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Abstract

An adaptive control is proposed for dry surface grinding to extend the
use of the wheel without needing to be dressed, preserving at the same
time the surface integrity of the workpiece. The implementation of this
adaptive control needs to use predictive models of thermal damage, as in
the case of Malkin’s model, which calculates the allowable grinding power
before the workpiece gets burnt for any working condition. In this latter
case, the adaptive control of the cutting depth condition requires solving
a quartic equation. Since the analytical procedures for solving quartics
given in the literature are quite cumbersome to implement in the numeric
control of the grinding machine, we propose a closed analytic formula
in order to compute directly the unique positive solution. Moreover, we
can enhance Malkin’s model in order to consider an arbitrary heat flux
profile entering into the workpiece and the kinematical correction to the
geometrical contact length, in such a way that we can still using the latter
solution to the quartic equation.

1 Introduction

Surface grinding is a industrial machining process used to polish the surface
of a workpiece by means of a high speed rotating wheel which removes the
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workpiece material by abrasion.
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In Fig.
1, kinematical and geometrical parameters of this machining process are shown.
As kinematical parameters, we have the peripheral velocity of the wheel vθ
(m s−1 in SI units) and its feedrate vf . As geometrical parameters, we have
the contact length between wheel and workpiece 2� (m), the diameter of the
wheel D, the workpiece width that is being ground b and the cutting depth a.
Since most of the energy consumed in the grinding process is converted into
heat by friction, the principal problem of this process is the thermal damage of
the workpiece. For instance, burning occurs when the maximum temperature
reached in the workpiece Tmax (K) exceeds the change of phase temperature of
the workpiece material Tburn.

In order to avoid thermal damage, we need to predict the allowable grinding
power Pburn (W) from the kinematical and geometrical parameters, as well as
from the thermal properties of the workpiece, namely, the thermal conductivity
k0 (W m−1K−1) and the thermal diffusivity k (m2s−1). According to Malkin’s
model for dry grinding [1], we have

Pburn = u0bvfa+B bD1/4v
1/2
f a1/4, (1)

where

B =
k0Tburn

1.13
√
k
, (2)

and u0 (Jm−3) is the specific energy that is not converted into heat in the
grinding process.

It is worth noting that in the literature [1, 3], B = k0Tmax/(1.13
√
k) instead

of (2). We will clarify later on this kind of misunderstanding about Tmax and
Tburn. In any case, Malkin’s model assumes a constant heat flux profile entering
into the workpiece, a geometrical contact length [2, Eqn. 3-4]

2� =
√
aD,

and an energy partition in the chip formation going to the workpiece of 55% [3].
Also, it assumes a high Peclet number

L =
vf �

2k
→ ∞, (3)

although, according to [3], (1) provides a good approximation for L > 5. Fi-
nally, Malkin’s model assumes dry grinding. However, if film-boiling occurs,
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the convection due to the lubricant within the grinding zone can be neglected,
which is the case of conventional grinding [4]. We will revisit these assumptions
in Section 2 in order to enhance Malkin’s model.

The adaptive control in the machining processes is widely use in industry [5].
It uses characteristic measurements of the process in order to lead the machin-
ing into a desired condition. Depending on the nature of the desired condition,
we have adaptive control constraint (ACC) or adaptive control optimization
(ACO). Acoustic Emission (AE) has been used as the characteristic measure-
ment in the adaptive control of plunge grinding. For instance, in [6], AE signals
were calibrated against major grinding parameters such as specific material re-
moval rate, specific material removal, grinding wheel and workpiece diameters
and wheel dressing conditions. Other adaptive controls uses real-time power
measurement. For instance, a computerized ACO system for plunge grinding of
steels is described in [7], where the removal rate is maximized, being subjected
to constraints of surface finish and workpiece burn. Also in [8], an ACO is pro-
posed in order to prevent thermal damage in shallow cut cylindrical and surface
grinding, by controlling the peripheral velocity of the wheel and its feedrate. In
the present study, we are going to measure also the machine power consump-
tion. Our objective is to minimize the number of wheel dressings in order to
increase the production. However, as the wheel wears out, the risk of thermal
damage of the workpiece is greater. Therefore, our goal is precisely achieve both
things simultaneously as much as possible, i.e. reduce wheel dressings avoiding
thermal damage. For this purpose, we are going to control the cutting depth
a, because is quite easy to do it and affects little the behavior of the wheel.
Therefore, let us solve (1) for a defining

a = z4, (4)

q =
BD1/4

u0v
1/2
f

> 0, (5)

r =
−Pburn

u0bvf
< 0, (6)

so that (1) becomes a quartic equation without the quadratic and cubic terms
(quartic-linear equation)

z4 + q z + r = 0. (7)

