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Abstract Background Synthetic tabular data generation is a potentially valuable technology
with great promise for data augmentation and privacy preservation. However, prior to
adoption, an empirical assessment of generated synthetic tabular data is required
across dimensions relevant to the target application to determine its efficacy. A lack of
standardized and objective evaluation and benchmarking strategy for synthetic tabular
data in the health domain has been found in the literature.
Objective The aim of this paper is to identify key dimensions, per dimension metrics,
and methods for evaluating synthetic tabular data generated with different techniques
and configurations for health domain application development and to provide a
strategy to orchestrate them.
Methods Based on the literature, the resemblance, utility, and privacy dimensions
have been prioritized, and a collection of metrics and methods for their evaluation are
orchestrated into a complete evaluation pipeline. This way, a guided and comparative
assessment of generated synthetic tabular data can be done, categorizing its quality
into three categories (“Excellent,” “Good,” and “Poor”). Six health care-related datasets
and four synthetic tabular data generation approaches have been chosen to conduct an
analysis and evaluation to verify the utility of the proposed evaluation pipeline.
Results The synthetic tabular data generated with the four selected approaches has
maintained resemblance, utility, and privacy for most datasets and synthetic tabular data
generationapproachcombination. In several datasets, someapproaches haveoutperformed
others, while in other datasets, more than one approach has yielded the same performance.
Conclusion The results have shown that the proposed pipeline can effectively be used to
evaluate and benchmark the synthetic tabular data generated by various synthetic tabular
data generation approaches. Therefore, this pipeline can support the scientific community
in selecting the most suitable synthetic tabular data generation approaches for their data
and application of interest.
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Introduction

Background
We are in a digital erawhere the amount of data generated is
growing exponentially, leading to a paradigm shift from
traditional and manual processes toward artificial intelli-
gence (AI) applications in different contexts. However, many
AI developments are being slowed down by data-protection
laws and imbalanced data. Therefore, synthetic data genera-
tion (SDG) research has gained importance in recent years.
Synthetic data (SD) was first proposed and defined by Rubin1

and Little2 in 1993 as datasets consisting of records of
individual synthetic values instead of real values. Nowadays,
the term SD has been extended and can be defined as
artificial data generated by a model trained or built to
replicate real data (RD) based on its distributions (i.e., shape
and variance) and structure (i.e., correlations among the
attributes).3 As claimed by Hernandez et al,4 Hu,5 Reiter6

and Taub et al,7 fully SD does not contain data from the
original real dataset and less information is lost compared
to other anonymization techniques (i.e., Parzen Window,8

Additional Noise Model,8 Random Noise9 and Independent
Sampling9) or data balancing techniques (i.e., SMOTE,10

ADASYN,11 ROS12). For this reason, SDG has shown great
promise for (1) augmenting RD by balancing datasets or
supplementing the available data to train predictive
models13–21 and (2) preserving privacy to enable secure
and private data sharing.8,22–35 In the health domain, SDG
has been researched for different types of data, such as
biomedical signals,14,27 medical images,15–18 electronic
health records (EHR) free-text content,36 time-series
smart-home and living labs activity data,19,20,23,28,37 and
tabular data from EHR.8,22,29,30,33–35

This study focused on synthetic tabular data generation
(STDG), as it is the predominant type of data used to develop
machine learning (ML) models to aid health care decision-
making. Therefore, tabular health data potentially offers the
most valuable opportunities to develop AI-based health
care systems. Most of the research studies on STDG in the
health domain have focused on proposing new STDG
approaches8,29,30,32–35,38 and evaluating and benchmarking
different STDG approaches over various datasets.39–44 There
are also studies that have highlighted the potential value of
STDG for secure data exchange that ensures patient data
privacy. In the workflows proposed by Rankin et al22 and
Hernandez et al,23 STDG techniques are incorporated into
complete data processing workflows that can be used to
accelerate research on ML model development for health
care decision-making.

All previously referenced studies have demonstrated that
although STDG is a potentially valuable technology for health
care applications, prior to its adoption, an empirical assess-
ment of the synthetic tabular data (STD) generated with
various approaches is required across different dimensions.
These dimensions include resemblance, utility, privacy,
computational cost, veracity, diversity, and generalization.
The resemblance dimension evaluates how well SD repre-
sents RD (covering aspects related to data distribution and

correlations between attributes). The utility dimension eval-
uates the usability of statistical conclusions drawn from SD
or the results from ML models trained with SD. Finally, the
privacy dimension canmeasure how private SD is in terms of
the disclosure risk of private or sensitive data. The results of
such an assessment will support developers in selecting
the ideal STDG approach for their particular application
requirements.

The study developed by Dankar et al41 classified STD
evaluation metrics and methods into univariate fidelity,
bivariate fidelity, population fidelity, and analysis-specific
measures. However, similar to the studies developed by
Hittmeir et al,39 Giles et al,40 and Alaa et al,44 this classifica-
tion only covers resemblance and utility dimensions.
Hittmeir et al42 also proposed and gathered different STD
evaluation metrics and methods for the utility and privacy
dimensions without including resemblance. In contrast, the
evaluation proposed by Platzer and Reutterer43 only covers
resemblance and privacy evaluation.

Since our work aims to provide a collection of different
metrics andmethods for evaluating different STD generation
techniques for targeted health domain applications, the focus
has been placed on the resemblance, utility, and privacy
dimensions. This manuscript’s approach has not included
other dimensions such as generation performance (in terms
of time and required computation resources).

All abbreviations used throughout this manuscript are
gathered in ►Appendix A.

Related Work
This section presents some existing STDG approaches for
tabular health care data and the most common metrics and
methods for evaluating the proposed STD dimensions.

STDG Approaches
To generate STD in the health care context, many approaches
can be found in the literature. The simplest STDG approaches
include Gaussian Multivariate (GM),8,35 Bayesian Net-
works,22,29,45 Categorical maximum entropy model,46 and
Movement-based kernel density estimation.47 These
approaches employa statisticalmodel to learn themultivariate
distributionsof theRD to sample a setof STD.Theyare typically
used for small amounts of data and are not very scalable.

Due to the efficiency and popularity of generative models
for SDG, specifically generative adversarial networks (GAN), in
other areas and applications of health care, there is an interest
in exploringwhether they have the potential to generatehigh-
quality STD for health care. GANs are composed of two neural
networks (a generator and a discriminator) that learn to
generate high-quality STD through an adversarial training
process.48 Several authors have used these generative models,
presenting improvements, tuning hyperparameters, or adding
new features.8,9,13,21,24,25,33,34,38,49 While ehrGAN13,21 and
medGAN8,9,13,33,34 were proposed to synthesize mainly
numerical and binary data, Wasserstein GAN (WGAN) with
Gradient Penalty,8,13,33,34,38 healthGAN8 and Conditional
Tabular GAN (CTGAN)24,25,49 synthesize numerical, binary,
and categorical data efficiently.

Methods of Information in Medicine © 2023. The Author(s).

Synthetic Tabular Data Evaluation Hernadez et al.



Furthermore, different open-source and commercial
packages for STDG have also been released. For example,
the Synthetic Data Vault (SDV) is an ecosystem of STDG
approaches for tabular data and time-series data composed
of ensemble approaches that combine several probabilistic
graphical modeling and Deep Learning (DL)-based techni-
ques.50,51 This ecosystem has been incorporated into the
controlled data processing workflow proposed by Hernan-
dez et al for secure data exchange.23 Other open-source and
commercial packages for STDG are SYNTHO,52 the Medkit-
Learning environment,53 and YData.54

STD Evaluation Metrics and Methods for Resemblance,
Utility, and Privacy Dimensions
The metrics and methods used to evaluate the resemblance,
utility, and privacy of STD in the literature are diverse. Most
studies related to STDG in the health care context evaluate
the resemblance and utility dimensions, but only a few
evaluate the privacy dimension. The most relevant metrics
andmethods for STD reported in the literature are presented
below.

Resemblance Evaluation
The first step in resemblance evaluation is to analyzewhether
the distribution of STD attributes is equivalent to the distribu-
tion of the RD. Che et al,21 Chin-Cheong et al,38 and Bourou
et al25 compared the distributions of the attributes of RD
against STD. Yang et al13 compared the frequency of the
attributes. Additionally, Choi et al,9 Wang et al,31 Abay
et al,45 Baowaly et al,34 and Yale et al8 compared the dimen-
sional probability or probability distributions of RD and STD.

