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This study presents a novel intelligent system fratvides network managers with a synthetic anditine
representation of the situation of the monitoretivoek, in order to reduce the widely known highstpositive
rate associated to misuse-based Intrusion Dete&j@tems (IDSs). This proposal relies on the idea heural
projection techniques such as Exploratory Projeciarsuit can adaptively map high-dimensional d#t@a low-
dimensional space, for the user-friendly visualoratof data collected by different security tooEhe neural
system is based on the use of different projediioth unsupervised methods for the visual inspeaifdmneypot
data, and may be seen as a complementary netwaurkityeool that sheds light on internal data stuwes through
visual inspection. Furthermore, it is intended tmerstand the performance of Snort (a well-knowsuse-based
IDS) through the visualization of attack patterfikis may lead to a subsequent improvement of Saetection
rates by updating its signatures. Empirical veaificn and comparison of the proposed projectionhodd are
performed in a real domain where two different cagelies are defined and analyzed. To check thpogex
visualization a 1-month dataset and a 5-month datawere captured and visualized for analysis. Ex@ats
proved that whereas a misuse-based IDS may onhtifgea low percentage of the malicious trafficdaeper
understanding of attack patterns by the propossiisycould easily be gained by means of visualictspns.
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a computer system (Host IDS - HIDS) or network
(Network IDS - NIDS).

Visual inspection of traffic patterns is an altéiwa and
crucial aspect in network monitorig/isualization is a
critical issue in the computer network defense
environment, which serves to generate a syntheiic a
intuitive representation of the current situatiar the

1 Introduction

A network attack or intrusion will inevitably vidia one

of the three computer security principles -avalighi
integrity and confidentiality- by exploiting certai
vulnerabilities such as Denial of Service (DoS),
Modification and DestructiohOne of the most harmful

issues of attacks and intrusions, which increabes t  network manager. As a result, several research
difficulty of protecting computer systems, is pssty initiatives  have  recently applied information
the ever-changing nature of attack technologies and yjsyalization to this challenging tafk.” & °

strategies.

For that reason alone, among others, fD3s' have
become an essential asset in addition to the canput
security infrastructure of most organizations. he t
context of computer networks, an IDS can roughly be
defined as a tool designed to detect suspiciousnoat
that may be related to a network or system attack.
Intrusion Detection (ID) is therefore a field tHatuses

on the identification of attempted or ongoing dtson

Visualization techniques typically aim to make the
available statistics supplied by traffic-monitoring
systems more understandable in an interactive way.
They therefore focus on traffic data as well as on
network topology. Regardless of their specific
characteristics, these methods all map high-dinoeasi
feature data into a low-dimensional space for
presentation purposes. The baseline of the research



presented in this study is that Artificial Neurad¢tiorks
(ANNs) X% 12 13 in general, and unsupervised
connectionist models, in particular, can prove euit
adequate for the purpose of network data visuaizat
through dimensionality reductidft. *> ** As a result,
unsupervised projection mod¥ls'® are applied in the
present research for the visualization and subsdque
analysis of attack data collected by a network of
honeypots, also known as a honeynet.

A honeypot has no authorized function or productive
value within the corporate network other than to be
explored, attacked or compromis€drhus, a honeypot
should not receive any traffic at all. Any conneati
attempt with a honeypot is then an attack or atteimp
compromise the device or services that it is afigriis

by default illegitimate traffic. From the securjppint of
view, there is a great deal that may be learnt feom
honeypot about a hacker’s tools and methods inrdede
improve the protection of information systems.

In a honeynet, all the traffic received by the sesss
suspicious by default. Thus every packet should be
considered as an attack or at least as a piecemofita
step attack. Numerous studies propose the use of
honeypots to detect automatic large scale attacks;
honeyd® and nepenthés among others. The first
Internet traffic monitors known as Network Telesesp
Black Holes or Internet Sinks were presented by oo
etal ?

The remaining five sections of this study are gtruex

as follows: section 2 briefly describes the topit o
computer and network security (mainly Intrusion
Detection). Section 3 presents the novel approach
proposed for ID while the neural projection and
visualization techniques applied in this research a
described in section 4. Some experimental resoits f
two different real-life datasets are then presergad
comprehensively described in section 5. Finallye th
conclusions of this interdisciplinary study and theure
research lines are discussed in section 6. Addilipn
Appendix A comprises a compendium of the remaining
visualizations (not shown in previous sections) thoe
two analyzed datasets.

2 Computer and Network Security

This section introduces the main concepts of comput
and network security that are the foundations @ th
study.

