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This study presents a novel intelligent system that provides network managers with a synthetic and intuitive 
representation of the situation of the monitored network, in order to reduce the widely known high false-positive 
rate associated to misuse-based Intrusion Detection Systems (IDSs). This proposal relies on the idea that neural 
projection techniques such as Exploratory Projection Pursuit can adaptively map high-dimensional data into a low-
dimensional space, for the user-friendly visualization of data collected by different security tools. The neural 
system is based on the use of different projection and unsupervised methods for the visual inspection of honeypot 
data, and may be seen as a complementary network security tool that sheds light on internal data structures through 
visual inspection. Furthermore, it is intended to understand the performance of Snort (a well-known misuse-based 
IDS) through the visualization of attack patterns. This may lead to a subsequent improvement of Snort detection 
rates by updating its signatures. Empirical verification and comparison of the proposed projection methods are 
performed in a real domain where two different case studies are defined and analyzed. To check the proposed 
visualization a 1-month dataset and a 5-month data set were captured and visualized for analysis. Experiments 
proved that whereas a misuse-based IDS may only identify a low percentage of the malicious traffic, a deeper 
understanding of attack patterns by the proposed system could easily be gained by means of visual inspections. 
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1 Introduction 

A network attack or intrusion will inevitably violate one 
of the three computer security principles -availability, 
integrity and confidentiality- by exploiting certain 
vulnerabilities such as Denial of Service (DoS), 
Modification and Destruction.1 One of the most harmful 
issues of attacks and intrusions, which increases the 
difficulty of protecting computer systems, is precisely 
the ever-changing nature of attack technologies and 
strategies. 
For that reason alone, among others, IDSs2, 3, 4 have 
become an essential asset in addition to the computer 
security infrastructure of most organizations. In the 
context of computer networks, an IDS can roughly be 
defined as a tool designed to detect suspicious patterns 
that may be related to a network or system attack. 
Intrusion Detection (ID) is therefore a field that focuses 
on the identification of attempted or ongoing attacks on 

a computer system (Host IDS - HIDS) or network 
(Network IDS - NIDS). 
Visual inspection of traffic patterns is an alternative and 
crucial aspect in network monitoring.5 Visualization is a 
critical issue in the computer network defense 
environment, which serves to generate a synthetic and 
intuitive representation of the current situation for the 
network manager. As a result, several research 
initiatives have recently applied information 
visualization to this challenging task.6, 7, 8, 9 
Visualization techniques typically aim to make the 
available statistics supplied by traffic-monitoring 
systems more understandable in an interactive way. 
They therefore focus on traffic data as well as on 
network topology. Regardless of their specific 
characteristics, these methods all map high-dimensional 
feature data into a low-dimensional space for 
presentation purposes. The baseline of the research 
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presented in this study is that Artificial Neural Networks 
(ANNs),10, 11, 12, 13 in general, and unsupervised 
connectionist models, in particular, can prove quite 
adequate for the purpose of network data visualization 
through dimensionality reduction.14, 15, 16 As a result, 
unsupervised projection models17, 18 are applied in the 
present research for the visualization and subsequent 
analysis of attack data collected by a network of 
honeypots, also known as a honeynet. 
A honeypot has no authorized function or productive 
value within the corporate network other than to be 
explored, attacked or compromised.19 Thus, a honeypot 
should not receive any traffic at all. Any connection 
attempt with a honeypot is then an attack or attempt to 
compromise the device or services that it is offering- is 
by default illegitimate traffic. From the security point of 
view, there is a great deal that may be learnt from a 
honeypot about a hacker’s tools and methods in order to 
improve the protection of information systems. 
In a honeynet, all the traffic received by the sensors is 
suspicious by default. Thus every packet should be 
considered as an attack or at least as a piece of a multi-
step attack. Numerous studies propose the use of 
honeypots to detect automatic large scale attacks; 
honeyd20 and nepenthes21 among others. The first 
Internet traffic monitors known as Network Telescopes, 
Black Holes or Internet Sinks were presented by Moore 
et al. 22 
The remaining five sections of this study are structured 
as follows: section 2 briefly describes the topic of 
computer and network security (mainly Intrusion 
Detection). Section 3 presents the novel approach 
proposed for ID while the neural projection and 
visualization techniques applied in this research are 
described in section 4. Some experimental results for 
two different real-life datasets are then presented and 
comprehensively described in section 5. Finally, the 
conclusions of this interdisciplinary study and the future 
research lines are discussed in section 6. Additionally, 
Appendix A comprises a compendium of the remaining 
visualizations (not shown in previous sections) for the 
two analyzed datasets. 

2 Computer and Network Security 

This section introduces the main concepts of computer 
and network security that are the foundations of this 
study. 

2.1 Intrusion Detection Systems 

Intrusions can be produced by attackers that access the 
system, by authorized users that attempt to obtain 
unauthorized privileges, or by authorized users that 
misuse the privileges given to them. The complexity of 
such situations increases in the case of distributed 
network-based systems and insecure networks. When 
attackers try to access a system through external 
networks such as the Internet, one or several hosts may 
be involved. From a victim's perspective, intrusions are 
characterized by their manifestations, which might or 
might not include damage. 23 Some attacks may produce 
no manifestations while some apparent manifestations 
can be produced by system or network malfunctions. 
An IDS can be defined as a piece of software that runs 
on a host, which monitors the activities of users and 
programs on the same host and/or the traffic on 
networks to which that host is connected.24 The main 
purpose of an IDS is to alert the system administrator to 
any suspicious and possibly intrusive event taking place 
in the system that is being analyzed. Thus, they are 
designed to monitor and to analyze computer and/or 
network events in order to detect suspect patterns that 
may relate to a system or network intrusion. 
Ever since the first studies in this field in the 80s,3, 25 the 
accurate detection in real-time of computer and network 
system intrusions has always been an interesting and 
intriguing problem for system administrators and 
information security researchers. It may be attributed on 
the whole to the dynamic nature of systems and 
networks, the creativity of attackers, the wide range of 
computer hardware and operating systems and so on. 
Such complexity arises when dealing with distributed 
network-based systems and insecure networks such as 
the Internet.26 
A standard characterization of IDSs, based on their 
detection method, or model of intrusions, defines the 
following paradigms: 
• Anomaly-based ID (also known as behaviour-

based ID): the IDS detects intrusions by looking for 
activity that differs from the previously defined 
“normal” behaviour of users and/or systems. In 
keeping with this idea, the observed activity is 
compared against "predefined" profiles of expected 
normal usage. It is assumed that all intrusive 
activities are necessarily anomalous. In real-life 
environments, instead of their being identical, the 
set of intrusive activities only intersects the set of 
anomalous activities in some cases. As a 



 AN INTELLIGENT INTRUSION DETECTION SYSTEM FOR HONEYNET DATA 
 

3

consequence,27 anomalous activities that are not 
intrusive are flagged as intrusive (i.e. false 
positives) and intrusive activities that are not 
anomalous are not flagged up (i.e. false negatives). 
Anomaly-based IDSs can support detection of 
novel (zero-day) attack strategies but may suffer 
from a relatively high rate of false positives.28  

• Misuse-based ID (also known as knowledge-based 
ID): intrusions are detected by checking activity 
that corresponds to known intrusion techniques 
(signatures) or system vulnerabilities. Misuse-based 
IDSs are therefore commonly known as signature-
based IDSs. They detect intrusions by exploiting 
the available knowledge on specific attacks and 
vulnerabilities. As opposed to anomaly detection, 
misuse detection assumes that each intrusive 
activity can be represented by a unique pattern or 
signature.29 This approach entails one main 
problem; intrusions whose signatures are not 
archived by the system can not be detected. As a 
consequence, a misuse-based IDS will never detect 
a 0-day attack.29 The completeness of such IDSs 
requires regular updating of their knowledge of 
attacks. 