Equation (7) can be solved numerically, for instance, by using Newton-
Raphson method [9, Sect. 3.4.2]. However, this method needs a starting it-
eration point close enough to the desired root in order to assure its convergence
(see [9, Sect. 3.6.1] for pitfalls about numerical root finding methods). Nonethe-
less, quartic equations can be solved analytically, but in general, its solution is
cumbersome to implement and compute (see [10] for different procedures for
solving quartics). For instance, according to [11, Eqns. 9.6-7], the solution of
the general quartic equation

x4 +m1x
3 +m2x

2 +m3x+m4 = 0, (8)
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is given in two stages. First, we have to compute a real root yr of the resolvent,
which is the following cubic equation

y3 −m2y
2 + (m1m3 − 4m4) y + 4m2m4 −m2

3 −m2
1m4 = 0. (9)

Second, the four solutions of (8) are given by the four roots, z±1 , z
±
2 , of the

quadratic equation

z2 +
m1 ±

√
m2

1 − 4m2 + 4yr
2

z +
yr ±

√
y2r − 4m4

2
= 0. (10)

For the solution of the resolvent (9), the general solution of a cubic equation
[11, Eqn. 9.3]

y3 + μ1y
2 + μ2y + μ3 = 0, (11)

is given by

y1 = F +G− 1

3
μ1, (12)

y2 = −1

2
(F +G) +

√
3

2
i (F −G)− 1

3
μ1, (13)

y3 = −1

2
(F +G)−

√
3

2
i (F −G)− 1

3
μ1, (14)

where

F =
3

√
V +

√
U3 + V 2,

G =
3

√
V −

√
U3 + V 2,

and

U =
3μ2 − μ2

1

9
,

V =
9μ1μ2 − 27μ3 − 2μ3

1

54
.

The above solution for the general quartic equation is not very practical
and somehow difficult to implement in the numerical control of the grinding
machine, because, according to (9), we have first to seek a real solution yr of
(9), computing (12)-(14) with the proper coefficients. Moreover, since we are
looking for a real and positive solution (remember a = z4 > 0), we have to check
all the solutions of (10) and neglect the complex and negative ones.

Fortunately, the quartic-linear equation given in (7), where p > 0 and q < 0,
has got an unique positive root and there is a straightforward formula to find it.
This statement is just one of the main results of the present paper. Moreover,
if Malkin’s model is enhanced in order to consider both an arbitrary heat flux
profile and also the first order kinematic correction to the contact length, we

4



will find a quartic equation like (7), so that the aforementioned formula remains
applicable.

This paper is organized as follows. In Section 2 we will discuss the assump-
tions of Malkin’s model in order to consider an arbitrary heat flux profile and
the kinematic effect over the contact length. For the latter, in Appendix C
we will provide a novel discussion about the exact and approximate kinematic
contact length formulas. Section 3 describes the adaptive control of the cutting
depth. Section 4 solves the quartic-linear equation stated in (7). For this pur-
pose, we will use Appendix A for the solution of the cubic equation in terms
of elementary functions, and Appendix B for the solution of Descartes about
quartics. Section 5 shows some experimental results about the implementation
of this method in the numerical control of a grinding machine. Finally, our
conclusions are collected in Section 6.

Symbol Meaning SI units

D Diameter m
Wheel R Radius m

vθ Peripheral velocity m s−1

k0 Thermal conductivity W m−1K−1

k Thermal diffusivity m2s−1

Workpiece T Temperature K
Tburn Change of phase temperature K
Tmax Maximum temperature K
a Cutting depth m
b Grinding width m
� Half contact length m
vf Feedrate m s−1

Pburn Allowable grinding power W
Ptot Total grinding power W

Grinding Qtot Total heat flux W m−2

regime Q
Average heat flux
going to the workpiece

W m−2

Etot Total energy J
E Energy going to the workpiece J

utot Total specific energy Jm−3

uchip
Specific energy
going to the chip

Jm−3

u0
Specific energy not
converted into heat

Jm−3

Table 1: Nomenclature for dimensional parameters.
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Symbol Meaning
L = vf �/ (2k) Peclet number

T =πk0vfT/ (2kQ) Dimensionless temperature
Tmax Maximum dimensionless temperature
Ap Constant of the heat flux profile

ξ = a/R Dimensionless cutting depth
χ = vf/vθ Speed ratio

ε = E/Etot Energy partition ratio
s = u0/uchip Specific energy ratio

λ Apex location of the triangular heat flux profile
f Power reduction fraction

f (x) Heat flux distribution

Table 2: Nomenclature for dimensionless parameters.