For distributions comparison, Yang et al13 and Rashidian
et al32 analyzed the mean absolute error between the mean
and standard deviation values of RD and STD. Some authors
also use statistical tests to analyze the univariate resem-
blance of STD. Baowaly et al,34 Bourou et al,25 and Dankar
et al41 used Kolmogorov–Smirnov (KS) tests to compare
distributions, Dash et al37 applied Welsch t-tests, and Yoon
et al33 performed the Student t-test to compare mean values
of the attributes. Yoon et al23 and Bourou et al25 used Chi-
square tests to compare the independence of categorical
attributes. In these studies, they analyzed the p-values
obtained from the statistical tests to determine whether
the null hypothesis is accepted to assure that the STD
attributes preserve the properties of RD attributes analyzed
with the statistical tests.

Additionally, other authors have used distance metrics to
evaluate the resemblance of STD. Hittmeir et al39 measured
the distance between RD and SD, computing the nearest
neighbors row-by-row.

In evaluating multivariate relationships, Rankin et al,22

Yale et al,8 Wang et al,29 Bourou et al,25 Hittmeir et al,39

Dankar et al,41 and Rashidian et al32 visually compared
the Pairwise Pearson Correlation (PPC) matrices to assess
whether correlations between attributes of RD are main-
tained in STD. Additionally, principal component analysis
transformation has been used by Yale et al8 to compare the
dimensional properties of STD and RD.

To analyze whether the semantics or significance of RD is
maintained in STD, Choi et al,9 Wang et al,29 Beaulieu-Jones
et al,30 and Lee et al55 asked some clinical experts to evaluate
the STD qualitatively, scoring between 1 and 10. This score
indicated how real the STD records appeared to them,where a
score of 10 was most realistic. Another method that can be
used if access to clinical experts is unavailable is to train some
ML classifiers to label records as real or synthetic, as Lee et al55

proposed in their study. Bourou et al25 also proposed usingML
classifiers to analyzehowdifficult it is to differentiatebetween
SD and RD samples.

Utility Evaluation
The evaluation of the utility dimension has mainly been
performed using STD inMLmodels by training and analyzing
the performance of these models.

Train on Real Test on Real (TRTR) and Train on Synthetic
Test on Real (TSTR) methods were used by Park et al,56 Wang
et al,31 Beaulieu-Jones et al,30 Chin-Cheong et al,38 Baowaly
et al,34 Kotal et al,24 Bourou et al,25 Hittmeir et al,39 Giles
et al,40 Dankar et al,41 and Rashidian et al.32 These authors
trained ML models with RD and STD separately and then
tested themwith held-out RD not used for training. They use
different classification metrics (e.g., Accuracy, F1-score, ROC,
and AUC-ROC) to evaluate and analyze the differences in the
models’ performance when training the models with RD and
STD.

On the other hand, Che et al,21 Wang et al,31 and Yang
et al13 augmented the training set of RD with STD. The
authors compared the performance ML models trained
onlywith RD andmodels trainedwith RD and STD combined.

Furthermore, in the study developed by Giles et al,40 they
analyzed the utility of the STD based on howwell the feature
importance from RD is represented in STD.

Privacy Evaluation
The few metrics and methods authors have used for privacy
assessment of STD are based on distance and similarity
metrics and re-identification risk evaluation.

Regarding distance and similarity-based metrics, Park
et al56 and Platzer and Reutterer43 used distance to the
closest record, computing the pairwise Euclidean distance
between real and synthetic records where the closer
the mean distance value is to 0, the more the privacy is
preserved. According to Norgaard et al,28 the maximum real
to synthetic similarity value, computed by the cosine simi-
larity, indicates whether the model has memorized and
stored RD and is really generating data and not copying it.
Other distance-based metrics used by Yoon et al33 are the
Jensen-Shannon divergence (JSD) and the Wasserstein dis-
tance. The authors used them to compute the balance
between the identifiability and quality of STD.

Several disclosure attack simulations have been proposed
in the literature to assess the re-identification of RD disclosure
risk through STD. Choi et al,9 Park et al,56 Yale et al,8 Hittmeir
et al,42 and Mendelevitch et al57 simulated membership
inference attacks to analyze the disclosure risk of a complete
record in RD by computing distance metrics between RD and
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STD records and using accuracy and precision metrics to
quantify the membership risk. In contrast, Choi et al9 and
Mendelevitch and Lesh57 additionally simulated attribute
inference attacks to quantify the disclosure risk of some
attributes of the dataset. Defining attributes considered qua-
si-identifiers (QID) and training some MLmodels with STD to
predict the rest of the attributes, they analyze how accurately
an attacker could predict some RD attributes if they obtained
access to the STD.

Objectives

Published studies that evaluate STD generated using one or
more STDG approaches use different metrics and methods to
evaluate STD quality. Although some published studies pro-
pose or categorize STD evaluation metrics and methods into
different groups, they have only focused on evaluating one or
two of the previously defined dimensions. Furthermore, as
concluded in the review by Ghosheh et al,58 a universal and
standardized evaluation methodology for developing reliable
STDG approaches for STD has not yet been defined.

A complete, guided, and objective evaluation and bench-
marking strategy for STD over the dimensions of resem-
blance, utility, and privacy does not exist in the literature.
Thus, an organized pipeline or process is required to assess
STD in these three dimensions to enable the selection of the
best approach or approaches to generate the desired STD for
individual use cases.

The aim of this paper is to identify key dimensions, per
dimensionmetrics, andmethods for evaluating STD generated
with different techniques and configurations for health do-
main applications development and to provide a strategy to
orchestrate them. We propose and assess a collection of
standardized metrics and methods to evaluate the resem-
blance, utility, and privacy dimensions of STD for use in the
health domain. The proposed metrics and methods were
selected from the literature and orchestrated into a complete
evaluation pipeline to enable a guided and comparable evalu-
ation of STD. Our contributions can be summarized as follows:

1. We propose a set of metrics and methods to evaluate the
resemblance, utility, and privacy dimensions of STD and
present a meaningful orchestration of them. Different
universal metrics and methods are suggested for inde-
pendent use for each dimension. Although the metrics
andmethods proposed are not new, their orchestration in
an organized way and the calculation of overall scores for
each dimension are novel.

2. To the best of our knowledge, this work is the first attempt
to propose and use a complete and universal STD evalua-
tion pipeline covering the resemblance, utility, and priva-
cy dimensions. The pipeline is generalizable to any kind of
STD since the metrics and methods have been selected
according to the most commonly used STD evaluation
metrics and methods reported in the literature. Addition-
ally, we present a methodology to categorize the perfor-
mance of each STDG approach in each dimension as
“Excellent,” “Good,” and “Poor.”

3. We analyze and evaluate the suggested pipeline using six
different health care-related open-source datasets and four
STDG approaches. The proposed evaluation metrics and
methods are used to evaluate the quality of the STD gener-
ated for each dataset and STDG approach combination.

4. Based on the evaluation results, we benchmark the STDG
approaches used to generate STD and discuss the veracity
and efficiency of the proposed STD evaluation metrics and
methods. We demonstrate that the presented pipeline can
effectively be used to evaluate and benchmark different
approaches for STDG, helping the scientific community
select the most suitable approaches for their data and
application of interest.

Methods

Synthetic Tabular Data Evaluation Metrics and
Methods
The proposedmetrics andmethods for evaluating STD can be
clustered into three dimensions: resemblance, utility, and
privacy. Different metrics and methods from the literature
have been selected and configured in an organized way
within each dimension. The complete taxonomy of the
selected methods, which can be used within the defined
pipeline to evaluate STD generated with one STDG approach
or compare the STD generated by different STDG approaches,
is depicted in ►Fig. 1.

Resemblance Evaluation
In the resemblance dimension, the capacity of STD to repre-
sent RD is evaluated. Statistical, distribution, and interpret-
ability characteristics are analyzed using four methods:
univariate resemblance analysis (URA), multivariate rela-
tionships analysis (MRA), and data labeling analysis (DLA).

Two other metrics have been proposed for resemblance
evaluation, i.e., visual analysis of attributes and dimensional
reduction analysis (DRA). However, due to the difficulties
associated with quantitatively analyzing these, they have
been excluded from the final methodology and included in
Appendix B and Supplementary Material 1, available in
online version only.

Univariate Resemblance Analysis
This analysis examines the attributes of RD and STD inde-
pendently to determine whether the univariate statistical
characteristics of RD are preserved in STD. Statistical tests,
distance calculation, and visual comparisons are proposed.