• Specification-based ID: it relies on program 
behavioural specifications reflecting system 
policies that are used as a basis to detect attacks.30 

2.1.1  Snort 

Snort, a libpcap-based31 lightweight network intrusion 
detection system, is one of the most widely deployed 
IDS. It is a network-based, misuse-based IDS. Snort 
detects many types of malicious activity in the packet 
payload that can be characterized in a unique detection 
signature. It is focused on collecting packets as quickly 
as possible and processing them in the Snort detection 
engine. It is composed of three primary modules: a 
packet decoder, a detection engine and a logging and 
alerting subsystem. 
Even if the capabilities of Snort allow a deep analysis of 
the traffic flows, what interests in this research is the 
detection, alerting and logging of the network packets as 
they arrive to the Honeynet system. Snort is used as a 
network data classifier, without discarding any packet. 
In that sense, in addition to the default rules of the Snort 
community, three basic rules that log all TCP, UDP and 
ICMP traffic are included, as shown in Table 1. 

Table 1. Snort rules to log all TCP, UDP and ICMP traffic. 

alert tcp $EXTERNAL_NET any ->$HOME_NET any 

(msg:”TCP”; sid:1000001;) 

alert udp $EXTERNAL_NET any ->$HOME_NET any 

(msg:”UDP”; sid:1000002;) 

alert icmp $EXTERNAL_NET any ->$HOME_NET any 

(msg:”ICMP”; sid:1000003;) 

 
On the other hand, each incoming packet is inspected 
and compared with the default rule base. This way, 
besides alerting when the packet matches the three 
signatures shown above, many of them also match the 
Snort rule base signatures. Thereby, even if a big 
amount of packets cause more than one alarm to be 
triggered, it facilitates a simple way to separate the 
alarm set into two subsets: 
• Alarms that have been triggered when matching the 

Snort default rule base. This dataset can be 
considered as known attack data. 

• Alarms that did not match any of the known attack 
rules. Considered as the unknown data. 

These two subsets will allow researchers to distinguish 
between the known and unknown traffic. This permits 
testing the success rate of Snort, and also visualizing the 
unknown traffic looking for new and unknown attacks. 
A clear advantage of using Snort IDS on this 
experiment is the ease of use, configuration and 
development of new rules. 

2.2 Honeypots and Honeynets 

The last few years, two monitoring systems for 
automatic large-scale attack detection have been 
proposed: honeypots and network telescopes. Since 
1992 honeypots are used to deceive attackers to learn 
from the new attacks they accomplish.32, 33, 34, 35 A 
honeypot is a decoy system consisting of some 
vulnerable computing resource used to distract 
attackers, as an early warning system for new attack 
proliferations and to ease the later analysis of the attacks 
(forensics).36 When used to monitor activities derived 
from automatic attacks based on random or pseudo-
random scanning, these systems have certain 
particularities. Unassigned IP addresses are given to 
these honeypots so every time a honeypot receives a 
connection request, it will be considered as suspicious. 
Nevertheless, the interaction level of the honeypot is 
fundamental. The higher the interaction between the 
honeypot and the attacker (response to TCP connection 
request for example), the more information can be 
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gathered and therefore a higher knowledge about the 
attack will be obtained. A system with a low level of 
interaction will also be valid to analyze the noise level, 
detect infected hosts, etc. 
One of the most extended classifications of honeypots 
takes into account their level of interaction. Low 
interaction honeypots offer limited interaction with 
attackers and the most common ones only simulate 
services and operating systems. High interaction 
honeypots follow a different strategy: instead of using 
simulated services and operating systems, real systems 
and applications are used, usually running in virtual 
machines. 
Somewhere between the two ones are medium 
interaction honeypots, which also emulate vulnerable 
services, but leave the operating system to manage the 
connections with their network protocol stack. Recently, 
a new type of honeypot has been proposed as a response 
to the behavioural change observed in the attackers. 
Instead of waiting for the attackers to reach traditional 
honeypots, client side honeypots, also known as 
honeyclients, scan communication channels looking for 
malware. 
This study, based on the analyzed case studies, is 
focused on medium interaction honeypots. 
In a honeynet, all the traffic received by the sensors is 
suspicious by default. Thus every packet should be 
considered as an attack or at least as a piece of a multi-
step attack. Different platforms exist as observatories of 
malicious threats using honeypots. Examples are 
NoAH20, and SGNET21. In this research, we are 
following this approach, based on the application of 
unsupervised learning to network level attacks collected 
from a honeypot-based observatory. 

3 A Visualization-based Approach for Data 
Monitored by Honeypots 

This study proposes the application of projection 
models for the visualization of traffic network attack 
data obtained by honeypots. There exist different 
approaches to collect attacks on the Internet, but there is 
still a lack of techniques that ease the comprehension 
and analysis of the information gathered. Visualization 
techniques have been applied to massive datasets for 
many years. These techniques are considered a viable 
approach to information seeking, as humans are able to 
recognize different features and to detect anomalies by 
inspecting graphs.37 The underlying operational 

assumption of the proposed approach is mainly 
grounded in the ability to render the high-dimensional 
traffic data in a consistent yet low-dimensional 
representation. So, security visualization tools have to 
map high-dimensional feature data into a low-
dimensional space for presentation. One of the main 
assumptions of the research presented in this study is 
that neural projection models will prove themselves to 
be satisfactory for the purpose of security data 
visualization through dimensionality reduction, 
analyzing complex high-dimensional datasets obtained 
by honeypots. 
This problem of identifying patterns that exist across 
dimensional boundaries in high dimensional datasets is 
a challenging task. Such patterns may become visible if 
changes are made to the spatial coordinates. However, 
an a priori decision as to which parameters will reveal 
most patterns requires prior knowledge of unknown 
patterns. 
Projection methods project high-dimensional data points 
onto a lower dimensional space in order to identify 
"interesting" directions in terms of any specific index or 
projection. Having identified the most interesting 
projections, the data are then projected onto a lower 
dimensional subspace plotted in two or three 
dimensions, which makes it possible to examine the 
structure with the naked eye. Projection methods can be 
smart compression tools that map raw, high-
dimensional data onto two or three dimensional spaces 
for subsequent graphical display. By doing so, the 
structure that is identified through a multivariable 
dataset may be visually analyzed with greater ease. 
Visualization tools can therefore support security tasks 
in the following way: 
• Visualization tools may be understood intuitively 

(even by inexperienced staff) and require less 
configuration time than more conventional tools. 

• Providing an intuitive visualization of data allows 
inexperienced security staff to learn more about 
standard network behaviour, which is a key issue in 
ID.38 The monitoring task can be then assigned to 
less experienced security staff. 

• As stated in 6 "visualizations that depict patterns in 
massive amounts of data, and methods for 
interacting with those visualizations can help 
analysts prepare for unforeseen events". Hence, 
such tools can also be used in security training. 

• They can work in unison with some other security 
tools in a complementary way. 
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As with other machine learning paradigms, an 
interesting facet of ANN learning is not just that the 
input patterns may be precisely 
learned/classified/identified, but that this learning can 
be generalized. Whereas learning takes place within a 
set of training patterns, an important property of the 
learning process is that the network can generalize its 
results on a set of test patterns that were not previously 
learnt. Also, their capability to identify unknown 
patterns fits the 0-day attack28 detection. 
Due to the aforementioned reasons, the present work 
approaches the analysis of attack data from a 
visualization standpoint. That is, some neural projection 
techniques are applied for the visualization of data 
monitored by honeypots.  