2 Malkin’s model

2.1 Heat flux profile assumption

In surface grinding, the maximum dimensionless temperature Tmax for large
Peclet numbers is given by [12]

Tmax ≈ Ap

√
πL, L → ∞, (15)

where the constant Ap depends on the heat flux profile within the contact area
between wheel and workpiece, and T is the dimensionless temperature, defined
as

T =
πk0vf
2kQ

T, (16)

being Q (W m−2) the average heat flux entering into the workpiece. Table
3 shows the value of Ap for the most common heat flux profiles reported in
the literature, namely, constant [13, 14], linear [14, 15], triangular [16, 17],
and parabolic [18]. Notice that in the triangular profile, λ is a dimensionless
parameter that denotes the location of the apex (see Fig. 2). In [12] there is a
discussion about the accuracy of (15), depending on L. It is concluded that for
a constant heat flux profile, the error is about 5% for L > 5; and for a linear,
parabolic or triangular heat flux profile, the error is < 1% for L > 5.
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Heat flux profile Ap

Constant 2

Linear 4
3

√
2

Triangular 8
3

√
2

3−λ

Parabolic 2
5

√
6
(
3 +

√
3
)

Table 3: Dimensionless heat flux profile factor for maximum temperature.

Fig. 2 shows the dimensionless heat flux
distribution f (x) over the contact length, normalized to unity, that is

1

2�

∫ �

−�

f (x) dx = 1. (17)

It is worth noting that since (15) is based on a previous result given in [19],
similar calculations can be performed for any other kind of heat flux profile
f (x), provided that f (x) is a piecewise analytic function.

2.2 Contact length assumption

The widely used formula for the geometrical contact length

2� =
√
aD (18)

is in fact an approximation of the exact formula [2, Eqn. 3-2]

2� = R cos−1
(
1− a

R

)
, (19)

where R is just the radius of the wheel

D = 2R. (20)

Geometrically speaking, (19) calculates the arc length of the wheel in contact
to the workpiece, meanwhile (18) is just the chord of that arc. In surface
grinding, where the depth of cut a is much smaller than the wheel radius, that
is

ξ =
a

R
� 1, (21)
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the substitution of the exact formula (19) by the approximate one (18) is justified
due to the expansion [20, Eqn. 35:6:3]

cos−1 (1− ξ) =
√
2ξ

(
1 +

ξ

12
+

3ξ2

160
+

5ξ3

896
+ · · ·

)
, 0 ≤ ξ ≤ 2,

so that, expanding (19) up to first order, we get (18).
Nonetheless, the workpiece is moving with respect to the wheel, thus the

path traveled by a grain on the wheel surface in contact with the workpiece is
different from the geometrical contact length given in (18) or (19). Therefore,
there is a kinematical correction to the static geometrical contact length. In
surface grinding, this correction is usually given by the following formula [24]

2� = (1 + χ)
√
aD, (22)

where the speed ratio χ is a dimensionless parameter given by

χ =
vf
vθ

. (23)

However, equation (22) is also an approximation and the kinematic contact
length can be calculated exactly as

2� = D (1 + χ) E

(
4χ

(1 + χ)
2 ,

cos−1 (1− ξ)

2

)
, (24)

where E (k, φ) is the elliptic integral of the second kind [20, Eqn. 62:3:2]. Sur-
prisingly, (24) seems not to be reported in the literature, so a formal derivation
is given in Appendix C. In surface grinding, we can justify the usage of the
approximate formula (22), since, according to (19) and (21), we have

cos−1 (1− ξ) ≈ 0,

thus, applying to (24) the following limiting approximation [20, Eqn. 62:9:2]

E (k, φ) ≈ φ− k

6
φ3 + · · · , φ ≈ 0,

we get
2� ≈ R (1 + χ) cos−1 (1− ξ) . (25)

Now, recalling that (19) is approximated by (18), then (25) becomes (22),
as we wanted to prove.

