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Abstract
Industry 4.0 has ushered in a new era of digital manufacturing and in this context,
digital twins are considered as the next wave of simulation technologies. The
development and commissioning of Cyber Physical Systems (CPS) is taking advan-
tage of these technologies to improve product quality while reducing costs and time
to market. However, existing practices of virtual design prototyping and commis-
sioning require the cooperation of domain specific engineering fields. This involves
considerable effort as development is mostly carried out in different departments
using vendor specific simulation tools. There is still no integrated simulation envi-
ronment commercially available, in which all engineering disciplines can work
collaboratively. This presents a major challenge when interlinking virtual models with
their physical counterparts. This paper therefore addresses these challenges by
implementing a holistic and vendor agnostic digital twin solution for design proto-
typing and commissioning practices. The solution was tested in an industrial use
case, in which the digital twin effectively prototyped cost‐efficient solar assembly
lines.

1 | INTRODUCTION

A traditional mechatronic system verifies and validates the
system during the last step of the product development pro-
cess. This is error prone and increases development costs and
time to market. Hence, virtual prototyping and commissioning
practices have emerged to improve system quality and test
system behaviour. This shift towards virtual solutions means
that commissioning can start early in the development process,
as it does not require any physical asset.
Virtual commissioning is the practice of using simulation

technologies to test system behaviour with a virtual model
before connecting it to the real system. As a result, errors are
detected early in the process, which significantly reduces ramp
up and costs [1]. This requires, however, the cooperation of
different engineering disciplines throughout the whole pro-
duction process.
The simulation technology currently used in digital

manufacturing develops system engineering in parallel with

concept design. Virtual commissioning is therefore carried out
jointly or sequentially with virtual design prototyping and en-
gineering, in contrast to conventional commissioning (see
Figure 1). Consequently, verification of the manufacturing
system is conducted in the early design phases, as the system can
be built and tested virtually without the need of its physical
counterpart. [1]. This significantly improves the design and the
overall quality of the new systems.
Three possible alternatives to address virtual commis-

sioning have been proposed, combining real and virtual
counterparts of the mechatronic system and control [2], as
illustrated in Figure 2.
Reality‐in‐the‐loop (RiL) most closely reflects conventional

commissioning in that a simulated control system is used to
test the physical mechanical system [3]. In this system,
commissioning cannot be achieved until the real system is in
place. Hardware‐in‐the‐loop (HiL) and Software in‐the‐loop
(SiL), on the other hand, present significant advantages in
terms of time and solutions to setbacks that could occur before
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the final commissioning phase [4]. HiL systems use a model to
simulate the response of the real mechanical system and are
driven by a real controller. By replacing the mechanical system
with its virtual version, the control software can be tested in
the early phases. SiL goes one step further, employing both a
virtual control system and a virtual mechanical system. The
speed of the simulation can therefore be faster or slower
depending on the aim of the tests. At faster speeds multiple
tests can be rapidly conducted, and complex systems can be
tested at lower speeds.
Commissioning alternatives are on the rise with the

introduction of Industry 4.0. This new digital era has brought
new technologies such as the digital twin to enhance the vir-
tualisation of factories. The digital twin is considered the next
wave in modelling and simulation, which can further boost
virtual commissioning practices. It is a virtual replica of the
production system, and hence, involves an operational system.
The existing physical system and its digital replica are fully
synchronised in both directions, and thus the digital model
reflects the behaviour of the existing system. This addresses
any inconsistencies between the digital model and the physical
system [5]. While virtual commissioning consists of multiple
simulation technologies mostly commissioned in silos by
different engineering disciplines, the digital twin integrates all
of these into one platform. This, however, requires a holistic
environment that integrates different vendor specific tools.
A number of authors have explored simulation tech-

nologies in a machining context. Y. Altintas [6] presented a

comprehensive review of machine tool simulation technol-
ogies (machine kinematics, structural dynamics, and control
techniques). S. Rock [7] also proposed a Hardware‐in‐the‐
loop simulation scenario for virtual commissioning of
machine tools. However, these solutions require the inte-
gration of partial simulation models, and lack a unified
platform.
Hence, it can be seen that despite the wide variety of tools

and technologies in the market, there is still no solution in
which different simulation domains and the controller are in-
tegrated into a single and unified platform. Companies are
therefore reluctant to invest in simulation technologies for
virtual commissioning, arguing that efforts to generate simu-
lation models are not justified in terms of Return on Invest-
ment (ROI). This has become a major barrier to establishing
and adopting virtual solution strategies.
This paper, therefore, presents a digital twin‐based holistic

solution for virtual design prototyping and commissioning.
The digital twin is built on an interoperable gateway that fa-
cilitates a collaborative environment throughout the whole
development process.