3.1 Previous Work 

Great effort has been devoted to the ID field up to now, 
but several issues concerning IDS design, development, 
and performance are still open for further research. 
Scant attention has been given to visualization in the ID 
field,39 although visual presentations do, in general, help 
operators and security managers, in particular, to 
interpret large quantities of data. Most IDSs do not 
provide any way of viewing information other than 
through lists, aggregates, or trends of raw data. They 
can generate different alarms when an anomalous 
situation is detected, broaden monitoring tasks, and 
increase situational awareness. However, they can 
neither provide a general overview of what is happening 
in the network nor support a detailed packet-level 
inspection7 as is the case under honeypots and 
honeynets. 
Some other authors have previously addressed the 
analysis of traffic data and intrusion detection under the 
application of ANN40, 41 and more in particular 
projection methods.14, 42 
The underlying idea in this ongoing research is not only 
to detect anomalous situations under data sets monitored 
by honeypots but also to visualize protocol interactions 
and traffic volume. Packet-based ID, that is actually 
performed in this present research, has several 
advantages. 43  
Some Exploratory Projection Pursuit (EPP)53 models 
have been previously applied to the ID field as part of a 
hybrid intelligent IDS14, 15, 16. Differentiating from 
previous studies, EPP models, are applied in the present 
study as a complementary tool to IDSs for the first time 

to analyze real complex high-dimensional honeynet data 
sets. In this sense, now the output of both the neural 
model and Snort (the novel applied IDS) are combined, 
together with some other customized visualizations for 
comprehensive analysis and understanding of network 
status. 

4 Neural Visualization Techniques 

The different projection models applied in this study are 
described in the following sections. 

4.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical 
model, introduced in 44 and independently in 45, that 
describes the variation in a set of multivariate data in 
terms of a set of uncorrelated variables each, of which is 
a linear combination of the original variables. 
Its goal is to derive new variables, in decreasing order 
of importance, that are linear combinations of the 
original variables and are uncorrelated with each other. 
From a geometrical point of view, this goal mainly 
consists of a rotation of the axes of the original 
coordinate system to a new set of orthogonal axes that 
are ordered in terms of the amount of variance of the 
original data they account for. The optimal projection 
given by PCA from an N -dimensional to an M -
dimensional space is the subspace spanned by the M  
eigenvectors with the largest eigenvalues. 
According to 46, it is possible to describe PCA as a 
mapping of vectors dx  in an N -dimensional input 
space ( )Nxx ,...,1  onto vectors dy  in an M -
dimensional output space ( )M,...,yy1 , where NM ≤ . 
x  may be represented as a linear combination of a set 
of N  orthonormal vectors iW : 

 i

N

i iWy∑ =
=

1
x  (1) 

Vectors iW  satisfy the orthonormality relation: 

 
ijj

t
i WW δ=  (2) 

where ijδ  is the Kronecker delta. 
Making use of equation  (1), the coefficients iy  may 
be given by 

 xT
ii Wy =  (3) 

which can be regarded as a simple rotation of the co-
ordinate system from the original x  values to a new set 
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of co-ordinates given by the y  values. If only one 
subset NM <  of the basis vectors, iW , is retained so 
that only M  coefficients iy  are used, and having 
replaced the remaining coefficients by constants ib , 
then each x  vector may be approximated by the 
following expression: 

 ∑∑
+==

+=
N

Mi
ii

M

i
ii WbWy

11

~x  (4) 

Consider the whole dataset of D  vectors, dx  where 
Dd ,...,1= . 

PCA can be performed by means of ANNs or 
connectionist models such as 47, 48, 49, 50, 51. It should be 
noted that even if we are able to characterize the data 
with a few variables, it does not follow that an 
interpretation will ensue. 

4.2 Cooperative Maximum Likelihood Hebbian 
Learning 

The Cooperative Maximum Likelihood Hebbian 
Learning (CMLHL) model52 extends the Maximum 
Likelihood Hebbian Learning (MLHL)17 model, which 
is based on EPP. The statistical method of EPP was 
designed for solving the complex problem of identifying 
structure in high dimensional data by projecting it onto 
a lower dimensional subspace in which its structure is 
searched for by eye. To that end, an “index” must be 
defined to measure the varying degrees of interest 
associated with each projection. Subsequently, the data 
is transformed by maximizing the index and the 
associated interest. From a statistical point of view the 
most interesting directions are those that are as non-
Gaussian as possible. 
The MLHL model is based on the Negative Feedback 
Network and it associates an input vector, x∈ℜD, with 
an output vector, y∈ℜQ. In this case, the output of the 
network (y) is computed as:  

 ixWy
1j

jiji ∀=∑
=

N

,  (5) 

where, ijW  is the weight linking input j  to output i . 
Once the output of the network has been calculated, the 
activation ( je ) is fed back through the same weights 
and subtracted from the input: 

 ∑
=

∀−=
M

i
iijjj jyWxe

1

,  (6) 

Finally, the learning rule determines the way in which 
the weights are updated: 

 ( ) 1||.. −=∆ p
jjiij eesignyW η  (7) 

where, η  is the learning rate and p  is a parameter 
related to the energy function. 
The main difference between the basic MLHL model 
and its Cooperative version is the introduction of lateral 
connections.52, 54, 55 After the Feed forward step (Eq. 5) 
and before the Feed back step (Eq. 6), lateral 
connections between the output neurons are applied as 
follows: 

 ( ) ( )[ ]+−+=+ Aybτ(t)yty ii 1  (8) 

where, τ  is the “strength” of the lateral connections, b 
is the bias parameter and  A  is a symmetric matrix used 
to modify the response to the data. Its effect is based on 
the relation between the distances among the output 
neurons. 

4.3 Curvilinear Component Analysis 

Curvilinear Component Analysis (CCA)56 is a nonlinear 
dimensionality reduction method. Developed as an 
improvement on the SOM, it tries to circumvent the 
limitations inherent in previous linear models such as 
PCA. 
The principle of CCA is a self-organized neural network 
performing two tasks: a vector quantization of the 
submanifold in the data set (input space) and a nonlinear 
projection of these quantising vectors toward an output 
space, providing a revealing view of the way in which 
the submanifold unfolds. Quantization and nonlinear 
mapping are separately performed by two layers of 
connections: firstly, the input vectors are forced to 
become prototypes of the distribution using a vector 
quantization (VQ) method; then, the output layer builds 
a nonlinear mapping of the input vectors by considering 
Euclidean distances. 
In the vector quantization step, the input vectors ( ix ) 
are forced to become prototypes of the distribution by 
using competitive learning and the regularization 
method57 of vector quantization. Thus, this step, which 
is intended to reveal the submanifold of the distribution, 
regularly quantizes the space covered by the data, 
regardless of the density. Euclidean distances between 
these input vectors ( )( )jiij xxdX ,=  are considered, 
as the output layer has to build a nonlinear mapping of 
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the input vectors. The corresponding distances in the 
output space are also used ( )( )jiij yydY ,= . 
Perfect matching is not possible at all scales when the 
manifold is "unfolding", so a weighting function 

( )( )yijYF λ,  is introduced, yielding the quadratic cost 
function:  

 ( ) ( )∑∑
≠

−=
i ij

yijijij YFYXE λ,
2

1 2
 (9) 

Where: λ  is a user-tuned parameter allowing an 
interactive selection of the scale at which the unfolding 
takes place. 
As regards its goal, the projection part of CCA is similar 
to other nonlinear mapping methods, in that it 
minimizes a cost function based on interpoint distances 
in both input and output spaces. Instead of moving one 
of the output vectors (iy ) according to the sum of the 
influences of every other jy  (as would be the case for a 
stochastic gradient descent), CCA proposes pinning 
down one of the output vectors (iy ) "temporarily", and 
moving all the other jy  around, disregarding any 
interactions between them. Accordingly, the proposed 
"learning" rule can be expressed as:  

 ( ) ( )( )
ij

ij
ijijyijj Y

yy
YXYFty

−
−=∆ λα , ij ≠∀ (10) 

Where: ( )α  is the step size that decreases over time. 