Statistical tests can be used to compare the attributes from
RDandSTD. Theyshouldbeperformed independently for each
attribute with a proposed significance level of α¼ 0.05, mean-
ing that if the p-value obtained from the test is higher than this
value, the null hypothesis (h0) is accepted. Otherwise, the
alternative hypothesis (h1) is accepted. The properties ana-
lyzed in each test are preserved in STD if h0 is accepted. For
numerical attributes, the following tests are proposed:

• Student T-test for the comparison of means.
o h0: Means of RD feature and STD attribute are equal.
o h1: Means of RD feature and STD attribute are different.
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• Mann Whitney U-test for population comparison.
o h0: RD feature and STD attribute come from the same
population.
o h1: RD feature and STD attribute do not come from the
same population.

• Kolmogorov–Smirnov test for distributions comparison.
o h0: RD feature distribution and STD attribute distribu-
tion are equal.
o h1: RD feature distribution and STD attribute distribu-
tion are not equal.

For categorical features, the Chi-square (χ2) test is pro-
posed to analyze the feature independence between real and
synthetic categorical attributes. If h0 is accepted, the statis-
tical properties are not preserved in this case. h0 and h1 are
defined as:

• h0: No statistical relationship exists between the real
categorical variable and the synthetic categorical variable.

• h1: There is a statistical relationship between the real and
synthetic categorical variables.

Some distancemetrics can also be computed between the
RD and STD attributes for URA. The lower the distance values
are, the better the univariate resemblance is preserved in
STD. Three distance metrics are proposed: cosine distance,
Jensen-Shannon distance, and Wasserstein distance. Before
computing all distances, RD and STD need to be scaled. In the
following (Equations 1 to 5), r is the attribute of RD, and s is
the attribute of STD.

Cosine distance is defined as the complement of cosine
similarity,which is thecosineof theanglebetween twovectors
in n-dimensional space; i.e., the dot product of the twovectors
is divided by the product of the two vectors’ lengths (Equation
1). As cosine similarity is defined positive, the cosine distance
is bounded between 0 and 1, indicating the distance between
two sets of values. The lower the value is, the higher the
resemblancebetween the two sets of valueswill be. Therefore,
a threshold of 0.3 has been experimentally set based on the
exploratory analysis of the results to indicate that the STD
attribute significantly resembles the RD attribute. A value
higher than this threshold would represent no substantial
resemblance between the STD attribute and RD attribute.

Equation 1: Cosine distance

Jensen-Shannon distance is the square root of the JSD,
which measures the similarity between two probability
distributions (Equation 2); m is the pointwise mean of p
and q, and D is the Kullback-Leibler divergence, defined in
Equation 3. The probability distributions of the features have
been used to compute these distances: p is the probability
distribution of the RD attribute, and q is the probability
distribution of the STD attribute. A value lower than 0.1
represents a perfect resemblance since higher values would
indicate that the differences in distributions are significantly
higher.

Fig. 1 Taxonomy of the proposed pipeline of metrics and methods to evaluate STD in three dimensions: resemblance, utility, and privacy. STD,
synthetic tabular data.
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Equation 2: Jensen-Shannon Distance

Equation 3: Kullback-Leibler Divergence

Wasserstein distance can be seen as the minimum cost
required to transform a vector (r) into another vector (s),
where the cost is measured as the amount of distribution
weight that must bemoved, multiplied by the distance it has
to be moved (Equation 4); R and S are the cumulative
distribution function of the RD, and STD attributes, respec-
tively. As in cosine distance, a threshold of 0.3 is proposed to
assure the resemblance of the attribute.

Equation 4: Wasserstein Distance

For statistical tests and the distance calculation, the
number of STD attributes that fulfill the requirements to
resemble RDattributes has been considered to categorize the
STDG approach performance. If more than half of the attrib-
utes maintain resemblance, the approach is classified as
“Excellent.” If less than half maintained resemblance, it is
classified as “Good” and if none of the attributes maintained
resemblance, it is classified as “Poor.”

To get an overall score of URA, the performances for all
previously presented metrics can be calculated according to
their results. First, the categorization is translated into a
numerical value (“Excellent”¼3, “Good”¼2 and “Poor”¼1),
and then the same weight (33.33%) is given for the three
methods presented (statistical tests of numerical attributes,
statistical tests of categorical attributes, and distance calcu-
lations for numerical attributes). The resulting score, round-
ed to the nearest integer, gives a value between 1 and 3 that
indicates the URA score of STD.

Multivariate Relationship Analysis
This analysis involves assessing whether the multivariate
relationships of RD are preserved in STD or not. To do that,
the computation of two correlation matrices has been
defined for RD and STD: PPC matrices for numerical variables
(Equation 5) for each pair of features x and y; x̂ and ŷ are the
mean value of the features and normalized contingency tables
for categorical variables. The correlationmatrices of RD can be
visually compared with the matrices of STD using heatmaps.

Equation 5: PPC

Additionally, for each matrix, the differences between the
correlations of RD and STD are calculated to compute the
percentage of relationships maintained in the STD (those that
have a different value lower than 0.1). This way, two values
between 0 and 1 are obtained, one expressing the percentage
of numerical attribute relationships maintained and the other
the percentage of categorical attribute relationships main-
tained. If the values are higher than 0.6, the STDG approach is
categorized as “Excellent” since more than half of the relation-
ships are preserved in RD. If they are equal or between 0.4 and
0.6, it is categorized as “Good,” representing that half of the
relationshipsarepreserved. Finally, if thevalues are lower than
0.4, the performance of the STDG approach is “Poor” as it has
preserved less than half of the relationships. After completing
this categorization for eachmatrix, a totalMRAperformance is
obtained by giving equal weight (50%) to both analyses.

Data Labelling Analysis (DLA)
The final step proposed for resemblance evaluation can be
used toevaluate thesemantics of STD. Thismethod isproposed
to analyze the performance of some classifiers when labeling
records as real or synthetic through the following steps:

1. Combine and label real and synthetic datasets (0 for RD
and 1 for STD) in a single dataset.

2. Split the combined dataset into train and test sets, i.e.,
80:20 split.

3. Pre-process the train and test data, i.e., standardize numer-
ical attributes and one-hot encode categorical attributes.

4. Train (with training data) and evaluate (with test data)
some ML classifiers to analyze their performance in
labelling records as real or synthetic.

The commonly used and diverse ML classifiers proposed
for this analysis are RandomForest (RF), K-Nearest Neighbors
(KNN), Decision Tree (DT), Support Vector Machines (SVM)
and Multilayer Perceptron (MLP). For our analysis, these
classifiers have been implemented using Python’s Scikit-
Learn 0.24.2 ML library with the listed parameters:

• The RF model has been implemented using RandomFor-
estClassifierwith n_estimators¼100, n_jobs¼ 3, random_-
state¼ 9 and all other parameters set to their defaults.

• The KNN model has been implemented using KNeighbor-
sClassifier with n_neighbors¼ 10, n jobs¼3 and all other
parameters set to their defaults.

• The DT model has been implemented using DecisionTree-
Classifier with random_state¼9 and all other parameters
set to their defaults.

• The SVM model has been implemented using SVC with
C¼ 100, max_iter¼ 300, kernel¼ “linear,” probability¼
True, random state¼9 and all other parameters set to
their defaults.

• The MLP model has been implemented using MLPClassi-
fier with hidden_layer_sizes¼ (128,64,32), max_iteration
¼300, random_state¼9 and all other parameters set to
their defaults.

After training and testing the models, classification perfor-
mancemetrics (accuracy, precision, recall, and F1-score) can be
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analyzed visually with box plots. To indicate that the semantics
ofRDarepreserved inSTD, a classifier shouldnotdistinguish if a
record issyntheticor real. Thus, theclassificationmetricsshould
be lower than or equal to 0.6 for “Excellent” resemblance,
meaning that the models have classified most of the synthetic
records as real. Obtaining metric values higher than 0.6 and
lower than 0.8 indicate a “Good” resemblance, while values
equal to or greater than 0.8 indicate a “Poor” resemblance.

Total Resemblance Performance
After completing the four analyses proposed for resemblance
evaluation, a weighted average can be computed to obtain a
total resemblance score. This allows us to assign higher or
lower importance to each result based on the researchers’
STDG goals. An example weighting applied in STD Evaluation
(section 4) has been URA¼0.4, MRA¼0.4, and DLA¼0.2.
These weights were experimentally set to prioritize the
ability of STD to resemble univariate and multivariate pat-
terns over the ability of a classifier to distinguish between RD
and STD for this evaluation. Finally, by applying these
weights, the total score is obtained, and after rounding it
to the nearest integer, the total score is categorized as
“Excellent” if the resulting value is 3, “Good” if the resulting
value is 2, or “Poor” if the resulting value is 1.