2.1  Intrusion Detection Systems

Intrusions can be produced by attackers that adbess
system, by authorized users that attempt to obtain
unauthorized privileges, or by authorized userst tha
misuse the privileges given to them. The complegity
such situations increases in the case of distribute
network-based systems and insecure networks. When
attackers try to access a system through external
networks such as the Internet, one or several hoats

be involved. From a victim's perspective, intrusi@me

characterized by their manifestations, which might

might not include damag& Some attacks may produce
no manifestations while some apparent manifestation
can be produced by system or network malfunctions.

An IDS can be defined as a piece of software thas r

on a host, which monitors the activities of usensl a

programs on the same host and/or the traffic on

networks to which that host is connectéd’he main
purpose of an IDS is to alert the system admirtistriz

any suspicious and possibly intrusive event takilage

in the system that is being analyzed. Thus, they ar

designed to monitor and to analyze computer and/or

network events in order to detect suspect pattdrats
may relate to a system or network intrusion.

Ever since the first studies in this field in th@sg **the

accurate detection in real-time of computer anavagk

system intrusions has always been an interestimg an
intriguing problem for system administrators and
information security researchers. It may be attgdwn

the whole to the dynamic nature of systems and

networks, the creativity of attackers, the widegearof

computer hardware and operating systems and so on.

Such complexity arises when dealing with distrilute

network-based systems and insecure networks such as

the Internet®

A standard characterization of IDSs, based on their

detection method, or model of intrusions, defines t

following paradigms:

* Anomaly-based ID (also known as behaviour-
based ID): the IDS detects intrusions by looking fo
activity that differs from the previously defined
“normal” behaviour of users and/or systems. In
keeping with this idea, the observed activity is
compared against "predefined" profiles of expected
normal usage. It is assumed that all intrusive
activities are necessarily anomalous. In real-life
environments, instead of their being identical, the
set of intrusive activities only intersects the sét
anomalous activities in some cases. As a
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consequencé, anomalous activities that are not
intrusive are flagged as intrusive (i.e. false
positives) and intrusive activities that are not
anomalous are not flagged up (i.e. false negatives)
Anomaly-based IDSs can support detection of
novel (zero-day) attack strategies but may suffer
from a relatively high rate of false positiv&s.

* Misuse-based ID(also known as knowledge-based
ID): intrusions are detected by checking activity
that corresponds to known intrusion techniques
(signatures) or system vulnerabilities. Misuse-Hase
IDSs are therefore commonly known as signature-
based IDSs. They detect intrusions by exploiting
the available knowledge on specific attacks and
vulnerabilities. As opposed to anomaly detection,
misuse detection assumes that each intrusive
activity can be represented by a unique pattern or
signaturé® This approach entails one main
problem; intrusions whose signatures are not
archived by the system can not be detected. As a
consequence, a misuse-based IDS will never detect
a 0-day attack® The completeness of such IDSs
requires regular updating of their knowledge of

attacks.
» Specification-based ID it relies on program
behavioural specifications reflecting system

policies that are used as a basis to detect atficks

2.1.1 Snort

Snort, a libpcap-bas&dlightweight network intrusion
detection system, is one of the most widely deploye
IDS. It is a network-based, misuse-based IDS. Snort
detects many types of malicious activity in the ksdc
payload that can be characterized in a unique tietec
signature. It is focused on collecting packets @iskdy

as possible and processing them in the Snort datect
engine. It is composed of three primary modules: a
packet decoder, a detection engine and a loggilg an
alerting subsystem.

Even if the capabilities of Snort allow a deep gsial of

the traffic flows, what interests in this reseaishthe
detection, alerting and logging of the network pslas
they arrive to the Honeynet system. Snort is used a
network data classifier, without discarding any kec

In that sense, in addition to the default rulethef Snort
community, three basic rules that log all TCP, U&#®
ICMP traffic are included, as shown in Table 1.

Table 1. Snort rules to log all TCP, UDP and ICMFfiza

alert tcp $EXTERNAL_NET any ->$HOME_NET any
(msg:"TCP”; sid:1000001;)
alert udp $EXTERNAL_NET any ->$HOME_NET any
(msg:"UDP”; sid:1000002;)
alert icmp $SEXTERNAL_NET any ->$HOME_NET any
(msg:"ICMP”; sid:1000003;)

On the other hand, each incoming packet is insgecte
and compared with the default rule base. This way,
besides alerting when the packet matches the three
signatures shown above, many of them also match the
Snort rule base signatures. Thereby, even if a big
amount of packets cause more than one alarm to be
triggered, it facilitates a simple way to separtie
alarm set into two subsets:

« Alarms that have been triggered when matching the
Snort default rule base. This dataset can be
considered as known attack data.