4.4 Self Organizing Map 

The Self-Organizing Map (SOM)58 was developed as a 
visualization tool for representing high dimensional data 
on a low dimensional display. It is also based on the use 
of unsupervised learning. However, it is a topology 
preserving mapping model rather than a projection 
architecture. 
The cerebral cortex of the human brain is one of the 
most complex biological systems. The different areas 
defined in this region are organized according to various 
sensory modalities: speech control, visual analysis, 
auditory control, etc. Each one of these areas consists of 
a large number of similar neurons that cooperate when 
carrying out their specific functions in which they have 
become specialized: auditory or hearing receptors, 
visualization, etc. Groups of neurons within each region 
respond jointly to excitations from the sensory cell they 
service. 59 There is a mapping of the features from 
sensory neurons to the associated spatial regions of the 

cortex. This biological feature mapping of the brain has 
been modelled reasonably well with ANNs. The 
computed SOMs are very similar to many brain maps as 
they also behave dynamically, in the same way, for 
example, as their magnification is adjusted in proportion 
to the occurrences of the stimuli. 60 Thus the SOM61 is a 
proper example of artificial topology preserving maps, 
where closer neurons are activated by similar inputs or 
stimuli. 
To mimic the biological brain maps, the SOM is 
composed of a discrete array of L nodes arranged on an 
N-dimensional lattice. These nodes are mapped into a 
D-dimensional data space while preserving their 
ordering. The dimensionality of the lattice (N) is 
normally smaller than that of the data, in order to 
perform the dimensionality reduction. The SOM can be 
viewed as a non-linear extension of PCA, where the 
global map manifold is a non-linear representation of 
the training data. 62 
Typically, the array of nodes is one or two-dimensional, 
with all nodes connected to the N  inputs by an N -
dimensional weight vector. The self-organization 
process is commonly implemented as an iterative on-
line algorithm, although a batch version also exists. An 
input vector is presented to the network and a winning 
node, whose weight vector cW  is the closest (in terms 
of Euclidean distance) to the input, is chosen:  

 ( )i
i

Wc −= xminarg  (11) 

The SOM is therefore a vector quantizer, and data 
vectors are quantised to the reference vector in the map 
that is closest to the input vector. The weights of the 
winning node and the nodes close to it are then updated 
to move closer to the input vector. There is also a 
learning rate parameter ( )η  that usually decreases as 
the training process progresses. The weight update rule 
is defined as:  

 [ ] )(, c
icii NiWhW ∈∀−=∆ xη  (12) 

When this algorithm is sufficiently iterated, the map 
self-organizes to produce a topology-preserving 
mapping of the lattice of weight vectors to the input 
space based on the statistics of the training data. 
This neural model is applied here for comparative 
purposes as it is one of the most widely used 
unsupervised neural models for visualizing structure in 
high-dimensional data sets. 
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5 Experimental Study 

Researchers usually make use of known attack datasets 
such as the well known DARPA dataset63, 64, 65  or the 
KDD Cup ’99 sub-dataset66, 67 in order to validate their 
developed systems. However, these data are simulated, 
non-validated and irregular52 so they are not fully 
reliable. Even if the results obtained by such systems are 
good, no one can assure that the applied algorithms will 
make the system more secure or will detect real attacks. 
This is the main reason of using two real attack data sets 
coming from a running honeynet in this research.  
The experimental work has been done by using data 
related to five months of real attacks that reached the 
Euskalert network.68 These data are depicted through 
different neural projection and visualization techniques 
in order to discover real attack behaviour and strategies. 
The Euskalert project68 has deployed a network of 
honeypots in the Basque Country (northern Spain) 
where eight companies and institutions have installed 
one of the project’s sensors behind the firewalls of their 
corporate networks. The honeypot sensor transmits all 
the traffic received to a database via a secure 
communication channel. These partners can consult 
information relative to their sensor (after a login 
process) as well as general statistics in the project’s 
website. Once a big amount of data has been collected, 
the information available can be used to analyze attacks 
received by the honeynet at network and application 
level.  
Euskalert is a distributed honeypot network based on a 
Honeynet GenIII architecture.53 The developed 
architecture of Euskalert is shown in Fig. 1. The various 
sensors installed in corporate networks of the different 
participants are shown in the left of Fig.1.  
 
Every sensor has a permanently established an 
encrypted connection (using different virtual private 
networks, also known as VPN) to a tunnel server. The 
latter is in the DMZ (Demilitarized Zone) of Mondragon 
University. Any attack to one of the sensors is 
redirected through these tunnels to reach the Honeypot 
(right side of Fig. 1), which is the responsible for 
responding to any connection attempt. The traffic also 
passes through a server responsible for collecting all the 
information which is then displayed on the Web 
platform.68 
This honeypot system has received about 164 packets a 
day on average. All the traffic is analyzed by the Snort 

IDS, and an alert is launched whenever the packet 
matches a known attack signature. 
The following features were extracted from each one of 
the records in the dataset: 
• Time: the time when the attack was detected. 

Difference in relation to the first attack in the 
dataset (in minutes). 

• Protocol: either TCP, UDP or ICMP (codified as 
three binary features). 

• Ip_len: number of bytes in the packet. 
• Source Port: number of the port from which the 

source host sent the packet. In the case of the ICMP 
protocol, this represents the ICMP type field. 

• Destination Port: destination host port number to 
which the packet was sent. In the case of the ICMP 
protocol, this represents the ICMP type field. 

• Flags: Control bits of a TCP packet, which contains 
8 1 bit values. 

 
Two different real-life case studies are analyzed in this 
research  as attack behavior may change in time. First, a 
snapshot of one-month data (February 2010) is analyzed 
to observe its internal structure. A five-month period 
(February-June 2010) is taken later to analyze how 
attacks have changed and new trends are discovered. 

 

Fig. 1. Architecture of the Euskalert network. 

 
 
Fig. 2. Temporal distribution of the traffic volume in terms of 
number of packets captured by Euskalert during February 
2010. 
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The previously introduced projection models have been 
applied to these two case studies, whose results are 
shown and described in the following sections. 

5.1 Case study 1: a 1-month dataset 

For this real case study, the logs coming from Euskalert 
and Snort have been gathered during one month 
(February 2010). Fig. 2 shows the traffic volume in 
terms of number of packets received for that period of 
time. 
The February 2010 dataset contains a total of 3798 
packets, including TCP, UDP and ICMP traffic received 
by the distributed honeypot sensors. The 
characterization of the traffic in the dataset is shown in 
Table 2. The table shows which alerts have been 
triggered in that period of time and their percentage. 
Those signatures starting with “Wormledge” are 
automatically generated and not present in the default 
signature database.  

Table 2. Characterization of traffic data captured by Euskalert, 
during February, 2010. 

Signature # Packets % 
Unknown Traffic 3404 89,62 
BLEEDING-EDGE 
POLICY Reserved IP Space 
Traffic - Bogon Nets 2 

127 3,34 

BLEEDING-EDGE 
WORM Allaple ICMP 
Sweep Ping Inbound 

58 1,52 

ICMP PING 75 1,97 
Wormledge, microsoft-ds, 
smb directory packet (port 
445). SMBr...PC 
NETWORK PROGRAM 
1.0...LANMAN1.0...Windo
ws for Workgroups 
3.1a...LM1.2X002...LANM
AN2.1...NT LM 0.12 . 
Created on 2007-08-07 

34 0,89 

Wormledge, KRPC 
Protocol (Kademlia RPC), 
BitTorrent information 
exchange:ping query. 
Created on 2007-08-07 

11 0,28 

Wormledge, NetBios 
Session Service (port 139). 
Payload 

7 0,18 

CKFDENECFDEFFCFGA
AAAAAAAAAAAAAAA. 
Created on 2007-08-07 
Wormledge, NetBios Name 
Query (udp port 137). 
Payload 
CKAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AA. Created on 2007-08-07 

7 0,18 

Wormledge, Microsoft RPC 
Service, dce endpoint 
resoluction (port 135). 
Created on 2007-08-07 

7 0,18 

WEB-IIS view source via 
translate header 

6 0,15 

BLEEDING-EDGE SCAN 
LibSSH Based SSH 
Connection - Often used as 
a BruteForce Tool 

5 0,13 

From this dataset, it may be said that a misuse 
detection-based IDS such as Snort is only capable of 
identifying about 10.38% of bad-intentioned traffic. 
Furthermore, it was demonstrated that only 2% of the 
unsolicited traffic was identified by the IDS when 
automatically generated signatures were included from a 
previous work.69 Thus, a deeper analysis of the data is 
needed in order to discover the internal structure of the 
remaining 90% of the traffic. Explaining the behaviour 
of the unknown traffic is a difficult task that must be 
performed to better protect computer networks and 
systems. In order to obtain more knowledge, several 
neural projection models have been applied and the 
results and conclusions obtained are shown in the 
following sub-sections. 
In the visualizations obtained, the data are depicted with 
different colors and shapes, taking into account the 
different original features of the data. In the shown 
projection, the axes are combinations of the features 
contained in the original datasets. Then, the X and Y 
axes of the projections can not be associated to a unique 
original feature. 