2 | LITERATURE REVIEW

The digital twin first emerged as a concept in the 2003 work
of Grieves, the Product Life‐cycle Management (PLM) [8].
The first definition of the concept, however, is attributed to
NASA in 2010: ‘an integrated multi‐physics, multiscale,
probabilistic simulation of an as‐built vehicle or system that
uses the best available physical models, sensor updates, fleet
history, etc., to mirror the life of its corresponding flying
twin’.
The digital twin aroused widespread interest with the

introduction of Industry 4.0 into manufacturing. Figure 3
presents the results of the literature search in Web of Science
(WOS) and Scopus by using the word ‘digital twin’ and
‘manufacture*’ as keywords, from 2010 to 2022. The results
show that the concept of digital twin was not widely exploited
until 2016 in the manufacturing field. Likewise, the number of

F I GURE 1 Virtual commissioning versus conventional commissioning

F I GURE 2 Virtual commissioning alternatives
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publications related to the digital twin has exponentially
increased since then.
In the manufacturing industry, smart manufacturing is

promoted by the integration of the digital twin, big data and
services [9]. In this way, J. Leng et al. [10] introduced the digital
twin for holistic control of a smart workshop. The method-
ology uses a decentralised self‐organising strategy to coordi-
nate manufacturing tasks and resources and an online parallel
controlling for holistic decision making. This holistic concept
also underpins the digital twin introduced by Uhlemann et al.
[11]. These authors presented a multimodal data acquisition
approach that builds a comprehensive image of the real pro-
duction system of Small and Medium Enterprises (SME). The
key aspect of this approach is the integration of isolated
commercially available tools into a holistic solution.

2.1 | Digital twin throughout the life cycle

This section analyses the main applications of the digital twin
by means of a snowballing search based on the literature review
study of Jones et al. [12]. The cited applications have been
classified according to the most suitable phases of the life cycle
during the Development and Operational cycles of the digital
twin as detailed in Table 1.
The results of the use of the digital twin throughout the life

cycle are illustrated in Figure 4 and Figure 5.
Operations, Service, and Design are the phases where the

digital twin is mostly employed. However, there is limited
application during the commissioning phase. Furthermore,
Figure 5 shows that most of the applications and use cases of
the digital twin fall into ‘operations’ or ‘development’. The
former is the major field of application, and to date, very little
attention has been paid to the role of the digital twin for both
cycles (DevOps).
Drawing upon this field of study, in a previous work we

presented the digital twin as a DevOps approach, in which it is

active throughout the whole product life cycle [64]. In this way,
product design, engineering, integration, operation, and service
activities can be performed efficiently in an agile and collab-
orative environment between different departments [3] and
engineering disciplines.
In the present paper, we establish a holistic solution from

the very early stage of the development process that will be
later seamlessly merged with the operational scenario,
following the DevOps approach presented in [3]. This requires
that all engineering disciplines cooperate in a synchronised way
throughout the whole life cycle. In particular, this study is
focussed on the development process, including all initial
stages of the life cycle, that is, design, engineering, and
commissioning.

3 | DIGITAL TWIN‐BASED DESIGN
AND COMMISSIONING

The design phase establishes the main machine concept draft
based on the already defined system requirements of the CPS.
This is usually carried out using a model‐based approach,
which is then enhanced by domain specific engineering func-
tionalities (i.e., mechanical, electrical). Ideally, domain specific
engineers should work in parallel in this phase, however, work
is generally carried out in different departments with different
vendor software tools. Communication between these inter-
disciplinary participants is difficult due to a lack of cross‐
domain language comprehension, hence the importance of
establishing a vendor agnostic holistic solution. To succeed
during virtual prototyping and commissioning practices, such a
solution must include the following requirements:

� R1: Simulation platform for concept design (mechanical 3D
models, automation, and control)

� R2: Holistic platform that integrates all simulation models
(mechanical, automation, control, etc.) into a single

F I GURE 3 Digital twin and manufacturing related publications in literature
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TABLE 1 Applications of the digital twin classification throughout the life cycle