Utility Evaluation
In the utility dimension, the ability of STD, instead of RD, to
train ML models is analyzed to determine if ML models
trained with STD produce similar results to ML models
trained with RD. To do that, TRTR and TSTR analyses are
proposed. ML classifiers should be trained with RD and then
separately with STD. The same ML classifiers described for
DLA analysis are proposed for this evaluation due to their
simplicity, scalability, and training efficiency.

The data must be pre-processed before training and
testing the models, i.e., by standardizing numerical attrib-
utes and one-hot encoding categorical attributes. All trained
models should be tested with the same RD (20% of the real
dataset held out before training the STDG approaches). To
analyze the classification results, accuracy, precision, recall,
and F1-score classification metrics are proposed, and their
absolute differenceswhenTRTR and TSTR. To assure that STD
utility is “Excellent,” the metrics differences should not
exceed a proposed threshold of 0.2. If differences between
0.2 and 0.8 are obtained, the performance in the utility
dimension should be categorized as “Good” and if they are
higher than 0.8, the performance is considered “Poor.”

Privacy Evaluation
For the privacy dimension, it is proposed to evaluate the
similarity of RD and STD and the re-identification risk of real
patients or records.

Similarity Evaluation Analysis (SEA)
In the SEA, it is proposed to evaluate how private STD is
compared to RD in terms of similarity between real and
synthetic records. Basedon thedistance and similaritymetrics
for privacy evaluation used byother authors andmentioned in

Section 1.2.2, three metrics are proposed for this: Euclidean
distance between each pair of records, Hausdorff distance
between STD and RD, and Synthetic To Real (STR) similarity.

The Euclidean distance is the square root of the sum of
squares of differences between RD and STD features, as
defined in Equation 6. In this case, the Euclidean distance
can be computed for each pair of records. Then, themean and
standard deviation of all distances should be analyzed. The
higher the mean distance and the lower the standard devia-
tion are, the more the privacy is preserved. Thus, mean
values higher than 0.8 and standard deviation values lower
than or equal to 0.3 indicate privacy is preserved.

Equation 6: Euclidean Distance

The cosine similarity metric is proposed to compute the
STR similarity, which computes similarity as the normalized
dot product of two datasets (Equation 7;R is a record fromRD
and S is a record from STD). The pairwise similarity value can
be computed for each pair of records, and the mean and
maximum values of those pairwise similarity values should
be analyzed. If the mean value is higher than 0.5, the STD is
very close to the RD, so privacy is not preserved. In all other
cases, it can be said that privacy is preserved.

Equation 7: Cosine Similarity

The Hausdorff distance measures how far two subsets of a
metric space are from each other as it is the greatest of all the
distances fromapoint in one set to the closest point in the other
set (Equation 8; R is the real dataset; S is the synthetic dataset).
Two sets are close in the Hausdorff distance if every point of
either set is close to somepoint in the other set. Thus, thehigher
this distance value is, the better the privacy is preserved in STD,
as a high value indicates that the STD is far from the RD. Since
thismetric is not bounded between 0 and 1, a value higher than
1 has been considered to assure that privacy is preserved.

haus_dist(S,R)¼max{h(S,R),h(R,S)}

Equation 8: Hausdorff Distance

For these three distance-basedmetrics, if all threemetrics
fulfill the condition to preserve privacy, the categorization
for privacy preservation is “Excellent.” If one or two metrics
fulfill the condition, it is “Good”; otherwise, it is “Poor.”

Re-Identification Risk Analysis (RIRA)
This analysis proposes to evaluate the level of disclosure risk
if an attacker or an adversarial obtains access to STD and a
subset of RD. For this, two simulations are proposed: (1)
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membership inference attack (MIA)when an attacker tries to
identify if real patient records have been used to train the
STDG approach (►Fig. 2), and (2) attribute inference attack
(AIA) when an attacker has access to some attributes of the
RD and tries to guess the value of an unknown attribute of a
patient from the STD (►Fig. 3).57

In anMIA, if the attacker determines that real recordswere
used to train the STDGapproach, it couldbe said that theyhave
re-identified thepatient fromtheSTD.57►Fig. 2 illustrates this
attackwhereahypothetical attackerhas access toall recordsof

the STD and a subset of the RD randomly distributed. Using a
patient record (r) from the RD subset, the attacker will try to
identify the closest records in the STD with a distance metric
calculation. If there is any distance lower than some threshold,
the attacker determines that there is at least one row close
enough to RD in the STD, meaning that r has been used to
generate STD. This process is depicted in Algorithm 1

and ►Fig. 2.
For this analysis, the attacker’s success rate is proposed to

be evaluated by simulating this kind of attack by calculating

Fig. 2 Simulated MIA. MIA, membership inference attack.

Fig. 3 Simulated AIA. AIA, attribute inference attack.
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the Hamming distance (Equation 9), which represents the
proportion of non-equal attributes between two records,
between each row of the RD subset and STD rows.

Equation 9: Hamming distance

Reasonable thresholds to assure that r is close enough to a
record in STDare 0.4, 0.3, 0.2, and 0.1 because a lowerHamming
distance represents more similarity in the records. Since it is
known if r belongs to the training data or not, accuracy
(proportion of correct predictions made by the attacker) and
precision (proportion of records used for training the STDG
approach identifiedbytheattacker)valueshavebeencalculated.
To obtain an “Excellent” privacy preservation categorization,
accuracy and precision values should be 0.5 or lower for all
thresholds. Any value above 0.5 indicates increasing levels of
disclosure risk, obtaining a “Good” or “Poor” privacy preserva-
tion categorization depending on the number of thresholds
where thevaluesarehigher than0.5. Theaccuracyandprecision
values have been plotted to analyze and interpret these results
as a function of the proportion of records in the STD present in
the RD subset known by the attacker for each threshold.

In an AIA, an attacker has access to STD and a subset of
attributes for some RD records, generally QIDs such as age,
gender, height, weight, etc.57 As shown in ►Fig. 3 and
Algorithm 2 the attacker will use ML models trained with
STD to predict the values of rest of the attributes of the RD
records.

The success of this attack can bemeasured by defining the
QID of each dataset and then using them to train ML models,
i.e., DT models, with STD to predict the rest of the attributes.
Next, 50% of the RD (randomly distributed) can be used to
evaluate the performance of the models, generating batches
of datawith each QID combination. This way, the predictions

made by the models trained on STD for each data batch
combination can be evaluated using accuracy for categorical
attributes and root-mean-squared-error (RMSE) for numeri-
cal attributes. Higher accuracy values (close to 1) indicate
higher disclosure risk, while lower RMSE values (close to 0)
reflect higher disclosure risk. The metric values are obtained
for each QID combination, and all attributes are evaluated
visually with a boxplot for each risk attribute. Additionally,
the percentage of correctly predicted attributes has been
calculated to categorize the re-identification risk. The mode
of the analyzed metrics has been considered to determine if
an attribute has been predicted; for categorical attributes,
accuracy mode is equal to 1, and for numerical attributes,
RMSE mode is equal to 0. If a high percentage (higher than
0.6) is obtained, asmore than half of the attributes have been
re-identified, the AIA results are categorized as “Poor.” For a
percentage between 0.4 and 0.6, the result is categorized as
“Good” since approximately half of the attributes have been
re-identified. A percentage lower than 0.4 indicates that less
than half of the attributes have been re-identified, demon-
strating “Excellent” privacy preservation for this attack.

Total Privacy Performance
After computing the results for the three privacy evaluation
methods proposed, a total privacy score should be calculated,
weighting the results from all the methods. For example, in
the STD evaluation, the following weights have been experi-
mentally given to the three analyses for the privacy dimen-
sion: SEA¼0.4 and RIRA¼0.6 (MIA¼0.3 and AIA¼0.3). A
higher weight was assigned to RIRA to prioritize the metrics
analyzing whether RD could be inferred from STD over the
metric and investigating how similar STD is to RD. Finally,
once thisweighting is applied and the result is rounded to the
nearest integer (i.e., assigned to 1, 2 or 3), the privacyof STD is
categorized as “Excellent” (3), “Good” (2), or “Poor” (1) based
on the total score obtained when applying these weights.

Synthetic Tabular Data Evaluation
To prove and trust the efficiency and usability of the pro-
posed pipeline for STD evaluation, several different datasets
havebeen selected and then synthesizedwith different STDG
approaches. The STD generated for the selected datasets is
then evaluated and benchmarked. All code and example
notebooks are available in a Github repository.59

Selected Data
Six open-source health care-related datasets have been
selected for synthesis. A brief description of these datasets
and the number of attributes and records are presented
in ►Table 1. Each dataset was first pre-processed, deleting
missing values and performing a data split into two subsets.
Eighty percent of the records have been used for training the
STDG approaches, and 20% of the records for utility dimen-
sion evaluation and RIRA simulations.