2.3 Malkin’s model revisited

Taking into account (3) and (16), we can rewrite (15) in dimensional form as

Tmax =
Ap√
π

Q
√
2�
√
k

k0
√
vf

, (26)
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where, remember that (26) is an approximation that is asymptotically satisfied
for L → ∞. Defining Qtot as the total power Ptot consumed in the process per
unit surface in contact to the wheel, that is

Qtot =
Ptot

2�b
, (27)

and utot (Jm−3) as the total specific energy of the process (energy consumed
in the process Etot per unit volume of material removed)

utot =
dEtot

dV
=

dEtot/dt

dV/dt
=

Ptot

abvf
, (28)

we have that
Qtot =

avfutot

2�
. (29)

Now, let us set the dimensionless parameter ε as the ratio of the energy
entering into the workpiece E with respect to the total energy consumed in the
process Etot, thus

ε =
E

Etot
=

Q

Qtot
=

u

utot
, (30)

where u is the fraction of specific energy going to the workpiece. Therefore,
from (29) and (30), we obtain

Q =
Qtot

utot
u =

avf
2�

u. (31)

According to Malkin’s model, all the specific energy utot, except a fraction s
of the specific energy invested to generate chip uchip, goes to the workpiece, so

u = utot − s uchip, (32)

where, according to [3] s ≈ 0.45. Therefore, substituting (32) in (31) and setting
u0 = s uchip, we get

Q =
avf
2�

(utot − u0) . (33)

Now, substituting (33) in (26), we have

Tmax =
Ap√
π

a
√
kvf

k0
√
2�

(utot − u0) , (34)

and substituting in (34) the kinematic contact length approximation given in
(22), we obtain, solving for utot,

utot = u0 +

√
π

Ap

k0Tmax

√
1 + χ√

kvf
D1/4a−3/4. (35)

Multiplying (35) by the volumetric removal rate

dV

dt
= abvf ,
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and taking into account (28), we finally get

Ptot = u0bvfa+

√
π

Ap

bk0Tmax

√
1 + χ√

k

√
vfD

1/4a1/4. (36)

When the maximum temperature reached in the workpiece equals the change
of phase temperature of the material, i.e. Tmax = Tburn, then the total power
consumed in the grinding process reaches the maximum allowable power, i.e.
Ptot = Pburn, namely, when the workpiece starts getting burnt. Therefore, in
this case, we have

Pburn = u0bvfa+Bpbv
1/2
f D1/4a1/4, (37)

where

Bp =

√
π

Ap

k0Tburn

√
1 + χ√

k
. (38)

Notice that when we have a constant heat flux profile (i.e. Ap = 2) and
there is not kinematical correction (i.e. χ = 0), then Bp = B, and (37) becomes
(1). Therefore, (37) provides a generalization of Malkin’s model, although the
quartic-linear equation we need to solve in (7) remains the same, being the only
change to perform the replacement of B by Bp in (5).

As aforementioned, it is worth noting that there is a kind of misunderstand-
ing about Tmax and Tburn in the literature, (see, for instance [1, 3]), because it
seems that they are conceptually equivalent. However, Tmax refers to the max-
imum temperature in the workpiece for given grinding conditions, and Tburn

refers to the maximum temperature allowable by the workpiece material, so
that the latter is not thermally damaged.

3 The adaptive control of the grinding process

In real conditions, the power consumed Ptot in the grinding process rises as the
wheel wears out, because the wear flat area of the abrasive grains is augmented,
so that the energy per unit time and per unit area Q entering into the workpiece
is increased as well. Therefore, Ptot eventually reaches or even exceeds Pburn,
and thermal damage occurs. In order to avoid this, we can change the grinding
conditions, so that Ptot is reduced. For instance, according to (36), we can
lower vf or a, but the variation of a affects less to the behavior of the wheel (its
hardness), so the latter is preferred. Notice that if the depth of cut a is reduced,
according to (36) and (37), both Ptot and Pburn will be lowered. However, Ptot

is reduced more than Pburn since Tburn is a constant independent of a, and Tmax

depends on a, according to (34). Nonetheless, Ptot is increased in time again,
so that we have to reduce again the depth of cut a. Doing so periodically before
Pburn is reached, we will assure the quality of the workpiece and we will increase
the production, since we will reduce the number of wheel dressings.

Mathematically speaking, the adaptive control explained above involves the
following steps:
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• Setting the geometrical and kinematical grinding parameters (i.e. b,D, vf
and vθ) and knowing the thermal properties of the workpiece (i.e. k, k0
and Tburn), as well as the heat flux profile (i.e. Ap) and the specific energy
not converted into heat (i.e. u0); for an initial depth of cut a0, we can
calculate an initial allowable grinding power Pburn,0 by using (37).

• Monitoring in time the actual power consumed in the grinding process
Ptot, when Ptot ≥ Pburn,0, we will recalculate the depth of cut a1, so that
now, the allowable grinding power is reduced a fixed fraction f of its initial
quantity: Pburn,1 = (1− f)Pburn,0. Notice that in order to calculate a1,
we need to insert Pburn,1 in (37) and then solve for the cutting depth, i.e.
to solve the quartic-linear equation given in (4)-(7).