Alarms that did not match any of the known attack
rules. Considered as the unknown data.

These two subsets will allow researchers to disisiy

between the known and unknown traffic. This permits

testing the success rate of Snort, and also visnglithe
unknown traffic looking for new and unknown attacks

A clear advantage of using Snort IDS on this

experiment is the ease of use, configuration and

development of new rules.

2.2  Honeypots and Honeynets

The last few years, two monitoring systems for
automatic large-scale attack detection have been
proposed: honeypots and network telescopes. Since
1992 honeypots are used to deceive attackers to lea
from the new attacks they accompli§h3® 3% 3°A
honeypot is a decoy system consisting of some
vulnerable computing resource used to distract
attackers, as an early warning system for new lattac
proliferations and to ease the later analysis efattacks
(forensics)® When used to monitor activities derived
from automatic attacks based on random or pseudo-
random scanning, these systems have certain
particularities. Unassigned IP addresses are gieen
these honeypots so every time a honeypot receives a
connection request, it will be considered as suspic
Nevertheless, the interaction level of the honeyigot
fundamental. The higher the interaction between the
honeypot and the attacker (response to TCP comecti
request for example), the more information can be



gathered and therefore a higher knowledge about the
attack will be obtained. A system with a low lel
interaction will also be valid to analyze the noliseel,
detect infected hosts, etc.

One of the most extended classifications of hontsypo
takes into account their level of interaction. Low
interaction honeypots offer limited interaction hvit
attackers and the most common ones only simulate
services and operating systems. High interaction
honeypots follow a different strategy: instead eing
simulated services and operating systems, reabsgst
and applications are used, usually running in sirtu
machines.

Somewhere between the two ones are medium
interaction honeypots, which also emulate vulnerabl
services, but leave the operating system to mattege
connections with their network protocol stack. Relye

a new type of honeypot has been proposed as ansspo
to the behavioural change observed in the attackers
Instead of waiting for the attackers to reach tradal
honeypots, client side honeypots, also known as
honeyclients, scan communication channels lookarg f
malware.

This study, based on the analyzed case studies, is
focused on medium interaction honeypots.

In a honeynet, all the traffic received by the sesss
suspicious by default. Thus every packet should be
considered as an attack or at least as a piecemofita
step attack. Different platforms exist as obsemiasoof
malicious threats using honeypots. Examples are
NoAH?, and SGNET. In this research, we are
following this approach, based on the applicatidn o
unsupervised learning to network level attackseoddd
from a honeypot-based observatory.

3 A Visualization-based Approach for Data
Monitored by Honeypots

This study proposes the application of projection
models for the visualization of traffic network ak
data obtained by honeypots. There exist different
approaches to collect attacks on the Internetthmre is

still a lack of techniques that ease the comprdabans
and analysis of the information gathered. Visudgliza
techniques have been applied to massive datasets fo
many years. These techniques are considered aeviabl
approach to information seeking, as humans aretable
recognize different features and to detect anomddie
inspecting graph¥. The underlying operational

assumption of the proposed approach is mainly

grounded in the ability to render the high-dimensio

traffic data in a consistent yet low-dimensional
representation. So, security visualization toolgehto
map high-dimensional feature data into a low-
dimensional space for presentation. One of the main
assumptions of the research presented in this study
that neural projection models will prove themseltes
be satisfactory for the purpose of security data
visualization  through  dimensionality  reduction,
analyzing complex high-dimensional datasets obthine
by honeypots.

This problem of identifying patterns that exist @

dimensional boundaries in high dimensional dataisets

a challenging task. Such patterns may become gigibl

changes are made to the spatial coordinates. Howeve

ana priori decision as to which parameters will reveal
most patterns requires prior knowledge of unknown
patterns.

Projection methods project high-dimensional datatso

onto a lower dimensional space in order to identify

"interesting" directions in terms of any specificiéx or

projection. Having identified the most interesting

projections, the data are then projected onto aelow
dimensional subspace plotted in two or three
dimensions, which makes it possible to examine the
structure with the naked eye. Projection methodshea
smart compression tools that map raw, high-
dimensional data onto two or three dimensional epac
for subsequent graphical display. By doing so, the
structure that is identified through a multivariabl
dataset may be visually analyzed with greater ease.