Fully Synthetic Tabular Data Generation Approaches
To generate STD for the datasets presented previously, four
open-source STDG approaches have been used, two of which

Algorithm 1: Simulation of a MIA

attacker_data  real set of data known by the attacker
synthetic_data  synthetic set of data that is publicly
available
for row in attacker_data

dist  compute_distances(row, synthetic_data)
if any(dist)< thr then
record_identified  True

else
record_identified  False

Algorithm 2: Simulation of an AIA

attacker_data real data set of QID known by the attacker
synthetic_data  synthetic set of data that is publicly
available
x_train  QID of the synthetic set of data
attributes  List of non QID attributes of the set of data
y_train  Non QID attributes of the synthetic set of data
for attribute in attributes

ml_model.train(x_train, y_train[attribute])
inferred_values  ml_model.predict(attacker_data)
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are GANs, and the other two are classical approaches. These
approaches are as follows:

1. Gaussian Multivariate (GM): A classical STDG approach
based on statistical modeling that implements a multi-
variate distribution using a Gaussian Copula to combine
marginal probabilities estimated using univariate distri-
butions. The approach is available at Copulas 0.5.0
documentation.60

2. Synthetic Data Vault (SDV): This approach is an STDG
ecosystem of libraries that uses several probabilistic
graphical modeling and DL-based techniques. To enable
a variety of data storage structures, they employ unique
hierarchical generative modeling and recursive sampling
techniques.61 It is available at The Synthetic Data Vault.51

3. Conditional Tabular Generative Adversarial Network
(CTGAN): A STDG approach proposed by Xu et al in
201949 defined as a collection of DL models based on
GAN models for a single data table. It can learn from RD
and generate synthetic clones with high fidelity. It is
available at.62

4. Wasserstein Generative Adversarial Network with Gradient
Penalty (WGANGP): This approach is a GAN proposed by
Yale et al in 20208 and is composed of a generator and
discriminator. The generator learns to generate better STD
based on the feedback received by the discriminator and
using the Wasserstein distance with gradient penalty as
the optimization function. The approach is available at.63

Ethical Considerations
This research has not involved data collection from human
subjects. Used data is open-source data.

Results

Using the datasets and STDG approaches described in the
previous sections, themetrics andmethods proposed for STD
evaluation in the resemblance, utility, and privacy dimen-
sions have been applied to evaluate the generated STD to
evidence and provide trust in their efficiency and usability.
Additionally, comparison and benchmarking of the STDG
approaches have been performed based on the proposed
strategy for STD evaluation.

In the following subsections, the results obtained after
applying the defined weighting criteria for each dimension
are explained per dataset. A detailed and complete descrip-

tion of the results from all metrics and methods is available
in (►Supplementary Material 1, available in online version
only). In this supplementary material there are additional
metrics that have been excluded from the methodology and
explained in the Appendix B. Based on the results of each
evaluation analysis presented in the pipeline, the results
obtained for each synthesized dataset have been summa-
rized and categorized as “Excellent,” “Good,” or “Poor” for
each dimension (resemblance, utility, and privacy), based on
the final weighted scores.

Resemblance Evaluation
►Table 2 shows the results of applying the proposed resem-
blance evaluation metrics and methods to the STD synthe-
sized with each STDG approach for each dataset.

The resemblance dimension has been perfectly main-
tained with GM for the six datasets. SDV has performed
excellently on the resemblance dimension for half of the
datasets (C, E, F) and performance was good for other data-
sets (A, B, and D). CTGAN has performed very well in
retaining resemblance for one dataset (B), quite well for
four datasets (A, C, D, and F), and poorly for one dataset
(E). Finally, WGANGP has been the worst approach in gener-
ating STD that resembles RD, as it has produced good
resemblance for four datasets (A, B, C, and D) and poor
resemblance for the other two datasets (E and F). Although
the STD generated with the four approaches has maintained
the univariate and multivariate resemblance perfectly for
most of the datasets, the results from the DLA analyzes
propose that the generated STD is easily distinguishable
from RD for all approaches and all datasets, except GM.
This approach has obtained the best result for DLA analysis.

Despite the poor resemblance for two datasets (E and F),
applying the proposedmetrics andmethods for resemblance
evaluation can assure that resemblance has beenmaintained
for most of the datasets using the four STDG approaches.

Utility Evaluation
The results from the utility evaluation for each dataset and
STDG approach are shown in ►Table 3. The utility has been
perfectlymaintained across all approaches for only Dataset A
since the difference in the classification metrics when TRTR
and TSTR are lower than 0.2 in all cases. For Dataset B, only
with SDVa difference in classificationmetrics higher than 0.2
has been obtained, categorizing this model as having “Good”

Table 1 Brief description of the selected health-related datasets for STDG and STD evaluation

ID Dataset name Year Num. attrib. Num. records

A Diabetes 130-U.S. hospitals for years 1999–2008 dataset65 2014 55 101,766

B Cardiovascular disease (CVD) dataset66 2019 13 70,000

C Estimation of obesity levels based on eating habits
and physical condition dataset67

2019 17 2,111

D Contraceptive Method Choice (CMC) dataset68 1997 9 1,473

E Pima Indians Diabetes (PID) dataset69 2016 9 769

F Indian Liver Patient (ILP) dataset70 2012 11 583
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Table 2 Results of the resemblance evaluation for each dataset

Data ID STDG approaches URA (40%) MRA (40%) DLA (20%) Total Resemblance

A GM
SDV
CTGAN
WGANGP

(3) Excellent
(2) Good
(2) Good
(1) Poor

(3) Excellent
(3) Excellent
(3) Excellent
(2) Good

(2) Good
(1) Poor
(2) Good
(2) Good

(3) Excellent
(2) Good
(2) Good
(2) Good

B GM
SDV
CTGAN
WGANGP

(3) Excellent
(2) Good
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(2) Good

(2) Good
(2) Good
(3) Excellent
(1) Poor

(3) Excellent
(2) Good
(3) Excellent
(2) Good

C GM
SDV
CTGAN
WGANGP

(3) Excellent
(3) Excellent
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(2) Good

(1) Poor
(1) Poor
(1) Poor
(1) Poor

(3) Excellent
(3) Excellent
(2) Good
(2) Good

D GM
SDV
CTGAN
WGANGP

(2) Good
(2) Good
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(1) Poor
(3) Excellent

(3) Excellent
(2) Good
(2) Good
(1) Poor

(3) Excellent
(2) Good
(2) Good
(2) Good

E GM
SDV
CTGAN
WGANGP

(3) Excellent
(3) Excellent
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(1) Poor
(1) Poor