• In general, when Ptot ≥ Pburn,j (j = 0, 1, 2 . . .) we will reset the allowable
grinding power as Pburn,j+1 = (1− (j + 1) f)Pburn,0 and then we will
recalculate the depth of cut aj+1 similarly as aforementioned.

4 The quartic-linear equation

Let us solve now the quartic equation presented in the Introduction, that is, a
fourth degree equation without the quadratic and cubic terms. According to
(5)-(6) and (7), this equation reads as

z4 + q z + r = 0,
q > 0, r < 0.

(39)

Theorem 1 The quartic-linear equation given in (39) has got an unique posi-
tive real root

z =
1

2

(
−α+

√
α2 − 4β

)
, (40)

where

α =

√
−2

√
m sinh

(
1

3
sinh−1

(
nm−3/2

))
> 0, (41)

β =
2αr

α3 + q
< 0, (42)

m = −4

3
r > 0, (43)

n = −q2

2
< 0. (44)

Proof. Following the method described in the Appendix B, since (39) has not
cubic term, it can be factored as(

z2 + α z + β
) (

z2 − α z + γ
)
= 0.
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In order to calculate the coefficients α, β and γ, we have to solve first the re-
solvent given in (82), but taking p = 0, because the coefficient of the quadratic
term in (39) is null. Thus, we have

α6 − 4rα2 − q2 = 0. (45)

Notice that (45) is a cubic equation in α2 without the quadratic term, in which,
according to (39), the linear coefficient is positive, −4r > 0. Therefore, we can
apply the solution of Case I given in Appendix A. Since we are looking for real
solutions, we just take the solution given in (73)-(74), that is

α2 = −2
√
m sinh

(
1

3
sinh−1

(
nm−3/2

))
, (46)

where, comparing (45) with (59), we have

m = −4

3
r > 0, (47)

n = −q2

2
< 0. (48)

Since the sinh and sinh−1 functions are odd functions [11, Eqns. 8.14, 8.64],
taking into account (47)-(48) over (46), we can conclude easily that

α > 0. (49)

Once α is known, we calculate the coefficients β and γ particularizing (85) and
(86) with p = 0, so that

γ =
α3 + q

2α
> 0, (50)

β =
2αr

α3 + q
< 0. (51)

where the signs of (50) and (51) are easily derived from (49) and (39). Now,
according to the signs obtained for α, β and γ, the domain of the solutions of
the quartic-linear equation (39) are easily derived from (87)-(88). For instance,
since β < 0, then

α2 − 4β > α2 > 0. (52)

Applying now the square root to both sides of (52), knowing that the square root
is an increasing function for positive arguments, then the inequality holds, thus√

α2 − 4β > α, (53)

so, according to the + solution given in (87),

z+1 =
1

2

(
−α+

√
α2 − 4β

)
> 0.
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Now, from (49) and (53), we have√
α2 − 4β > 0,

thus, according to the − solution given in (87),

z−1 =
1

2

(
−α−

√
α2 − 4β

)
< 0.

Finally, taking into account (50) and (39), we have

α2 − 4γ = −α2 − q < 0,

thus, the solutions given in (88) are not real-valued

z±2 =
1

2

(
α±

√
α2 − 4γ

)
/∈ R.

Therefore, the unique positive real root of (39) is given by z+1 , as stated in (40).

Since (40) is the unique positive root of (39), recalling the change of variables
performed in (4), the depth of cut a is calculated as

a =
1

16

(
−α+

√
α2 − 4β

)4
. (54)

where α and β are given by (41) and (42) respectively.

5 Experimental results

Tables 4 and 5 collect the input parameters used in the experimental tests,
according to the enhanced model of Malkin discussed in Section 2. It is worth
noting that it has been supposed a linear heat flux profile, taking Ap = 4

3

√
2 (see

Table 3), since it is the one that fits better to the thermography experimental
values in surface dry grinding [17]. Also, the value of u0 is the one corresponding
to steels [2, p. 166], since the workpiece material is steel 1.2842 (F5229).