Article Application field Development Operations Design Engineering Commissioning Operations Service

[13] Planning X X

[14] Commissioning X X

[15] Forecasting, optimisation X X

[10] Controllability X X

[16] Optimisation X X

[17] Controllability, monitoring X X X

[18] Controllability, optimisation X X

[19] Controllability X X

[20] Reconfiguration X X

[21] Monitoring X X

[22] Monitoring X X

[23] Traceability X X

[24] Training X X

[25] Training X X

[26] Simulation X X

[27] Forecasting X X

[28] Design X X

[29] Planning X X

[30] Safety, simulation, commissioning X X X X

[31] Training X X

[32] Optimisation X X X

[33] Forecasting X X

[34] Monitoring, diagnosis and prognosis X X

[35] Simulation X X

[36] Design, engineering, commissioning X X X X

[37] Optimisation X X

[38] Design X X

[39] Reconfiguration X X X

[40] Monitoring, forecasting X X X

[41] Decision making X X

[42] Design, engineering X X

[43] Traceability, optimisation X X X X

[44] Design, simulation X X X

[45] Service X X

[46] Diagnostics and prognosis, monitoring X X

[47] Service X X

[48] Reconditioning, commissioning X X X

[49] Service X X

[50] Optimisation X X

[51] Monitoring, optimisation, controllability,
diagnosis and prognosis

X X X

4 - UGARTE QUEREJETA ET AL.
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TAB LE 1 (Continued)

Article Application field Development Operations Design Engineering Commissioning Operations Service

[52, 53] Design, engineering, Verification & Validation X X X

[54] Monitoring X X

[55] Decision making X X

[56] Design, Engineering, Verification & validation X X X X

[57] Simulation, design X X X

[58] Traceability X X X

[59] Simulation, engineering, Verification & Validation X X X X

[5] Commissioning, optimisation X X X

[60, 61] Reconfiguration, commissioning X X X

[62] Engineering, commissioning X X X

[63] Design, simulation, commissioning X X X X

F I GURE 4 Digital twin applications throughout the life cycle

F I GURE 5 Digital twin applications
classification into DevOps

UGARTE QUEREJETA ET AL. - 5
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environment or hardware, thereby enabling collaborative
machine tool commissioning.

Table 2 sets out some of the existing virtual simulation
tools in the market, and benchmarks them according to the
aforementioned requirements.
The table clearly demonstrates that only one solution meets

all requirements—the recently launched Siemens SINU-
MERIKONE. However, this solution is vendor specific as it is
limited to Siemens products. This presents a significant
drawback, as there is no option to integrate components from
different manufacturers.
In light of this gap, we present a digital twin‐based setup

that integrates vendor agnostic equipment, and simulation
tools into a single and unified platform. This solution is
described in detail in Section 4.

4 | DIGITAL TWIN‐BASED HOLISTIC
SOLUTION FOR DESIGN AND
COMMISSIONING

The implemented solution holistically integrates a broad set of
vendor specific tools into a single environment. Each vendor
has a unique communication protocol and thus, interopera-
bility plays a critical role. For this reason, an interoperable
gateway was implemented to seamlessly integrate vendor spe-
cific controllers and simulation technologies into a collabora-
tive platform. In this way, all engineering disciplines can easily
cooperate for design prototyping and commissioning.
The solution was developed by Ideko and Mondragon

Unibertsitatea, and consists of a four‐layer architecture, as
illustrated in Figure 6.
The physical layer is composed of multiple CPS controlled

by a broad set of controllers from different vendors, which
employ diverse communication protocols. These physical as-
sets are replicated in the virtual layer with a digital twin. The
virtual layer, therefore, simulates the physical controller and the
mechatronic system with different simulation engineering
technologies.

The middleware is a communication interface that seam-
lessly exchanges data between the physical and virtual layers.
This consists of a modular and interoperable gateway (Savvy
Data Systems) that facilitates data exchange through a large
number of communication protocols by using open stand-
ardised protocols (e.g. OPC UA). In effect, it translates specific
protocols to open standardised protocols, to offer a solution to
a wide variety of vendor specific controllers and simulation
technologies (e.g. Siemens, Heidenhein, FAGOR, FANUC).
Finally, the cloud platform stores machine data retrieved

from the SAVVY gateway through REST API for further data
analysis and monitoring services.