5.1.1 CMLHL Projections 

The CMLHL-training parameter values for the 
projections in this section were: number of iterations = 
10,000, learning rate = 0.0208, p parameter = 2.1429, 
and τ  parameter = 0.067. 
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Fig. 3 shows the CMLHL projection by considering the 
output generated by Snort. Packets that triggered any 
alarm are depicted as black crosses while packets that 
were not identified as anomalous are depicted as red 
circles. 
After analyzing this projection (Fig. 3), we prove the 
poor detection performance of Snort IDS when filtering 
honeypot traffic. CMLHL provides a way of 
differentiating known from unknown traffic at a naked 
eye. Most of the traffic corresponds to unknown 
packets, or at list to traffic that Snort is not capable of 
identifying using all of its predefined rule sets.  
Fig. 4 shows the CMLHL projection by considering the 
time (in minutes) to depict the packets; from 0 to 6692: 
red circles, from 6693 to 13384: black crosses, from 
13385 to 20076: green pluses, from 20077 to 26768: 
magenta stars, from 26769 to 33460: yellow squares, 
and from 33461 to 40148: cyan diamonds. 
The temporal evolution on that month shows that same 
traffic patterns repeat over time, as almost every cluster 
have similar shapes. This happens with both known and 
unknown traffic (shown in Fig. 3). It can be concluded 

that anomalous or unknown behavior is not a one off 
event, but a recurring pattern in time instead. 
 
Fig. 5 shows the CMLHL projection by considering the 
protocol to depict the packets; ICMP: red circles, UDP: 
black crosses, TCP: green pluses. 
After analyzing this projection (Fig. 5), it is easy to 
observe that most of the attacks collected target TCP 
protocol. This is a logical conclusion as most attacks 
target those kind of services, like Microsoft’s netBios 
for example. It also brings the attention the fact that 
most of the ICMP traffic (red circles) belongs to the 
Snort’s known traffic seen in Fig. 3.  
Fig. 6 shows the CMLHL projection by considering the 
IP length (in bits) to depict the packets; from 28 to 273: 
red circles, from 274 to 519: black crosses, from 520 to 
765: green pluses, from 766 to 1011: magenta stars, 
from 1012 to 1257: yellow squares, and from 1258 to 
1500: cyan diamonds. 

 

Fig. 3. CMLHL projection of 1-month data - Snort output. 

 

Fig. 4. CMLHL projection of 1-month data - Time. 

 
Fig. 5. CMLHL projection of 1-month data - Protocol. 
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Most of the traffic is composed of small packets, but it 
can also be observed very large packets received by the 
honeypot sensors. These are synonym of receiving 
malware, vulnerability exploits, or DoS attacks. 
Fig. 7 shows the CMLHL projection by considering the 
source port to depict the packets; from 3 to 10903: red 
circles, from 10904 to 21803: black crosses, from 21804 
to 32703: green pluses, from 32704 to 43603: magenta 
stars, from 43604 to 54503: yellow squares, and from 
54504 to 65401: cyan diamonds.  
Fig. 8 shows the CMLHL projection by considering the 
destination port to depict the packets; from 3 to 10371: 
red circles, from 10371 to 20739: black crosses, from 
20739 to 31107: green pluses, from 31107 to 41475: 
magenta stars, from 41475 to 51843: yellow squares, 
and from 51843 to 62205: cyan diamonds. 
Projections for source and destination ports show an 
obvious observation for the packets. Automatic 
categorization of the features groups most of the packets 
according to port numbers varying from 3 to 10371 and 
10903. Source port of received traffic should be bigger 
than 1023 (non privileged ports). Destination port, or 
the port where known services listen for new 
connections are usually under 1023 (privileged ports). 
This is why source port is quite uniformly distributed in 
Fig. 7, and destination port has a big prevalence on the 
red cluster. Even though, we still see clusters with 
destination ports above 10371. This may be a side effect 
of DoS attacks, also known as backscatter. The term 
backscatter refers to unsolicited traffic that is the result 
of responses to attacks spoofed with a network’s IP 
address.70 For example, when an attacker launches a 
DoS attack against a victim, he usually spoofs it’s own 
IP address with another one. When this spoofed IP 
address matches one of Euskalert’s sensors addresses, 

the response will be captured.  
Finally, the flags were considered to depict the packets 
(Fig. 9); from 0 to 5: red circles, from 6 to 11: black 
crosses, from 12 to 17: green pluses, from 18 to 23: 
magenta stars, and from 24 to 25: yellow squares. 
Value for flags in both UDP and ICMP traffic is 
considered as a 0 (red circles). This gives interesting 
results because it distinguishes very clearly the different 
types of packets.  
Continuing with DoS attacks, the flag bits of the TCP 
header gives valuable information for analyzing this 
phenomenon. Every TCP packet has a 6 bit length 
control field, consisting of: 
• URG: Urgent Pointer  
• ACK: Acknowledgment  
• PSH: Push Function 
• RST: Reset the connection 
• SYN: Synchronize sequence numbers 
• FIN: No more data from sender 
According to the normal behavior of TCP, any 

 

Fig. 6. CMLHL projection of 1-month data - IP length. 

 

 

Fig. 7. CMLHL projection of 1-month data - Source port. 

 

Fig. 8. CMLHL projection of 1-month data - Destination port. 
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computer that remains passive or does not initialize any 
connection can expect those combinations of control 
bits: SYN, ACK, PSH, FIN. Consequently, any other 
control bit combination will indicate the reception of 
DoS activity, at least as a side effect. 
If we look at the different flag combinations found in 
this dataset, we find: 
• No flags (0): corresponds to UDP and ICMP 

packets. 
• SYN (2). 
• RST (4). 
• ACK (16). 
• PSH+FIN (17). 
• SYN+ACK (18). 
• RST+ACK (20). 
• PSH+ACK (24). 
• PSH+ACK+FIN (25). 
Being this said, it can be argued that packets containing 
SYN+ACK, RST, and RST+ACK flags activated are a 
sign of backscatter that honeypot sensors receive from 
the victim. According to Fig. 9 data is clearly structured, 
but the automatic categorization provided by CMLHL 
groups combinations of different flag bits into the same 
clusters. Being this considered, no concrete conclusions 
can be obtained, and a more meaningful categorization 
will be provided for the next case study, as the amount 
of data is bigger providing enough information for this 
issue. 
All those visualizations are consequently in general very 
helpful information for explaining and helping security 
administrators to know the different traffic behavior that 
reach their systems. 

5.1.2 Comparative Study 

The CMLHL projections are compared with those of 
other dimensionality-reduction models (PCA, MLHL, 
CCA, and SOM). Several experiments were required to 
tune the SOM to different options and parameters: grid 
size, batch/online training, initialization, number of 
iterations and distance criterion, among others. In the 
case of CCA, other parameters, such as initialization, 
epochs and distance criterion were tuned. Only the best 
results (from the standpoint of the projection), which 
were obtained after tuning the models, are included in 
this work. 
For the sake of brevity, only the best projections for 
each model are shown in this comparative study. The 
remaining visualizations are gathered in Appendix A. 
The different ranges when visualizing a feature (Snort 
output, source/destination port, flags, protocol, etc.) are 
the same for PCA, MLHL and CCA. 