Once the input parameters are set, we can calculate the initial allowable
power (37)

Pburn,0 = u0bvfa0 +Bpbv
1/2
f D1/4a

1/4
0 . (55)

During the adaptive control iterations, the successive allowable powers are
calculated as

Pburn,j+1 = (1− (j + 1) f)Pburn,0, j = 0, 1, 2, . . . (56)
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Parameter Magnitude SI units

vθ 35 m s−1

D 0.3847 m
b 8.6× 10−3 m
k0 52.5 W m−1K−1

k 1.4535× 10−5 m2s−1

Ap
4
3

√
2 —

Tburn 700 K

u0 6.2× 109 Jm−3

Table 4: Input parameters.

Wheel Reference vf
[
ms−1

]
a0 [m]

Test 1
2AMBA46G12
V81 P24P

0.1667 5.40× 10−5

Test 2
5MBA46G12
V489 P24P

0.1667 4.10× 10−5

Test 3
MA46G12
V489 P24P

0.25 3.80× 10−5

Test 4
CBL36.2H10
V489 P24P

0.25 2.80× 10−5

Table 5: Grinding conditions for the tests.
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where we reduce a 10% of Pburn,0 in each iteration, i.e. f = 0.1. Now, according
(5)-(6) and theorem 1, we calculate the following parameters:

q =
Bp D

1/4

u0v
1/2
f

, r =
−Pburn,j+1

u0bvf
,

m = −4

3
r, n = −q2

2
,

α =

√
−2

√
m sinh

(
1

3
sinh−1

(
nm−3/2

))
,

β =
2αr

α3 + q
,

so that, we can calculate straightforwardly the depth of cut aj+1 as

aj+1 =
1

16

(
−α+

√
α2 − 4β

)4
, j = 0, 1, 2, . . . (57)

Table 6 shows the iterations in the adaptive control of the grinding process,
by using (55)-(57).

Test 1 Test 2
j Pburn,j [W] aj [m] Pburn,j [W] aj [m]

0 2501.8 5.40× 10−5 1963.6 4.10× 10−5

1 2251.8 4.08× 10−5 1766.9 3.05× 10−5

2 2000.5 2.92× 10−5 1572.0 2.14× 10−5

3 1752.2 1.95× 10−5

j Test 3 Test 4

0 2988.9 3.80× 10−5 2250.5 2.80× 10−5

1 2688.4 2.86× 10−5 2297.0 2.07× 10−5

2 2389.4 2.03× 10−5

Table 6: Allowable grinding power and cutting depth for each iteration.

In Fig. 3 is shown the time evolution of
the power consumption Ptot and the allowable power Pburn during the adaptive
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control tests. The grinding conditions of the different tests are given in Table 5.
In the abscissas, the number of depths i of the grinding wheel over the workpiece
surface is represented. Notice that when we change the cutting depth in each
iteration, Ptot lowers more than Pburn as aforementioned in Section 3. Also, we
can see that the adaptive control extends the operation of the wheel in a factor
between 2 to 6 times, without needing dressing the wheel and preserving the
surface integrity of the workpiece.

6 Conclusions

We have derived a closed analytical formula in terms of elementary functions
to solve the unique positive real root of a quartic equation without the cubic
and quadratic terms (quartic-linear equation). It turns out that this formula is
quite useful for the adaptive control of the depth of cut in surface dry grinding
in order to avoid thermal damage, because is very easy to implement in the nu-
merical control of the grinding process and also it is extremely fast to compute.
Unlike other authors, we have chosen to control the cutting depth instead of the
feedrate, because the variation of the depth of cut affects less the behavior of
the wheel (its hardness).

From the point of view of production, the smaller is the number of wheel
dressings, the better. However, as the wheel wears out, the risk of thermal
damage of the workpiece is greater. Therefore, the goal of the adaptive control
presented here is precisely to provide both things simultaneously as much as
possible. In the adaptive tests presented in this paper, we have increased very
significantly the number of passes of the wheel over the workpiece, for different
types of grinding wheels, feedrates and initial cutting depths.

In addition, Malkin’s model, in which is based the prediction of thermal
damage in surface dry grinding, has been enhanced in order to consider different
heat flux profiles in the grinding zone, and the kinematical correction to the
geometrical contact length. The derived formula for the quartic-linear equation
is still being applicable for the latter case.
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Appendix

A Cubic equation

Any cubic equation with real coefficients can be expressed as

z3 + a z2 + b z + c = 0, a, b, c ∈ R. (58)

Performing in (58) the change of variables

z = x− a

3
,

we obtain a cubic equation without the quadratic term, which is know as de-
pressed cubic equation. This equation reads as

x3 ± 3mx+ 2n = 0, (59)

where m > 0 and

±3m = b− a2

3
, (60)

2n =
2a3

27
− ab

3
+ c.

