were obtained when using all the signals, substantially 

outperforming state of the art DL-based reference models and 

proving the benefits of sensor fusion. Future work will involve 

investigating the ability of the meta-learning approach to detect 

tool wear in other machining datasets. Furthermore, data pre-

processing and feature extraction techniques, as well as DL 

model hyperparameter tuning and architectural changes, will be 

studied to improve the performance of the approach when using 

individual signals as inputs. 
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