(2) Good
(2) Good
(1) Poor
(1) Poor

(3) Excellent
(3) Excellent
(1) Poor
(1) Poor

F GM
SDV
CTGAN
WGANGP

(3) Excellent
(3) Excellent
(2) Good
(2) Good

(2) Good
(3) Excellent
(2) Good
(1) Poor

(3) Excellent
(1) Poor
(2) Good
(1) Poor

(3) Excellent
(3) Excellent
(2) Good
(1) Poor

Table 3 Results of the utility evaluation for each dataset

Data ID STDG approaches Acc. diff. Prec. diff. Rec. diff. F1 diff. Utility score

A GM
SDV
CTGAN
WGANGP

0.05
0.05
0.05
0.15

0.05
0.10
0.05
0.10

0.05
0.05
0.05
0.10

0.05
0.10
0.10
0.10

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

B GM
SDV
CTGAN
WGANGP

0.05
0.20
0.10
0.20

0.10
0.20
0.05
0.20

0.05
0.20
0.10
0.15

0.15
0.40
0.15
0.20

(3) Excellent
(2) Good
(3) Excellent
(3) Excellent

C GM
SDV
CTGAN
WGANGP

0.60
0.80
0.90
0.60

0.60
0.75
0.85
0.60

0.60
0.75
0.90
0.65

0.60
0.75
0.90
0.70

(2) Good
(2) Good
(1) Poor
(2) Good

D GM
SDV
CTGAN
WGANGP

0.15
0.15
0.15
0.15

0.10
0.20
0.15
0.20

0.10
0.20
0.15
0.15

0.15
0.25
0.15
0.25

(3) Excellent
(2) Good
(3) Excellent
(2) Good

E GM
SDV
CTGAN
WGANGP

0.20
0.05
0.35
0.25

0.20
0.05
0.25
0.20

0.20
0.05
0.35
0.25

0.20
0.10
0.40
0.25

(2) Good
(3) Excellent
(2) Good
(2) Good

F GM
SDV
CTGAN
WGANGP

0.25
0.35
0.20
0.40

0.15
0.20
0.20
0.25

0.30
0.40
0.20
0.35

0.30
0.40
0.20
0.40

(2) Good
(2) Good
(2) Good
(2) Good

Note: The first and second columns refer to the dataset and STDG approach. The third to sixth columns indicate the maximum difference in the
classification metric when TRTR and TSTR. The last column indicates the final utility categorization based on the metrics differences and applying a
threshold of 0.2 for an “Excellent” categorization.
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performance and the other as “Excellent.” For dataset C, the
utility of the STD is poor for CTGAN, which have obtained
metrics differences higher than 0.8, while for the other
approaches (GM, SDV, andWGANGP), utility has been main-
tained but not perfectly, with metrics values differences
between 0.6 and 0.8. For Dataset D, GM and CTGAN have
performed perfectly (classification metrics difference lower
than 0.2) while SDV and WGANGP have been categorized as
“Good” (classificationmetrics higher than 0.2 and lower than
0.8). For Dataset E, only SDV has been scored as “Excellent,”
while the others are “Good.” Finally, for dataset F, since all
classification metrics are higher than 0.2 but lower than 0.8,
the four STDG approaches have been categorized as “Good”
for the utility dimension.

Using the proposed methods and threshold for utility
evaluation, these results show that the utility of STD has been
maintained in all cases except for dataset (C).

Privacy Evaluation
As shown in►Table 4, the privacy of STD has been quite well
maintainedwith GM for all the datasets. For SDV, privacy has
been perfectly maintained in three datasets (C, D, and F) and
quite well maintained for the other three (A, B, and E). With
CTGAN, privacy has been perfectly maintained for three
datasets (A, C, and F) and quite well maintained for the other
three (B, D, and E). With WGANGP, privacy has only been
perfectly maintained for two datasets (A and D) and quite
well maintained for the other four datasets (B, C, E, and F).

Regarding the RIRA, the MIA has yielded better results
than the AIA for most cases. This finding indicates that for
most of the dataset and STDG approach combinations, the

STD is more prone to re-identification in terms of attributes
rather than membership.

Applying the proposed privacy dimension evaluation
metrics and methods shows that the STD generated with
GM has yielded better privacy preservation than for other
approaches. However, privacy is still preserved quite well
with the other approaches, offering better preservation for
certain datasets and STDG approach combinations.

Results Summary
The categorizations made for each dataset and STDG
approach combination as a result of applying the proposed
metrics and methods are described in each subsection. Since
givingequalweights to thethreedimensionscouldundervalue
the others, threedifferentweighting scenarios are proposed to
compute the final performance score for each STDG approach
per dataset. These scenarios have been inspired by El Emam
et al.64 Next, each weighting scenario is presented, and the
results obtained from them are explained.

Weighting Scenario 1: No Preference
For this scenario the same weight (33.33%) has been given to
the three evaluation dimensions (resemblance, utility, and
privacy) since there is no preference on which dimension
should have more importance.

►Table 5 shows the results obtained when applying this
weighting scenario. From the table it can be concluded that it
is not clear which STDG approach is better in general (across
all datasets), using the evaluation metrics defined and the
appliedweights. However, it is possible to determine the best
STDG approach(es) for each application (i.e., dataset). GM

Table 4 Results of the privacy evaluation for each dataset

Data ID STDG approaches SEA (40%) MIA (30%) AIA (30%) Total resemblance

A GM
SDV
CTGAN
WGANGP

(1) Poor
(2) Good
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

(3) Excellent
(1) Poor
(3) Excellent
(3) Excellent

(2) Good
(2) Good
(3) Excellent
(3) Excellent

B GM
SDV
CTGAN
WGANGP

(1) Poor
(2) Good
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

(1) Poor
(1) Poor
(1) Poor
(1) Poor

(2) Good
(2) Good
(2) Good
(2) Good

C GM
SDV
CTGAN
WGANGP

(2) Good
(2) Good
(2) Good
(2) Good

(2) Good
(3) Excellent
(3) Excellent
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

(2) Good
(3) Excellent
(3) Excellent
(2) Good

D GM
SDV
CTGAN
WGANGP

(2) Good
(2) Good
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

(2) Good
(3) Excellent
(2) Good
(3) Excellent

(2) Good
(3) Excellent
(2) Good
(3) Excellent

E GM
SDV
CTGAN
WGANGP

(2) Good
(2) Good
(2) Good
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(2) Good

(1) Poor
(1) Poor
(1) Poor
(1) Poor

(2) Good
(2) Good
(2) Good
(2) Good

F GM
SDV
CTGAN
WGANGP

(2) Good
(2) Good
(2) Good
(2) Good

(2) Good
(3) Excellent
(3) Excellent
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

(2) Good
(3) Excellent
(3) Excellent
(2) Good
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and SDV scored “Excellent” for three datasets, CTGAN for
only two and WGANGP for only one dataset. This suggests
that GM and SDV have given the best overall results from the
chosen STDG approaches and datasets when applying equal
weights to the three dimensions.

Weighting Scenario 2: External Software Company
In this weighting scenario that might be used by an external
software company for software and STDG approaches vali-
dation,more importance should be given to resemblance and
privacy than to utility. Specifically, due to privacy guaran-
tees, the dimension that should havemore importance in this
scenario is privacy. Therefore, the applied weights for this
scenario are the following: 40% to resemblance, 10% to utility,
and 50% to privacy.

►Table 6 shows the results obtained when applying this
weighting scenario. Using the evaluation metrics defined and
theappliedweights the results arequite similar totheprevious
weighting scenario except for a few differences. SDV scored
“Excellent” for fourdatasets,GMandCTGAN for threedatasets,
andWGANGP for only twodatasets. This suggests that SDVhas
given the best overall results from the chosen STDG
approaches and datasets when giving more importance to
privacy and resemblance and less importance to utility.

Weighting Scenario 3: Internal Organization with
Security Measures
This weighting scenario might be used by an internal orga-
nization that implements security measures. Therefore, in

this scenario, privacy is the dimension that has least impor-
tance and utility is the one with the most importance.
However, a high level of significance should be given to the
resemblance evaluation. The applied weights for this scenar-
io are as follows: 30% to resemblance, 60% to utility, and 10%
to privacy.

►Table 7 shows the results obtained when applying this
weighting scenario. Using the evaluation metrics defined
and the applied weights the results have changed a lot from
the previous scenarios. GM, CTGAN, and WGANGP scored
“Excellent” for three datasets while SDVonly for one dataset.
Apart from that, there are two datasets in which none of the
four STDG approaches have yielded an “Excellent” score. This
suggests that GM, CTGAN, and WGANGP have given the best
overall results from the chosen STDG approaches and data-
sets when giving more importance to utility and less impor-
tance to privacy. Additionally, in this specific case, for certain
datasets an optimal score has not been obtained.

Discussion

Principal Results
Overall, the results have shown that the proposed pipeline
for STD evaluation in the three dimensions defined (resem-
blance, utility, and privacy) can be used to assess and
benchmark STD generated with different approaches and
applying different weighting scenarios according to which
dimension the researchers want to prioritize. Contrary to the
evaluation frameworks proposed by Dankar et al,41 Hittmeir

Table 5 Overall results of the STD evaluation for all datasets and STDG approaches combination when applying Weighting
Scenario 1 (no preference on which dimension is more important)

ID Data shape STDG appr. Resemblance (33.33%) Utility (33.33%) Privacy (33.33%) Final score

A Records: 101,766
Attributes: 20

GM�

SDV
CTGAN�

WGANGP�

(3) Excellent
(2) Good
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

(2) Good
(2) Good
(3) Excellent
(3) Excellent

(3) Excellent
(2) Good
(3) Excellent
(3) Excellent

B Records: 70,000
Attributes: 13

GM�

SDV
CTGAN�

WGANGP

(3) Excellent
(2) Good
(3) Excellent
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(3) Excellent

(2) Good
(2) Good
(2) Good
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(2) Good

C Records: 2,111
Attributes: 17

GM
SDV�

CTGAN
WGANGP

(3) Excellent
(3) Excellent
(2) Good
(2) Good

(2) Good
(2) Good
(1) Poor
(2) Good

(2) Good
(3) Excellent
(3) Excellent
(2) Good

(2) Good
(3) Excellent
(2) Good
(2) Good

D Records: 1,473
Attributes: 10

GM�

SDV
CTGAN
WGANGP�

(3) Excellent
(2) Good
(2) Good
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(2) Good