Visualization tools can therefore support secutdtyks

in the following way:

e Visualization tools may be understood intuitively
(even by inexperienced staff) and require less
configuration time than more conventional tools.

e Providing an intuitive visualization of data allows
inexperienced security staff to learn more about
standard network behaviour, which is a key issue in
ID.*® The monitoring task can be then assigned to
less experienced security staff.

« As stated irf "visualizations that depict patterns in
massive amounts of data, and methods for
interacting with those visualizations can help
analysts prepare for unforeseen evéntslence,
such tools can also be used in security training.

e They can work in unison with some other security
tools in a complementary way.



AN INTELLIGENT INTRUSION DETECTION SYSTEM FOR HOMEIYDATA 5

As with other machine learning paradigms, an
interesting facet of ANN learning is not just thhe
input patterns may be precisely

learned/classified/identified, but that this leaican

be generalized. Whereas learning takes place wéhin
set of training patterns, an important propertyttod
learning process is that the network can generdtize
results on a set of test patterns that were natiqusly
learnt. Also, their capability to identify unknown
patterns fits the 0-day atta€ldetection.

Due to the aforementioned reasons, the present work
approaches the analysis of attack data from a
visualization standpoint. That is, some neural gztipn
techniques are applied for the visualization ofadat
monitored by honeypots.

3.1 PreviousWork

Great effort has been devoted to the ID field updw,

but several issues concerning IDS design, develohme
and performance are still open for further research
Scant attention has been given to visualizatiotiénlD
field,* although visual presentations do, in general, help
operators and security managers, in particular, to
interpret large quantities of data. Most IDSs dd no
provide any way of viewing information other than
through lists, aggregates, or trends of raw dateyT
can generate different alarms when an anomalous
situation is detected, broaden monitoring tasks] an
increase situational awareness. However, they can
neither provide a general overview of what is hayipg

in the network nor support a detailed packet-level
inspectiod as is the case under honeypots and
honeynets.

Some other authors have previously addressed the
analysis of traffic data and intrusion detectiomemthe
application of ANN® * and more in particular
projection method¥® #?

The underlying idea in this ongoing research isardy

to detect anomalous situations under data setstonedi

by honeypots but also to visualize protocol int&oss

and traffic volume. Packet-based ID, that is adyual
performed in this present research, has several
advantages?

Some Exploratory Projection Pursuit (EPPnodels
have been previously applied to the ID field as paa
hybrid intelligent IDS* > ¢ Differentiating from
previous studies, EPP models, are applied in thegmt
study as a complementary tool to IDSs for the firse

to analyze real complex high-dimensional honeya¢d d
sets. In this sense, now the output of both theateu
model and Snort (the novel applied IDS) are conthine
together with some other customized visualizatifors
comprehensive analysis and understanding of network
status.

4 Neural Visualization Techniques

The different projection models applied in thisdstare
described in the following sections.

4.1  Principal Component Analysis

Principal Component Analysis (PCA) is a statistical
model, introduced if* and independently if®, that
describes the variation in a set of multivariateadia
terms of a set of uncorrelated variables each,hithwis

a linear combination of the original variables.

Its goal is to derive new variables, in decreasingder

of importance, that are linear combinations of the
original variables and are uncorrelated with eaitfeio
From a geometrical point of view, this goal mainly
consists of a rotation of the axes of the original
coordinate system to a new set of orthogonal axes t
are ordered in terms of the amount of variancehef t
original data they account for. The optimal prajct
given by PCA from anN -dimensional to anM -
dimensional space is the subspace spanned bywthe
eigenvectors with the largest eigenvalues.

According to“*® it is possible to describe PCA as a
mapping of vectorsX? in an N -dimensional input
space E)(l,...,xN onto vectors y“I in an M -
dimensional output spacgy;,...,Y ) whereM < N.

X may be represented as a linear combination of a se
of N orthonormal vector¥\, :

N
X=) . YW ()

VectorsW satisfy the orthonormality relation:
WW, =g, @

where 5”- is the Kronecker delta.
Making use of equation (1), the coefficienys may
be given by

y, =W'x (3)

which can be regarded as a simple rotation of the c
ordinate system from the origin& values to a new set



of co-ordinates given by thg/ values. If only one
subsetM < N of the basis vectord)/, is retained so
that only M coefficients Yy, are used, and having
replaced the remaining coefficients by constabps
then each X vector may be approximated by the
following expression:

X = i yW, + ZN: bW, 4)
i=1 i=M +1

Consider the whole dataset &) vectors, X9 where
d=1..D.