Performing now in (59) the change of variables

x = u+ v, (61)

we arrive at
u3 + v3 + 3 (u+ v) (uv ±m) + 2n = 0. (62)

Equation (62) holds if u and v satisfy

u3 + v3 + 2n = 0, (63)

uv ±m = 0. (64)

Solving (64), we obtain

v = ∓m

u
, (65)

and substituting (65) in (63), we arrive at

u6 + 2nu3 ∓m3 = 0. (66)

Equation (66) is a quadratic equation in u3 that can be solved easily, ob-
taining

u3 = −n±
√
n2 ±m3, (67)
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so that, substituting (67) in (65), we have

v3 = ∓m3

u3
= −n∓

√
n2 ±m3. (68)

Notice that the solutions for u and v given in (67) and (68) are interchange-
able, so that we can choose the + sign before the radical in (67) and the sign −
in (68), without loss of generality. Finding the cubic roots in (67) and (68), we
have the following set of solutions:

u1 =
(
−n+

√
n2 ±m3

)1/3
,

u±
2 = u1 exp

(
±2πi

3

)
=

1

2

(
−1±

√
3i
)
u1,

and

v1 =
(
−n−

√
n2 ±m3

)1/3
,

v±2 = v1 exp

(
±2πi

3

)
=

1

2

(
−1±

√
3i
)
v1.

Now, according to (61), we finally arrive at the three solutions of the cubic
equation in the classical form given by Cardan [21]

x1 = u1 + v1

=
(
−n+

√
n2 ±m3

)1/3
+
(
−n−

√
n2 ±m3

)1/3
, (69)

x±
2 = u±

2 + v∓2

= −1

2
(u1 + v1)±

√
3i

2
(u1 − v1) . (70)

A.1 Solution in terms of elementary functions

Cardan’s classical solution can be expressed in a much convenient way [22] by
using the following identities:

± x+
√
x2 + a2 = a exp

(
± sinh−1

(x
a

))
, (71)

x±
√
x2 − a2 =

⎧⎪⎪⎨
⎪⎪⎩

a exp
(
± cosh−1

(x
a

))
, x2 − a2 ≥ 0,

a exp
(
± i cos−1

(x
a

))
, x2 − a2 ≤ 0.

(72)

a ∈ R.

Formula (71) comes directly from the definition of the sinh−1 function [11,
Eqn. 8.55]. Formula (72) considers respectively the positive and negative
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branches of the cosh function [11, Eqn. 8.56], where in the negative branch,
it has taken into account the property cos−1 u = ±i cosh−1 u [11, Eqn. 8.94].

Therefore, applying (71)-(72) to the solutions given in (69)-(70), we can
differentiate three cases.

Case I + sign in (59) (recalling that m > 0). One real root and two conjugate
complex roots.

x1 = −2
√
m sinh θ1, (73)

x±
2 =

√
m
(
sinh θ1 ± i

√
3 cosh θ1

)
,

where

θ1 =
1

3
sinh−1

(
nm−3/2

)
. (74)

Case II − sign in (59) and n2 − m3 > 0. One real root and two conjugate
complex roots.

x1 = −2
√
m cosh θ2,

x±
2 =

√
m
(
cosh θ2 ± i

√
3 sinh θ2

)
,

where

θ2 =
1

3
cosh−1

(
nm−3/2

)
.

Case III − sign in (59) and n2 − m3 ≤ 0. Three real roots (trigonometric
solution).

x1 = −2
√
m cos θ3,

x±
2 =

√
m
(
cos θ3 ±

√
3 sin θ3

)
,

where

θ3 =
1

3
cos−1

(
nm−3/2

)
.

This solution can be given in a compact way as

xk = −2
√
m cos

(
θ3 + 2πk

3

)
, k = 0, 1, 2.

B Quartic equation

Any quartic equation with real coefficients can be expressed as

z4 + a z3 + b z2 + c z + d = 0, a, b, c, d ∈ R. (75)
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Performing the following change of variables in (75)

z = x− a

4
,

results in a quartic equation without the cubic term

z4 + p z2 + q z + r = 0, (76)

where

p = −3

8
a2 + b,

q =
a3

8
− ab

2
+ c,

r = −3a4

256
+

a2b

16
− ac

4
+ d.