(2) Good
(3) Excellent
(2) Good
(3) Excellent

(3) Excellent
(2) Good
(2) Good
(2) Good

E Records: 769
Attributes: 9

GM
SDV�

CTGAN
WGANGP

(3) Excellent
(3) Excellent
(1) Poor
(1) Poor

(2) Good
(3) Excellent
(2) Good
(2) Good

(2) Good
(2) Good
(2) Good
(2) Good

(2) Good
(3) Excellent
(2) Good
(2) Good

F Records: 583
Attributes: 11

GM
SDV�

CTGAN
WGANGP

(3) Excellent
(3) Excellent
(2) Good
(1) Poor

(2) Good
(2) Good
(2) Good
(2) Good

(2) Good
(3) Excellent
(3) Excellent
(2) Good

(2) Good
(3) Excellent
(2) Good
(2) Good

Note: The STDG approaches that yielded an “Excellent” score are marked with �.
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Table 6 Overall results of the STD evaluation for all datasets and STDG approaches combination when applying Weighting
Scenario 2 (privacy the most important dimension and utility the least)

ID Data shape STDG appr. Resemblance (40%) Utility (10%) Privacy (50%) Final score

A Records: 101,766
Attributes: 20

GM�

SDV
CTGAN�

WGANGP�

(3) Excellent
(2) Good
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

(2) Good
(2) Good
(3) Excellent
(3) Excellent

(3) Excellent
(2) Good
(3) Excellent
(3) Excellent

B Records: 70,000
Attributes: 13

GM�

SDV
CTGAN�

WGANGP

(3) Excellent
(2) Good
(3) Excellent
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(3) Excellent

(2) Good
(2) Good
(2) Good
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(2) Good

C Records: 2,111
Attributes: 17

GM
SDV�

CTGAN
WGANGP

(3) Excellent
(3) Excellent
(2) Good
(2) Good

(2) Good
(2) Good
(1) Poor
(2) Good

(2) Good
(3) Excellent
(3) Excellent
(2) Good

(2) Good
(3) Excellent
(2) Good
(2) Good

D Records: 1,473
Attributes: 10

GM�

SDV�

CTGAN
WGANGP�

(3) Excellent
(2) Good
(2) Good
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(2) Good

(2) Good
(3) Excellent
(2) Good
(3) Excellent

(3) Excellent
(3) Excellent
(2) Good
(3) Excellent

E Records: 769
Attributes: 9

GM
SDV�

CTGAN
WGANGP

(3) Excellent
(3) Excellent
(1) Poor
(1) Poor

(2) Good
(3) Excellent
(2) Good
(2) Good

(2) Good
(2) Good
(2) Good
(2) Good

(2) Good
(3) Excellent
(2) Good
(2) Good

F Records: 583
Attributes: 11

GM
SDV�

CTGAN�

WGANGP

(3) Excellent
(3) Excellent
(2) Good
(1) Poor

(2) Good
(2) Good
(2) Good
(2) Good

(2) Good
(3) Excellent
(3) Excellent
(2) Good

(2) Good
(3) Excellent
(3) Excellent
(2) Good

Note: The STDG approaches that yielded an “Excellent” score are marked with �.

Table 7 Overall results of the STD evaluation for all datasets and STDG approaches combination when applying Weighting
Scenario 3 (preference on utility, resemblance also important, but privacy not important)

ID Data shape STDG appr. Resemblance (30%) Utility (60%) Privacy (10%) Final score

A Records: 101,766
Attributes: 20

GM�

SDV�

CTGAN�

WGANGP�

(3) Excellent
(2) Good
(2) Good
(2) Good

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

(2) Good
(2) Good
(3) Excellent
(3) Excellent

(3) Excellent
(3) Excellent
(3) Excellent
(3) Excellent

B Records: 70,000
Attributes: 13

GM�

SDV
CTGAN�

WGANGP�

(3) Excellent
(2) Good
(3) Excellent
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(3) Excellent

(2) Good
(2) Good
(2) Good
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(3) Excellent

C Records: 2,111
Attributes: 17

GM
SDV
CTGAN
WGANGP

(3) Excellent
(3) Excellent
(2) Good
(2) Good

(2) Good
(2) Good
(1) Poor
(2) Good

(2) Good
(3) Excellent
(3) Excellent
(2) Good

(2) Good
(2) Good
(2) Good
(2) Good

D Records: 1,473
Attributes: 10

GM�

SDV
CTGAN�

WGANGP�

(3) Excellent
(2) Good
(2) Good
(2) Good

(3) Excellent
(2) Good
(3) Excellent
(2) Good

(2) Good
(3) Excellent
(2) Good
(3) Excellent

(3) Excellent
(2) Good
(3) Excellent
(2) Good

E Records: 769
Attributes: 9

GM
SDV�

CTGAN
WGANGP

(3) Excellent
(3) Excellent
(1) Poor
(1) Poor

(2) Good
(3) Excellent
(2) Good
(2) Good

(2) Good
(2) Good
(2) Good
(2) Good

(2) Good
(3) Excellent
(2) Good
(2) Good

F Records: 583
Attributes: 11

GM
SDV
CTGAN
WGANGP

(3) Excellent
(3) Excellent
(2) Good
(1) Poor

(2) Good
(2) Good
(2) Good
(2) Good

(2) Good
(3) Excellent
(3) Excellent
(2) Good

(2) Good
(2) Good
(2) Good
(2) Good

Note: The STDG approaches that yielded an “Excellent” score are marked with �.
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et al,39 and Platzer and Reutterer,43 our pipeline has covered
and evaluated all three dimensions identified as relevant for
ensuring the delivery of high-quality STD in the health
domain as well as giving the option to tune the weighting
methodology according to the desired output. Additionally,
the proposed categorization strategy is useful for comparing
different STDG approaches to select the best ones and
evaluating the quality of STD generated by one approach.

None of the STDG approaches have been better across all
STD dimensions considered in the experiments described for
the three proposed weighting scenarios. Therefore, it can be
said that it is difficult to get a trade-off between resem-
blance, privacy, and utility scores. However, the categoriza-
tion system provided and the per dimension score
calculation and overall score calculation can help select
the most appropriate STDG approaches by looking at indi-
vidual scores and configuring overall scores by computing
weights according to priorities defined for each specific
application.

Resemblance Evaluation
Different metrics and methods have been proposed to eval-
uate the resemblance of STD at different levels: univariate,
multivariate, dimensional, and semantics. Among the met-
rics used in URA, statistical tests and distance calculations
provide quantitative results, which have been more trust-
worthy in assessing how well STD attributes resemble RD
than visual comparisons of the attribute distributions, which
provide a more qualitative view. MRA has appeared to be
useful in analyzing the multivariate relationships between
attributes and how well these are maintained in STD. Al-
though DRA has not been included in the total resemblance
calculation due to the difficulty in interpreting the results
obtained, it can be useful in illustrating how well the
dimensional properties of RD are preserved. DLA has been
less effective due to the lack of medical specialists to quali-
tatively evaluate the generated data’s significance. However,
the analysis composed ofdifferentMLmodels trained to label
records as real or synthetic has simplified this process,
approximating how a medical expert would label the
records.

Utility Evaluation
TRTR and TSTR methods have been proposed in terms of the
utility dimension, where a fewML classificationmodels have
been trained with RD and separately with STD. This meth-
odology has been very useful in evaluating whether STD
could be used instead of RD for data modeling. Further work
in this area may include trying and validating different ML
models to select the best ones for the specific application and
using mixed data for model training in contrast to the
separate use of RD or STD. Furthermore, other datamodeling
tasks can be proposed to assess the utility of STD in the same
way, e.g., regression or clustering. Additionally, statistical
tests can be applied to analyze if the classification metrics
differences are statistically significant so the categorization
into “Excellent”; “Good” and “Poor” performance can be
made based on the results of these statistical tests.

Privacy Evaluation
Regarding the privacy of STD, the similarity between STD and
RD has first been evaluated in the SEA, and then a pair of data
inference attacks (MIA and AIA) have been simulated in the
RIRA analysis. Although these simulations have not been
quite significant, they could be useful to estimate the quan-
tification of the re-identification risk of STD. However, these
metrics and methods must be improved to quantify the re-
identification risk of STD more reliably. Thus, future work
might include defining a strategy that helps identify which
attributes are more prone to re-identification and considers
the real consequences of potential personal data disclosure.