PCA can be performed by means of ANNs or
connectionist models such s 4% %% 31|t should be
noted that even if we are able to characterizedtita
with a few variables, it does not follow that an
interpretation will ensue.

4.2  Cooperative Maximum Likelihood Hebbian

Learning

The Cooperative Maximum Likelihood Hebbian
Learning (CMLHL) modef extends the Maximum
Likelihood Hebbian Learning (MLHLY model, which

is based on EPP. The statistical method of EPP was
designed for solving the complex problem of ideyirtify
structure in high dimensional data by projectingrito

a lower dimensional subspace in which its structare
searched for by eye. To that end, an “index” must b
defined to measure the varying degrees of interest
associated with each projection. Subsequentlydtia

is transformed by maximizing the index and the
associated interest. From a statistical point efwthe
most interesting directions are those that are as n
Gaussian as possible.

The MLHL model is based on the Negative Feedback
Network and it associates an input vectdn[1°, with

an output vectoryJJ?. In this case, the output of the
network ) is computed as:

N
Yi = ZV\/“ X; i (®)

j=1
Where,V\/ij is the weight linking inputj to output; .
Once the output of the network has been calculdked,
activation (ej) is fed back through the same weights
and subtracted from the input:

M
g =%~ > Wy, (6)
i=1

Finally, the learning rule determines the way inickh
the weights are updated:

m%=mmﬂmﬁﬂqﬁﬂ

where, pp is the learning rate ang is a parameter
related to the energy function.

The main difference between the basic MLHL model
and its Cooperative version is the introductiodadéral
connections? ** *®After the Feed forward step (Eq. 5)
and before the Feed back step (Eq. 6), lateral
connections between the output neurons are appied
follows:

)

y(t+1)=[y®+<b-A)  ®

where, 7 is the “strength” of the lateral connectiobs,

is the bias parameter amll is a symmetric matrix used

to modify the response to the data. Its effectaiselol on

the relation between the distances among the output
neurons.

4.3  Curvilinear Component Analysis

Curvilinear Component Analysis (CCR)is a nonlinear
dimensionality reduction method. Developed as an
improvement on the SOM, it tries to circumvent the
limitations inherent in previous linear models suah
PCA.

The principle of CCA is a self-organized neuralweek
performing two tasks: a vector quantization of the
submanifold in the data set (input space) and dimear
projection of these quantising vectors toward atpatu
space, providing a revealing view of the way in athi
the submanifold unfolds. Quantization and nonlinear
mapping are separately performed by two layers of
connections: firstly, the input vectors are forctx
become prototypes of the distribution using a wvecto
quantization (VQ) method; then, the output layeitdsu

a nonlinear mapping of the input vectors by cornade
Euclidean distances.

In the vector quantization step, the input vectoxs)

are forced to become prototypes of the distributign
using competitive learning and the regularization
method’ of vector quantization. Thus, this step, which
is intended to reveal the submanifold of the disttion,
regularly quantizes the space covered by the data,
regardless of the density. Euclidean distances dmiw
these input vectors(Xij = d(xi,xj )) are considered,
as the output layer has to build a nonlinear mappiih
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the input vectors. The correspaonding distanceshan t
output space are also us \% =dly,, Yi)-

Perfect matching is not possible at all scales wihen
manifold is "unfolding”, so a weighting function
(F (YIJ ,/]y)) is introduced, yielding the quadratic cost
function:

©)

E :%ZZ(XH -Y; )2 F(Yij ’Ay)

i j#

Where: A is a user-tuned parameter allowing an
interactive selection of the scale at which theoldifhg
takes place.

As regards its goal, the projection part of CCAiiilar

to other nonlinear mapping methods, in that it
minimizes a cost function based on interpoint dicés

in both input and output spaces. Instead of mowing

of the output vectorsy; ) according to the sum of the
influences of every otheyj (as would be the case for a
stochastic gradient descent), CCA proposes pinning
down one of the output vectorg/() "temporarily”, and
moving all the other Yi around, disregarding any
interactions between them. Accordingly, the progose
"learning” rule can be expressed as:

Y~ ¥

ij

A\ =a(t)F(Yi,~,/1y)(Xi,~ _Yij) 0y #i (10)

Where: a( ) is the step size that decreases over time.

4.4  Self Organizing Map

The Self-Organizing Map (SOI\%was developed as a
visualization tool for representing high dimensiodata

on a low dimensional display. It is also basedtanuse

of unsupervised learning. However, it is a topology
preserving mapping model rather than a projection
architecture.