 
 

Fig. 9. CMLHL projection of 1-month data - Flags. 
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5.1.2.1 Principal Component Analysis 

Fig. 10 shows the PCA projection of the case study 1 by 
using the source port, and Fig. 11 shows the PCA 
projection of the case study 1 by using the time feature. 
These two first principal components amounts to 
84.33% of original data’s variance. 
Same security conclusions can be extracted from those 
projections; there is a very similar distribution of 
packets in time, and most of them have non-privileged 
ports as source port numbers.  

5.1.2.2 Maximum Likelihood Hebbian Learning 

Fig. 12 shows the MLHL projection of the case study 1 
by using the destination port, while Fig. 13 shows the 
MLHL projection of the case study 1 by using the time 
feature. The MLHL-training parameter values for these 
two projections were: number of iterations = 10,000, 

learning rate = 0.0208, and p parameter = 2.1429. 
After analyzing these projections, it can be seen that 
projections using time information are less clear than 
others, while destination port can be clearly understood 
with the previous explanations given. 

5.1.2.3 Curvilinear Component Analysis 

Fig. 14 shows the CCA projection of the case study 1 by 
using the Snort output, and Fig. 15 shows the CCA 
projection of the case study 1 by using the protocol. 
Some parameters, such as alpha, lambda, number of 
epochs and distance criterion were tuned. The final 
selected parameter values were: standardized Euclidian 
distance, lambda = 230,000, alpha = 0.5 and 10 epochs. 
Those projections show a visual explanation of the 
distribution of packets identified by Snort and those 
who are not, and if we analyze both of them as a whole, 
we observe that Snort could identify all of the ICMP 

 

Fig. 10. PCA projection of 1-month data - Source port. 

 

Fig. 11. PCA projection of 1-month data - Time. 

 
 
Fig. 12. MLHL projection of 1-month data - Destination port. 

 

 

Fig. 13. MLHL projection of 1-month data - Time. 

 



 14 

packets in that month (red line in Fig. 15). 

5.1.2.4 Self-Organizing Map 

Finally, the SOM was also applied to the 1-month 
dataset. In order to analyze the resulting maps, the 
different ranges of each original feature (see section 
5.1.1) were numbered.  
Fig. 16 shows the U-matrix of the SOM mapping of the 
case study 1.  
Fig. 17 shows the SOM map of the case study 1 by 
using the protocol; 1 represents ICMP, 3 UDP and 5 
TCP. Fig. 18 shows the SOM map of the case study 1 
by using the Snort output; 1 represents the packets 
identified as attacks while 0 represents the undetected 
attacks. For the SOM, the following options and 
parameters were tuned: grid size, batch/online training, 
initialization, number of iterations and distance criterion 
among others. The used parameter values were: linear 

initialization, batch training, hexagonal lattice, “Cut 
Gaussian” neighborhood function, and grid size 
(determined by means of a heuristic formula) = 15x21. 
It can be easily seen in Fig. 17 that the SOM clusters the 
data in three big clusters. Each one of them contains all 
the traffic related with each one of the protocols (ICMP: 
upper left corner, UDP: upper right corner, and TCP: 
the rest of the mapping). 
After analyzing the mapping in Fig. 18, it can be 
concluded that SOM is not able to cluster the data 
distinguishing the traffic classification of Snort 
(alarm/no alarm). The cluster in the upper left section is 
the only one identifying traffic of only one class 
(packets that triggered an alarm), while the other ones 
identify traffic of the two classes. 

 

Fig. 14. CCA projection of 5-month data - Snort output. 

 

Fig. 15. CCA projection of 1-month data - Protocol. 

 
 

Fig. 16. SOM mapping of 1-month data - U-matrix. 

 

 
 

Fig. 17. SOM mapping of 1-month data - Protocol. 



 AN INTELLIGENT INTRUSION DETECTION SYSTEM FOR HONEYNET DATA 
 

15

5.2 Case study 2: a 5-month dataset 

For this experiment, it has been analyzed the logs 
coming from Euskalert and Snort gathered during five 
months starting from February 2010. Fig. 19 shows the 
traffic volume in terms of number of packets received 
for that period of time. 
The dataset contains a total of 22601 packets, including 
TCP, UDP and ICMP traffic received by the distributed 
honeypot sensors. The characterization of the traffic in 
this dataset is shown in Table 3, which shows which 
alerts have been triggered in that period of time and 
their percentage. Those signatures starting with 
“Wormledge” are automatically generated and not 
present in the default Snort signature database. As it can 
be seen, the biggest group of signatures are those 
generated for unknown packets (both TCP, UDP and 
ICMP), and also the automatically generated signatures 
from a previous work.69 
From this dataset, it may be said that a misuse 

detection-based IDS such as Snort is only capable of 
identifying less than 3,75% (847 packets out of 22601) 
of bad-intentioned traffic. Thus, a deeper analysis of the 
data is needed in order to discover the internal structure 
of the remaining 96,25% of the traffic data set. As in 
case study 1, neural unsupervised models are applied in 
order to explain the behavior of the unknown traffic.  

Table 3. Characterization of traffic data captured by Euskalert, 
from February to June, 2010. 

Signature # Packets % 
Unknown TCP packet 19096 84,49183664 

Reserved IP Space Traffic - 
Bogon Nets 

1071 4,738728375 

Unknown packet 741 3,27861599 
Unknown UDP packet 397 1,756559444 

ICMP ping 290 1,283129065 
WORM Allaple ICMP Sweep 

Ping Inbound  
251 1,110570329 

Wormledge, KRPC Protocol 
(Kademlia RPC), BitTorrent 
information exchange:ping 

query 

99 0,438033715 

Wormledge, Slammer Worm 62 0,274324145 
Wormledge, Microsoft-ds, smb 

directory packet (port 445) 
62 0,274324145 

Wormledge, MS-SQL-
Service(port tcp 1433). Payload 

1.4.3.3.O.D.B.C. 

58 0,256625813 

ICMP PING speedera  40 0,176983319 
Wormledge, NetBios Name 

Query (udp port 137). Payload 
CKAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAA. 

35 0,154860404 

Wormledge, Possible SQL 
Snake/Spida Worm (port tcp 

1433). 

34 0,150435821 

Wormledge, NetBios Session 
Service (port 139) 

34 0,150435821 

SIP TCP/IP message flooding 
directed to SIP proxy 

33 0,146011238 

 

5.2.1 CMLHL Projections 

CMLHL was applied in order to analyze the dataset 
described above and to identify its inner structure. 
Fig. 20 shows the CMLHL projection by considering 
the output generated by Snort. Packets that triggered 
any alarm are depicted as black crosses while packets 
that were not identified as anomalous are depicted as 
red circles. 

 

Fig. 18. SOM mapping of 1-month data - Snort output. 