Weighting Scenarios for Overall Score
Regarding the three proposed weighting scenarios to obtain
an overall score for the four STDG approaches per dataset,
similar results have been obtained for the first two scenarios
(giving equal weights and prioritizing privacy over resem-
blance and utility). For the proposed third weighting scenar-
io (prioritizing utility over resemblance and privacy), the
results have changed a lot, yielding no “Excellent” STDG
approach for two datasets. Apart from that, in the first
scenario GM and SDV were the best approaches while in
the second scenario it was SDV. In the third scenario the best
approaches were GM, CTGAN and WGANGP. From these
results it can be concluded that SDV is a good approach for
privacy preservation, while the other three (GM, CTGAN and
WGANGP) have performed better for utility preservation.

Limitations and Future Work
Although the proposed STD evaluation pipeline has been
used to evaluate STD generated with different approaches
and contexts, the datasets used for the evaluation have been
limited due to the lack of quality health-related open-source
datasets. From the six datasets selected, only two (A and B)
comprised an appropriate number of records to be consid-
ered representative of real health-related data, with the
remaining four containing a limited number of entries.
Moreover, these open-source datasets might have been
anonymized or synthesized before, inducing new bias in
STD and analysis. Therefore, further work is required to
judge and benchmark the proposed pipeline with more
datasets in other contexts and RD that comes directly from
hospitals or laboratorieswithout any anonymization or other
modification processes applied to the data. Apart from that,
different weighting scenarios should be tested when com-
puting the final score that considers the three defined
dimensions and also weighting of each of the metrics and
methods categorized in each dimension. Furthermore, the
proposed methodology for STD and the results obtained
must be compared with the methodologies other authors
followed to evaluate STD quality.

Another important finding from this work is the lack of a
trade-off between the resemblance, utility, and privacy dimen-
sions in STD generatedwith different approaches in the evalu-
ation section. Thus, further work on improving the STDG
approaches to generate more quality STD that maintains an
appropriate trade-off between these dimensions is required.
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In addition, the proposed evaluation pipeline has been
centered on the resemblance, utility, and privacy dimen-
sions, which are the most commonly used dimensions for
evaluating the quality of STD for targeted health domain
applications found in the literature. Several metrics and
methods should also be proposed and developed as part of
futurework to evaluate the performance of STDG approaches
in terms of other dimensions, such as cost (computational
resources, training time, and footprint) or diversity (How
diverse is the generated STD? Is it biased to any minority
class?).

Furthermore, an online toolkit or library could be devel-
oped to unify the proposed metrics and methods to help
researchers who work on STDG evaluate the generated STD.
This tool could help them focus more on improving or
proposing STDG approaches without investing time in de-
fining and developing an STD evaluation process.

Conclusion

In this work, we proposed a comprehensive and universal
STD evaluation pipeline covering resemblance, utility, and
privacy dimensions, with a methodology to categorize the
performance of STDG approaches across each dimension.
Additionally, we conducted an extensive analysis and evalu-
ation of the proposed STD evaluation pipeline using six
different health care-related open-source datasets and four
STDG approaches to prove the efficiency and veracity of the
proposed STD evaluation pipeline. This analysis has shown
that the proposed pipeline can be used effectively to evaluate
and benchmark different approaches for STDG, helping the
scientific community select themost suitable approaches for
their data and application of interest. Although other authors
have proposed metrics or methods to evaluate STD, none
have defined or used a complete pipeline covering the
resemblance, utility, and privacy dimensions in providing
different weighting scenarios to get a final score that indi-
cates the quality of generated STD.

Regarding the limitations of this work, wehave found that
(1) some metrics and methods are not as trustworthy as
initially considered, (2) it is difficult to find a perfect trade-
off between STD evaluation dimensions of resemblance,
utility, and privacy, (3) previously synthesized or anony-
mized data has been used and (4) the pipeline has not been
compared with other methods used in the literature for STD
evaluation (as no similar proposal has been identified in the
literature).

Future work includes (1) judging and benchmarking the
metrics and methods in the proposed pipeline with more
datasets, in other contexts, more weighting scenarios and
with RD from health care authorities, (2) improving the
proposed RIRA in the privacy dimension, (3) proposing
new metrics and methods to evaluate the performance of
STDG approaches in terms of time and footprint, (4)
enhancing the STDG approaches to improve the trade-off
between the dimensions, and (5) unifying all the proposed
metrics and methods into an easy-to-use online toolkit or
library.
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Appendix A: Abbreviations list

Abbreviation Definition

AI Artificial Intelligence

AIA Attribute Inference Attack

AUC Area Under the Curve

BN Bayesian Network

CMC Contraceptive Method Choice

CMEM Categorical Maximum Entropy Model

CTGAN Conditional Tabular Generative Adversarial Network

CVD CardioVascular Disease

DCR Distance to the Closest Record

DL Deep Learning

DLA Data Labelling Analysis

DRA Dimensionality Reduction Analysis

DT Decision Tree

EHR Electronic Health Records

GAN Generative Adversarial Network

GM Gaussian Multivariate

ILP Indian Liver Patient

JSD Jensen-Shannon Divergence

KNN K-Nearest Neighbors

KS Kolmogorov-Smirnov

MAE Mean Absolute Error

MIA Membership Inference Attack

MKDE Movement-based Kernel Density Estimation

ML Machine Learning

MLP MultiLayer Perceptron

MRA Multivariate Relationship Analysis

PCA Principal Component Analysis

PID Pima Indians Diabetes

PPC Pairwise Pearson Correlation

QID Quasi-IDentifiers

RD Real Data

RF Random Forest

RIRA Re-Identification Risk Analysis

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RTS Real To Synthetic

SD Synthetic Data

SDG Synthetic Data Generation

SDV Synthetic Data Vault

SEA Similarity Evaluation Analysis

STD Synthetic Tabular Data

STDG Synthetic Tabular Data Generation

(Continued)
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(Continued)

Abbreviation Definition

STR Synthetic To Real

SVM Support Vector Machines

TRTR Train on Real Test on Real

TSTR Train on Synthetic Test on Real

URA Univariate Resemblance Analysis

WGAN Wasserstein Generative Adversarial Network

WGANGP Wasserstein Generative Adversarial Network with Gradient Penalty

Appendix B: Evaluation metrics and methods not included in the Final Methodology

Appendix B.1. Visual analysis of individual attributes
An extra method for the URA, is proposed to visually compare the values of each attribute (RD vs. STD). For numerical and
categorical attributes, distribution plots and histograms can be used. The STDG approaches have been categorized depending
on the number of attributes thatmaintained resemblance of the RD attributes. Since this visualization is subjective and cannot
be given an objective evaluation value it has been deleted from the proposed evaluationmethodology. However, the results of
applying this method can be seen in the SupplementaryMaterial 1, available in the online version only, available in the online
version only).

Appendix B.2. Dimensionality resemblance analysis (DRA)
To analyze if the dimensional properties of RD are preserved in STD, it is proposed to analyze the performance of a linear,
principal component analysis (PCA), and a non-linear, Isomap, dimensionality reduction method for RD and STD. The
transformation should be independently computed for RD and STD for the twomethods after scaling the numerical attributes
and one-hot encoding the categorical attributes. After computing the transformations, the results can be visually analyzed
with scatter plots for eachmethod. Themore similar the shapes of RD and STD plots are, themore resemblance is maintained.

Additionally, a distance metric between RD and STD dimensionality reduction plots is proposed to calculate a numerical
value from the visual results. This distance metric is the joint distance of the barycenter distance and spread distance of both
plots (Equation 10). The barycenter distance is the distance between the mean values of the RD and STD dimensionality
reductionmatrices, while the spread distance is the distance between the standard deviation values of the samematrices. α is
a regularization parameter that gives different weights to each distance. In the equation μ is the mean value and σ is the
standard deviation or RD (r) and STD (s).

Equation 10: Joint Distance of dimensionality reduction plots

In these experiments, α¼0.05 has been chosen experimentally, as the barycenter distance using PCA and Isomap is very
lowsince thebarycenters are calculated similarly in both dimensionality reductionmethods. As this distancemetric cannot be
normalized, it is not possible to define amethodology to quantitatively classify the resemblance of STD generatedwith one or
more STDG approaches into “Excellent,” “Good,” and “Poor,” although the lower this distance value is, the more similar the
dimensionality reduction plots for RD and STD are. For this reason, this analysis has not been considered for the total
resemblance calculation, but the results of both the plots and the distance metric are provided and discussed in the
Supplementary Material 1, available in the online version only).
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