The cerebral cortex of the human brain is one ef th
most complex biological systems. The different area
defined in this region are organized accordingaonous
sensory modalities: speech control, visual analysis
auditory control, etc. Each one of these areasistsnsf

a large number of similar neurons that cooperaterwh
carrying out their specific functions in which thegve
become specialized: auditory or hearing receptors,
visualization, etc. Groups of neurons within eagtion
respond jointly to excitations from the sensory tety
service.*® There is a mapping of the features from
sensory neurons to the associated spatial regibtise o

cortex. This biological feature mapping of the hrhas
been modelled reasonably well with ANNs. The
computed SOMSs are very similar to many brain maps a
they also behave dynamically, in the same way, for
example, as their magnification is adjusted in prépn

to the occurrences of the stimffi. Thus the SOMt is a
proper example of artificial topology preserving paa
where closer neurons are activated by similar & put
stimuli.

To mimic the biological brain maps, the SOM is
composed of a discrete array of L nodes arrangeahon
N-dimensional lattice. These nodes are mapped anto
D-dimensional data space while preserving their
ordering. The dimensionality of the lattice (N) is
normally smaller than that of the data, in order to
perform the dimensionality reduction. The SOM can b
viewed as a non-linear extension of PCA, where the
global map manifold is a non-linear representaidn
the training data®

Typically, the array of nodes is one or two-dimensil,
with all nodes connected to thhl inputs by anN -
dimensional weight vector. The self-organization
process is commonly implemented as an iterative on-
line algorithm, although a batch version also exign
input vector is presented to the network and a ingn
node, whose weight vectd/\, is the closest (in terms
of Euclidean distance) to the input, is chosen:

c= argmiinmx —W||) (11)

The SOM is therefore a vector quantizer, and data
vectors are quantised to the reference vectoraémithp
that is closest to the input vector. The weightsthef
winning node and the nodes close to it are theratgoed

to move closer to the input vector. There is also a
learning rate paramet that usually decreases as
the training process progresses. The weight updiee

is defined as:

AW =ph [x-W]OiON®  @2)
When this algorithm is sufficiently iterated, theam
self-organizes to produce a topology-preserving
mapping of the lattice of weight vectors to the unp
space based on the statistics of the training data.

This neural model is applied here for comparative
purposes as it is one of the most widely used
unsupervised neural models for visualizing struetior
high-dimensional data sets.



5 Experimental Study

Researchers usually make use of known attack datase
such as the well known DARPA dat&8et* ®° or the
KDD Cup '99 sub-datas®t ®’in order to validate their
developed systems. However, these data are sirdulate
non-validated and irrequfr so they are not fully
reliable. Even if the results obtained by sucheystare
good, no one can assure that the applied algorithiths
make the system more secure or will detect reatlkst
This is the main reason of using two real attadk dats
coming from a running honeynet in this research.

The experimental work has been done by using data
related to five months of real attacks that reactied
Euskalert networR® These data are depicted through
different neural projection and visualization teiclues

in order to discover real attack behaviour andegias.

The Euskalert projet has deployed a network of
honeypots in the Basque Country (northern Spain)
where eight companies and institutions have iredall
one of the project’s sensors behind the firewdlltheir
corporate networks. The honeypot sensor transmiits a
the traffic received to a database via a secure
communication channel. These partners can consult
information relative to their sensor (after a login
process) as well as general statistics in the preje
website. Once a big amount of data has been cedlect
the information available can be used to analytacks
received by the honeynet at network and application
level.

Euskalert is a distributed honeypot network based o
Honeynet Genlll architecturd. The developed
architecture of Euskalert is shown in Fig. 1. Theious
sensors installed in corporate networks of theedififit
participants are shown in the left of Fig.1.

Every sensor has a permanently established an
encrypted connection (using different virtual pteva
networks, also known as VPN) to a tunnel servee Th
latter is in the DMZ (Demilitarized Zone) of Mondyan
University. Any attack to one of the sensors is
redirected through these tunnels to reach the Hmtey
(right side of Fig. 1), which is the responsibler fo
responding to any connection attempt. The traffim a
passes through a server responsible for colledtilngpe
information which is then displayed on the Web
platform®®

This honeypot system has received about 164 paekets
day on average. All the traffic is analyzed by Sreort

31/1/10
7/2/10
82/10

/2010

17/2/10
26/2/10
27/2/10
28/2/10

Fig. 2. Temporal distribution of the traffic volurireterms of
number of packets captured by Euskalert during delpr
2010.

IDS, and an alert is launched whenever the packet

matches a known attack signature.