 
 
Fig. 19. Temporal distribution of the traffic volume in terms of 
number of packets captured by Euskalert from February to 
June, 2010. 
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Visualization of packets using Snort output shows the 
detection rate of the most used misuse-based IDS. Black 
crosses are the only ones detected by Snort, where all of 
the records constitute a suspicious activity by default. It 
is therefore important to use additional supporting 
systems, such as the visualization aids proposed in this 
study, to show a more comprehensive picture of what is 
actually happening and how an IDS is performing. 
Fig. 21 shows the CMLHL projection by considering 
the time to depict the packets; from 0 to 27044: red 
circles, from 27045 to 54089: black crosses, from 54090 
to 81134: green pluses, from 81135 to 108179: magenta 
stars, from 108180 to 135224: yellow squares, and from  
135225 to 162267: cyan diamonds. 
It can be observed that clusters are highly overlapped, 
which means that temporal distribution of attacks is 
very homogenous, so they constantly repeat over time. 
If we look some of the attacks at detail, we still see very 

old worm instances such as Slammer or Blaster (see 
Table 3). 
Fig. 22 shows the CMLHL projection by considering 
the protocol to depict the packets; ICMP: red circles, 
UDP: black crosses, TCP: green pluses. 
The visualization of data focusing on the protocol of the 
packets, shows the volume of attacks received by the 
honeypot sensors. Most of the attacks target TCP 
protocol, followed by UDP and ICMP. This information 
is not valuable by itself, but helps understanding some 
other situations that will be explained later.  
Fig. 23 shows the CMLHL projection by considering 
the IP length to depict the packets; from 28 to 326: red 
circles, from 327 to 625: black crosses, from 626 to 924: 
green pluses, from 925 to 1223: magenta stars, from 
1224 to 1522: yellow squares, and from 1523 to 1816: 
cyan diamonds. 
The visualization of the length field data gives a 
valuable sight to analyze the traffic and focus on large 

 

Fig. 20. CMLHL projection of 5-month data - Snort output. 

 

Fig. 21. CMLHL projection of 5-month data - Time. 

 

Fig. 22. CMLHL projection of 5-month data - Protocol. 

 
 

Fig. 23. CMLHL projection of 5-month data - IP length. 
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packets in order to identify both traffic sending malware 
and also traffic containing large payloads, usually trying 
either buffer overflow attacks or certain kinds of DoS 
attacks. Moreover, if we compare this graph with the 
protocol representation, it can be concluded that attacks 
with the biggest length belong to TCP, medium length 
belong to TCP and UDP, and smallest length to ICMP.  
This assumption is coherent since ICMP traffic is 
composed of echo and reply packets in the dataset, often 
very small. In fact, if we see large ICMP packets we 
should consider them as Ping of Death type attacks 
(consisting of packets of 64 Kbyte size). 
However UDP protocols typically use small packet size 
(i.e. DNS, etc.) and only tend to use large packets when 
used for Network File System protocol (NFS) for file 
sharing or for video or audio streaming. The latter is not 
possible in a honeynet, as it never starts streaming 
applications. We may found NFS packets, as 
vulnerabilities have been found in the past for that 
service. 
Fig. 24 shows the CMLHL projection by considering 
the source port to depict the packets; from 3 to 10924: 
red circles, from 10925 to 21846: black crosses, from 
21847 to 32768: green pluses, from 32769 to 43690: 
magenta stars, from 43691 to 54612: yellow squares, 
and from 54613 to 65529: cyan diamonds. 
Fig. 25 shows the CMLHL projection by considering 
the destination port to depict the packets; from 3 to 
10924: red circles, from 10925 to 21846: black crosses, 
from 21847 to 32768: green pluses, from 32769 to 
43690: magenta stars, from 43691 to 54612: yellow 
squares, and from 54613 to 65534: cyan diamonds. 
Once again, prevalence of red circles in Fig. 15 and Fig. 
16 shows that most connections are established from a 
port under 10924 to a destination port in the same range. 

Having this said, a new categorization for both source 

and destination ports have been done. The new 
categorization helps on understanding the data from a 
logical viewpoint; source and destination ports can be 
naturally categorized into privileged and non-privileged 
ports. Doing this traffic patterns can be understood. 
Finally, the flags were considered to depict the packets 
(Fig. 26); from 0 to 11: red circles, from 12 to 23: black 
crosses, from 24 to 35: green pluses, from 36 to 47: 
magenta stars, from 48 to 59: yellow squares, and from 
60 to 68: cyan diamonds. 
Fig. 26 results on a very useful visualization for 
analyzing backscatter. Once again default categorization 
of flag bit numbers does not permit a deeper analysis of 
the phenomenon. 
For further analysis, some other visualizations of the 
CMLHL projection were generated. Those 
visualizations have new categories calculated for 
features source port, destination port and flags. 
Fig. 27 shows the CMLHL projection by considering 
different ranges of the source port to depict the packets; 
from 3 and 8: red circles, from 0 to 1023 (excluding 3 
and 8): black crosses, and from 1024 to 54612: green 
pluses. This new categorization shows a better 
perspective of what is happening on the honeypot. Red 
circles show ICMP packets, while green pluses exhibit 
the normal behavior for source port numbers in packets 
arriving to Euskalert. The honeypot acts as an 
application server, so different hosts in the Internet 
connect to the offered services using a source port 
above 1023. Instead, black crosses show source ports 
below 1023. The most provable explanation to this fact 
is, once again, backscatter. We are receiving responses 
of a spoofed probe, scan or DoS from a remote server in 
the Internet. This responses use a privileged number as 

 

Fig. 24. CMLHL projection of 5-month data - Source port. 

 

Fig. 25. CMLHL projection of 5-month data - Destination 
port. 
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source port. We can observe these packets in 
combination with Fig. 20.  
Fig. 28 shows the CMLHL projection by considering 
different ranges of the destination port to depict the 
packets; 3 and 8: red circles, from 0 to 1023 (excluding 
3 and 8): black crosses, and from 1024 to 54612: green 
pluses. 
This visualization shows that Euskalert receives packets 
and connection attempts to ports above 1023. We find 
two possible explanations of this observation. In one 
hand, there are attack attempts to applications listening 
on ports above 1023. In this case we should focus on 
this ports and if we find any prevalence then create a 
new simulated service for that application. In the other 
hand, we receive backscatter, being this port the source 
port of the attacker. 
Fig. 29 shows the CMLHL projection by considering 
different ranges of the flags to depict the packets; 18 
and 28: red circles, all the remaining values: black 

crosses. 
Flags 18 and 28 correspond to SYN+ACK and 
RST+PSH+ACK flag combinations respectively. In 
combination with Fig. 18, it can be argued that these 
packets are related with responses from attack victims 
rather than from infected machines or attackers. 
Therefore we are capable of graphically detecting 
probes, scans or DoS attacks directed to remote servers. 

5.2.2 Comparative Study 

As in the case study 1, the CMLHL projections are 
compared with those of other dimensionality-reduction 
models (PCA, MLHL, CCA, and SOM). 

5.2.2.1 Principal Component Analysis 

Fig. 30 shows the PCA projection of the case study 2 by 
using the Snort output. Packets that triggered any alarm 
are depicted as black crosses while packets that were 

 

Fig. 26. CMLHL projection of 5-month data – Flags. 

 

Fig. 27. CMLHL projection of 5-month data - Source Port v2. 

 

 
 
Fig. 28. CMLHL projection of 5-month data - Destination Port 

v2. 

 

Fig. 29. CMLHL projection of 5-month data - Flags v2. 
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not identified as anomalous are depicted as red circles. 
Fig. 31 shows the PCA projection of the case study 2 by 
using the time feature to depict the packets; from 0 to 
27044: red circles, from 27045 to 54089: black crosses, 
from 54090 to 81134: green pluses, from 81135 to 
108179: magenta stars, from 108180 to 135224: yellow 
squares, and from 135225 to 162267: cyan diamonds. 
The two first principal components amount to 96.87% 
of original data’s variance. 
After analyzing these visualizations it can be said that  
Fig. 30 does not provides a clear idea of the situation as 
there is not a clear distinction of groups. On the 
contrary, Fig. 31 offers a clear representation of the 
observed conclusions, were the packet distribution in 
time is constant. 

5.2.2.2 Maximum Likelihood Hebbian Learning 

The MLHL-training parameter values for the 

projections in this section were: number of iterations = 
35,000, learning rate = 0.02, and p parameter = 0.9. 
Fig. 32 shows the MLHL projection of the case study 2 
by using the Snort output. 
Fig. 33 shows the MLHL projection by considering the 
source port to depict the packets; from 3 to 10924: red 
circles, from 10925 to 21846: black crosses, from 21847 
to 32768: green pluses, from 32769 to 43690: magenta 
stars, from 43691 to 54612: yellow squares, and from 
54613 to 65529: cyan diamonds. 
Those two visualizations show sharply the conclusions 
extracted before, according to Figs. 20 and 24. 