5 | INDUSTRIAL USE CASE

The digital twin‐based holistic solution was developed by
Ideko in collaboration with Mondragon Unibertsitatea. The
presented use case was implemented in Mondragon Assembly
and focuses on the design prototyping and virtual commis-
sioning of solar panel assembly lines.
Mondragon Assembly develops automated assembly solu-

tions. The use case therefore must ensure that the required
throughput of the assembly line is met. This is achieved with the
use of the digital twin. The implemented holistic solution ensures
that themanufacturing performance can be tested in early design
phases. In this manner, layout prototyping relies on the digital
model, and line throughput is calculated with synthetic data.
The solar assembly line is composed of various welding

machine cells, as detailed in Figure 7. Each welding machine
has a camera to determine the position of the ribbon. The
welding head then calculates the trajectory of the welding
process, and a small amount of flux is injected to facilitate and
improve the task. Jig and fixture devices ensure the ribbon is
held in place while welding is in progress. This process is
repeated in each welding cell, and thus, the assembly process
plays a critical role in terms of quality and performance.
Design prototyping is carried out to achieve a cost‐

effective control logic of the process that meets customer re-
quirements. Commissioning early in the process is therefore
crucial to improve system quality, save costs and time to
market. This was achieved with the digital twin solution
implemented at Mondragon Assembly.
The use case follows the architecture described in Section 4

(see Figure 8):
The assembly line was simulated in Visual Components.

The logical control, however, was coupled to a TwinCAT
virtual controller, emulating the physical Beckhoff controller.
Beckhoff uses the ADS communication protocol to inter-
exchange data with the logic controller. Communication was
achieved through the interoperable SAVVY data gateway,
which manages the data flow between all the devices. The
system was built by following the steps below:

‐ Developing a phyton script to model the behaviour of
pneumatic drives.

‐ Integrating the script in Visual Components.

TABLE 2 Compliance requirements table

Tool R1 R2

Siemens NX MCD Yes No

Siemens SInumerik One Yes Yes*

Siemens process simulate Limited to PLC controllers No

Siemens plant simulation Limited to PLC controllers No

Dassault delmia Limited to PLC controllers No

ISG virtuos Yes No

Simumatik 3D Yes No

Emulate3D Yes No

XCelgo experior Yes No

Visual components Yes No

6 - UGARTE QUEREJETA ET AL.
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F I GURE 6 Digital twin architecture

F I GURE 7 Mondragon Assembly use case ‐ solar assembly line

‐ Modelling cylinder and stop sensors in Visual Components.
‐ Linking gantry position signals, cylinder, sensor, and stop
signals of TwinCAT.

‐ Checking the programme cycle is executed correctly in the
digital twin.

As a result, the implemented solution enables early design
and verification of the system against the most demanding
customer requirements. Virtual commissioning and design
prototyping can be performed early in the process and a more
realistic and cost effective line throughput is achieved. This is
carried out in a collaborative environment between all engi-
neering disciplines involved in the assembly process, as detailed
in Figure 9.

6 | CONCLUSIONS

At present, manufacturers are reluctant to invest in virtual
commissioning as there is no solution to integrate vendor spe-
cific tools into a single platform. This presents a major problem,

even when building a collaborative environment with multiple
engineering simulation technologies. In this paper therefore, we
have presented a digital twin‐based holistic solution for virtual
design and prototyping. The solution was tested in an industrial
use case—a solar assembly line in Mondragon Assembly, in
Northern Spain—in which the digital twin was used to proto-
type cost‐effective assembly lines. Using this solution, engineers
could ensure the required line throughput was achieved, which
improved the overall system performance and reduced costs.
The implemented digital twin solution offers a compre-

hensive tool, in which layout design and virtual commissioning
are conducted in close collaboration with the corresponding
engineers. As a result, engineers are able to detect issues related
to 3D mechanical design, electrical design, control logic, and
processes early in the development process. This can justify the
ROI, enable a collaborative virtual commissioning environ-
ment, and in turn, reduce time to market and costs.
In future lines, the developed digital twin solution could be

extended for use in the operational scenario by following a
DevOps approach. In this way, operational data could be used
to improve the process and make adjustments on the fly.

UGARTE QUEREJETA ET AL. - 7
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F I GURE 8 Mondragon Assembly holistic solution architecture

F I GURE 9 Collaborative virtual commissioning
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