The idea of Descartes [23] consists in factoring the quartic polynomial given
in (76) into two quadratic polynomials as follows(

z2 + α z + β
) (

z2 − α z + γ
)
= 0, (77)

where, identifying coefficients from (76) and (77), we have

p = γ + β − α2, (78)

q = α (γ − β) , (79)

r = γβ. (80)

Notice that the factorization given in (77) has been possible because (76)
has not cubic term. In order to solve for α, from (78) and (79), we can do the
following

(
p+ α2

)2 − ( q
α

)2
= (γ + β)

2 − (γ − β)
2

= 4γβ = 4r, (81)

where we have taken into account (80). Multiplying (81) by α2 and arranging
terms, we arrive at

α6 + 2pα4 +
(
p2 − 4r

)
α2 − q2 = 0. (82)

Equation (82) is known as the resolvent and it is a cubic equation in α2,
thus it can be solved by using the method described in Section A. Once α is
known, we can solve for γ from (78) and (79)

p+ α2 = γ + β, (83)
q

α
= γ − β, (84)
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so adding up (83) and (84), we obtain

γ =
1

2

(
p+ α2 +

q

α

)
. (85)

Once γ is known, from (80), β is directly solved as

β =
r

γ
. (86)

Known α, β and γ, we can solve easily (77), obtaining finally the four solu-
tions of the quartic equation as

z±1 =
1

2

(
−α±

√
α2 − 4β

)
, (87)

z±2 =
1

2

(
α±

√
α2 − 4γ

)
. (88)

C Kinematic contact length

R
θ

x

y

vf 
t

O

P
a

C C'

Wheel

Workpiece

2ℓ

In Fig. 4, the Cartesian coordinate sys-
tem OXY is fixed to the workpiece. Initially (at t = 0) the center of the wheel
is at C and in time t a grain travels from O to P . The trajectory described by
this grain is the composition of two movements: the shift of the center of the
wheel from C to C′ and the rotation of the wheel around its axis an angle θ.

If the wheel rotates at a constant angular velocity ωθ, we have

θ = ωθt, (89)

The Cartesian coordinates of point P are given by the following parametric
equations:

x (t) = R sinωθt+ vf t,
y (t) = R (1− cosωθt) ,

(90)

thus
x′ (t) = vθ cosωθt+ vf ,
y′ (t) = vθ sinωθt.

(91)
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Since vθ is the peripheral velocity of the wheel, we have

vθ = Rωθ. (92)

If at time t point P is located at a distance apart to the abscissa equal to
the cutting depth (i.e. y (t) = a), then, according to (90), we have

a = R (1− cosωθt) , (93)

so, taking into account the dimensionless parameter given in (21), ξ = a/R, we
have

ωθt = cos−1 (1− ξ) . (94)

The kinematic contact length 2� is then the arc length of the grain trajectory
from O to P , thus from (91), and performing the change of variables u = ωθτ ,
we have

2� =

∫ t

0

√
[x′ (τ)]2 + [y′ (τ)]2dτ

=

∫ t

0

√
v2θ + v2f + 2vθvf cosωθτ dτ

=
1

ωθ

∫ ωθt

0

√
v2θ + v2f + 2vθvf cosudu. (95)

Taking into account (92) and the dimensionless parameter defined in (23)
χ = vf/vθ, we can rewrite (95) as

2� = R

∫ ωθt

0

√
1 + χ2 + 2χ cosu du. (96)

The integral given in (96) can be calculated by using the following formula
reported in the literature [25, Eqn. 1.5.20(1)], [26, Eqn. 2.576.1], [27, Eqn.
289.01]

∫ β

0

√
a+ b cos tdt

?
= 2

√
a+ b E

(√
2b

a+ b
,
β

2

)
, (97)

a > b > 0, 0 ≤ β ≤ π.

where

E (k, φ) =

∫ φ

0

√
1− k sin2 θ dθ, (98)

is the elliptic integral of the second kind [20, Eqn. 62:3:2]. However, performing
the derivative on the right hand side of (97), we do not get the integrand of
(97). Therefore, let us rewrite (96) as follows

2� = R

∫ ωθt

0

√
(1 + χ)

2 − 2χ (1− cosu) du,
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and then let us apply the half angle formula for the sine function 2 sin2 (u/2) =
1− cosu and perform the change of variables w = u/2, thus

2� = R

∫ ωθt

0

√
(1 + χ)

2 − 4χ sin2
u

2
du

= 2R (1 + χ)

∫ ωθt/2

0

√
1− 4χ

(1 + χ)
2 sin2 w dw.

Taking into account the definition of the elliptic integral of the second kind
given in (98) and also (94) and (20), we finally get

2� = 2R (1 + χ) E

(
4χ

(1 + χ)2
,
ωθt

2

)

= D (1 + χ) E

(
4χ

(1 + χ)
2 ,

cos−1 (1− ξ)

2

)
. (99)
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