5.2.2.3 Self-Organizing Map 

For the SOM, the following options and parameters 
were tuned: grid size, batch/online training, 
initialization, number of iterations and distance criterion 

 

Fig. 30. PCA projection of 5-month data – Snort output. 

 

Fig. 31. PCA projection of 5-month data - Time. 

 
 

Fig. 32. MLHL projection of 5-month data - Snort output. 

 

 

Fig. 33. MLHL projection of 5-month data - Source port. 
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among others. The used parameter values were: linear 
initialization, batch training, hexagonal lattice, 
“Gaussian” neighborhood function, and grid size 
(determined by means of a heuristic formula) = 22x29. 
Fig. 34 shows the U-matrix of the SOM mapping of the 
case study 1. 
Fig. 35 shows the SOM map of the case study 2 by 
using the protocol; 1 represents ICMP, 3 UDP and 5 
TCP. It can be seen in this mapping that the SOM 
clusters the data in three big clusters. Each one of them 
contains all the traffic related with each one of the 
protocols, as occurred for the case of study one (ICMP: 
upper left corner, UDP: upper right corner, and TCP: 
the rest of the mapping).  
Fig. 36 shows the SOM map of the case study 2 by 
using the Snort output; 1 represents the packets 
identified as attacks while 0 represents the undetected 
attacks. As pointed out for the case study 1,  SOM is not 
able to cluster the data distinguishing the traffic 
classification of Snort (alarm/no alarm). 

6 Conclusions and Future Work 

Apart from the previously stated conclusions, regarding 
each one of the analyzed dataset, some other (more 
general) conclusions are gathered in this section.  
After comparing the different projections obtained in 
this study, it can be concluded that CMLHL provides a 
more sparse and clearer representation than the other 
applied projection methods. This enables the intuitive 
visualization of the Honeynet data, where the general 
structure of these data can be seen and interpreted. The 
visualizations obtained through CMLHL give an insight 

of the captured honeynet data, providing useful 
knowledge about the attacks a network could face. 
It has been shown how CMLHL provides a helpful 
technique to identify backscatter attacks, as well as 
identifying those attacks that overflow a buffer and 
malware downloads. 
From a general perspective, it can be seen from all the 
visualizations the high classification error rate of Snort. 
In keeping with this idea, it can be concluded that every 
IDS needs to be tuned and that default signatures are not 
enough to detect and identify every single attack. 
After getting a general idea of the dataset structure, an 
in-deep analysis was carried out to comprehensively 
analyze each one of the points in the groups identified 
by CMLHL. As a result, the following conclusions can 
be stated for each one of the destination ports: 
• 8: We identify the type of ICMP packet by inserting 

its code into the field destination port. ICMP type 8 

 

Fig. 34. SOM mapping of 5-month data - U-matrix. 

 

Fig. 35. SOM mapping of 5-month data - Protocol. 

 
 

Fig. 36. SOM mapping of 5-month data - Snort output. 
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corresponds to ICMP echo or ping, used for 
probing the Internet, looking for victim hosts. 

• 22: SSH. It seems to be a traffic flow with many 
packets coming from one source to one of the 
honeypot. They correspond to connection attempts 
by attackers or infected machines. 

• 80: HTTP. Attackers try different vulnerabilities 
against web applications.  

• 135: DCE endpoint resolution, used by Microsoft 
for Remote Procedure Call protocol. It has always 
been and still is one of the most exploited services 
by virus and worms. 

• 139: NETBIOS Session Service. Plenty of attacks 
to this Microsoft Windows service can be found.  

• 443: HTTP protocol over TLS SSL connection 
attempts. 

• 445: SMB directly over IP. As most of the traffic in 
the biggest group identified by CMLHL is aimed at 
this destination port, we can conclude that this is a 
widely exploited service. 

• 1433: Microsoft-SQL-Server, used by the old SQL 
Slammer worm. 

• 1521: Oracle TNS Listener. It seems that attackers 
try to connect to the honeypot via Oracle service. 

• 2967: Symantec System Center. Vulnerabilities 
have been found on Symantec service, and it is 
being expiated in the wild. 

• 3128: Proxy Server // Reverse WWW Tunnel 
Backdoor, where the MyDoom worm operates. 

• 3389: MS Terminal Services, used for Remote 
Desktop. 

• 4444: This port is a common return port for the rpc 
dcom.c buffer overflow vulnerability and for the 
msblast rpc worm. 

• 4899: Remote Administrator default port. There is a 
known remotely exploitable vulnerability in radmin 
server versions 2.0 and 2.1 that allows code 
execution. 

• 5061: SIP-TLS. Used for VoIP communications. 
• 5900: Virtual Network Computer or VNC, used 

also as a remote desktop solution.  
• Port 8080: HTTP Alternate port, also used as an 

HTTP proxy. 
• Port 19765: Used in Kademlia (Bittorrent protocol). 
This deeper analysis remains necessary in order to better 
understand some of the visualized attacks, but CMLHL 
projections seem enough to obtain a fast understanding 
of Internet attacks.  
Further work will focus on the application of different 
projection/visualization models as well as studying the 
visualization with different metrics instead of using the 
original features of the data. 

More analysis can be done with the data, like 
visualization of this attack traffic by each of the 
honeynet infrastructure sensors. This way, one could 
compare the pattern of attack behavior distinguishing 
the Internet space placement.  
Another interesting improvement of CMLHL 
visualization could be providing interactive capabilities; 
a user or analyst could select one or more points from 
the projections and the system may give details about 
the data behind them. In a further approach, the system 
could automatically generate signatures for user selected 
clusters, giving a solution to the big amount of Snort’s 
undetected packets. 
Enrichment of the attack dataset may also be a focus of 
attention. Researchers are correlating network traffic 
data with exploits collected during simulated 
vulnerability exploitation. Malware is also obtained for 
those attacks that aim to spread the infection. All this 
data needs a deeper analysis, and neural projection 
techniques will help in that task. 
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Appendix A - Remaining Visualizations 

6.1 Case study 1: a 1-month dataset 

6.1.1.1 Principal Component Analysis 

 
 

Fig. 37. PCA projection of 1-month data - Snort output. 

 

 
 

Fig. 38. PCA projection of 1-month data - Protocol. 

 

 
 

Fig. 39. PCA projection of 1-month data - IP Length. 

 

 
 

Fig. 40. PCA projection of 1-month data - Destination port. 

 

 
 

Fig. 41. PCA projection of 1-month data - Flags. 
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6.1.1.2 Maximum Likelihood Hebbian Learning 

 
 

Fig. 42. MLHL projection of 1-month data - Snort output. 

 
 

Fig. 43. MLHL projection of 1-month data - Protocol. 

 
 

Fig. 44. MLHL projection of 1-month data - IP Length. 

 

 
 

Fig. 45. MLHL projection of 1-month data - Source port. 

 
 

Fig. 46. MLHL projection of 1-month data - Flags. 
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6.1.1.3 Curvilinear Component Analysis 

 
 

Fig. 47. CCA projection of 1-month data - Time. 

 
 

Fig. 48. CCA projection of 1-month data - IP length. 

 
 

Fig. 49. CCA projection of 1-month data - Source port. 

 

 
 

Fig. 50. CCA projection of 1-month data - Destination port. 

 

 
 

Fig. 51. CCA projection of 1-month data - Flags. 
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6.1.1.4 Self-Organizing Map 

 
 

Fig. 52. SOM mapping of 1-month data - Time. 

 

 
 

Fig. 53. SOM mapping of 1-month data - IP length. 

 

 
 

Fig. 54. CCA projection of 1-month data - Source port. 

 

 
 

Fig. 55. CCA projection of 1-month data - Destination port. 

 

 
 

Fig. 56. CCA projection of 1-month data - Flags. 
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