The following features were extracted from each ohe

the records in the dataset:

 Time: the time when the attack was detected.
Difference in relation to the first attack in the
dataset (in minutes).

Protocol: either TCP, UDP or ICMP (codified as
three binary features).
Ip_len: number of bytes in the packet.

e Source Port number of the port from which the
source host sent the packet. In the case of thePICM
protocol, this represents the ICMP type field.

e Destination Port destination host port number to
which the packet was sent. In the case of the ICMP
protocol, this represents the ICMP type field.

e Flags Control bits of a TCP packet, which contains
8 1 bit values.

Two different real-life case studies are analyzedhis
research as attack behavior may change in timst, &i
snapshot of one-month data (February 2010) is aedly

to observe its internal structure. A five-month ipdr
(February-June 2010) is taken later to analyze how
attacks have changed and new trends are discovered.

Interfaces

Public 1P

4 ¥ AR 3
U"‘ LAN B Encripted Ethernet
L F b ! tunnesng aver TCR/IP
1P Honaypot
Manitoring and
tunne at the same
Interface

Fig. 1. Architecture of the Euskalert network.
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The previously introduced projection models haverbe
applied to these two case studies, whose results ar
shown and described in the following sections.

5.1 Casestudy 1: a 1-month dataset

For this real case study, the logs coming from Blesk

and Snort have been gathered during one month
(February 2010). Fig. 2 shows the traffic volume in
terms of number of packets received for that peabd
time.

The February 2010 dataset contains a total of 3798
packets, including TCP, UDP and ICMP traffic reeeiv

by the distributed honeypot sensors. The
characterization of the traffic in the datasethiswen in
Table 2. The table shows which alerts have been
triggered in that period of time and their percgeta
Those signatures starting with “Wormledge” are
automatically generated and not present in theuttefa
signature database.

Table 2. Characterization of traffic data capturgdEbskalert,
during February, 2010.

# Packet %
3404 89,62
127 3,34

Signature

Unknown Traffic
BLEEDING-EDGE
POLICY Reserved IP Space
Traffic - Bogon Nets 2
BLEEDING-EDGE 58
WORM Allaple ICMP
Sweep Ping Inbound
ICMP PING 75
Wormledge, microsoft-ds, 34
smb directory packet (port
445). SMBr...PC
NETWORK PROGRAM
1.0...LANMANL1.0...Windo
ws for Workgroups
3.1a...LM1.2X002...LANM
AN2.1..NT LM 0.12.
Created on 2007-08-07
Wormledge, KRPC 11
Protocol (Kademlia RPC),
BitTorrent information
exchange:ping query.
Created on 2007-08-07
Wormledge, NetBios 7
Session Service (port 139).
Payload

1,52

1,97
0,89

0,28

0,18

CKFDENECFDEFFCFGA
AAAAAAAAAAAAAAA.
Created on 2007-08-07
Wormledge, NetBios Name 7
Query (udp port 137).
Payload
CKAAAAAAAAAAAAA
AAAAAAAAAAAAAAA

AA. Created on 2007-08-07
Wormledge, Microsoft RPQ 7
Service, dce endpoint
resoluction (port 135).
Created on 2007-08-07
WEB-IIS view source via 6
translate header
BLEEDING-EDGE SCAN 5
LibSSH Based SSH
Connection - Often used as
a BruteForce Tool

From this dataset, it may be said that a misuse
detection-based IDS such as Snort is only capable o
identifying about 10.38% of bad-intentioned traffic
Furthermore, it was demonstrated that only 2% ef th
unsolicited traffic was identified by the IDS when
automatically generated signatures were includeah fa
previous work?® Thus, a deeper analysis of the data is
needed in order to discover the internal structdrthe
remaining 90% of the traffic. Explaining the belwwi

of the unknown traffic is a difficult task that niuse
performed to better protect computer networks and
systems. In order to obtain more knowledge, several
neural projection models have been applied and the
results and conclusions obtained are shown in the
following sub-sections.

In the visualizations obtained, the data are degigtith
different colors and shapes, taking into accourd th
different original features of the data. In the who
projection, the axes are combinations of the festur
contained in the original datasets. Then, the X ¥nd
axes of the projections can not be associateduticae
original feature.

0,18

0,18

0,15

0,13

5.1.1 CMLHL Projections

The CMLHL-training parameter values for the
projections in this section were: number of iterasi =
10,000, learning rate = 0.0208,parameter = 2.1429,
and T parameter = 0.067.
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Fig. 5. CMLHL projection of 1-month data - Protocol

Fig. 3 shows the CMLHL projection by considering th
output generated by Snort. Packets that triggerad a
alarm are depicted as black crosses while packets t
were not identified as anomalous are depicted ds re
circles.

After analyzing this projection (Fig. 3), we protee
poor detection performance of Snort IDS when fittgr
honeypot traffic. CMLHL provides a way of
differentiating known from unknown traffic at a reak
eye. Most of the traffic corresponds to unknown
packets, or at list to traffic that Snort is nopahle of
identifying using all of its predefined rule sets.

Fig. 4 shows the CMLHL projection by considering th
time (in minutes) to depict the packets; from G692:
red circles, from 6693 to 13384: black crossesmfro
13385 to 20076: green pluses, from 20077 to 26768:
magenta stars, from 26769 to 33460: yellow squares,
and from 33461 to 40148: cyan diamonds.

The temporal evolution on that month shows thatesam
traffic patterns repeat over time, as almost ewhugter
have similar shapes. This happens with both knaweh a
unknown traffic (shown in Fig. 3). It can be cordxal

o @ Y
s .
0 0% #F%ae 0 8

g0
@ o
M@@‘@ o, @
b ‘}%‘)‘%ﬁ%% o ®
&;}; )

5o
S

o

L I I I L I L I
el [ 0.2-1 0305 04 0 05 05 06 107 1508 EE] 265

Fig. 3. CMLHL projection of 1-month data - Snorttput.

that anomalous or unknown behavior is not a one off
event, but a recurring pattern in time instead.

Fig. 5 shows the CMLHL projection by considering th
protocol to depict the packets; ICMP: red circlé®P:
black crosses, TCP: green pluses.

After analyzing this projection (Fig. 5), it is gao
observe that most of the attacks collected targe® T
protocol. This is a logical conclusion as most ckta
target those kind of services, like Microsoft's Biets

for example. It also brings the attention the fHwit
most of the ICMP traffic (red circles) belongs teet
Snort’s known traffic seen in Fig. 3.

Fig. 6 shows the CMLHL projection by considering th
IP length (in bits) to depict the packets; fromt@®73:

red circles, from 274 to 519: black crosses, frdfl &
765: green pluses, from 766 to 1011: magenta stars,
from 1012 to 1257: yellow squares, and from 1258 to
1500: cyan diamonds.

1

09 o«

F1s
08

L I L I L I L I
el 015 02-1 0305 04 0 05 05 06 107 1.50.8 13 25

Fig. 4. CMLHL projection of 1-month data - Time.
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Most of the traffic is composed of small packetst i

can also be observed very large packets receivatidby
honeypot sensors. These are synonym of receiving
malware, vulnerability exploits, or DoS attacks.

Fig. 7 shows the CMLHL projection by considering th
source port to depict the packets; from 3 to 10968:
circles, from 10904 to 21803: black crosses, frdi&(2

to 32703: green pluses, from 32704 to 43603: magent
stars, from 43604 to 54503: yellow squares, anthfro
54504 to 65401: cyan diamonds.

Fig. 8 shows the CMLHL projection by considering th
destination port to depict the packets; from 3 @371:

red circles, from 10371 to 20739: black crossesnfr
20739 to 31107: green pluses, from 31107 to 41475:
magenta stars, from 41475 to 51843: yellow squares,
and from 51843 to 62205: cyan diamonds.

Projections for source and destination ports show a
obvious observation for the packets. Automatic
categorization of the features groups most of tekets
according to port numbers varying from 3 to 1037d a
10903. Source port of received traffic should bggbr
than 1023 (non privileged ports). Destination paont,
the port where known services listen for new
connections are usually under 1023 (privileged g)ort
This is why source port is quite uniformly distribd in

Fig. 7, and destination port has a big prevalencéhe

red cluster. Even though, we still see clustershwit
destination ports above 10371. This may be a didete

of DoS attacks, also known as backscatter. The term
backscatter refers to unsolicited traffic thathie tesult

of responses to attacks spoofed with a network’s IP
address? For example, when an attacker launches a
DoS attack against a victim, he usually spoofsatim

IP address with another one. When this spoofed IP
address matches one of Euskalert's sensors adslresse

Fig. 6. CMLHL projection of 1-month data - IP lehgt

Fig. 7. CMLHL projection of 1-month data - Sourcatp

the response will be captured.

Finally, the flags were considered to depict thekpés
(Fig. 9); from 0 to 5: red circles, from 6 to 1llatk
crosses, from 12 to 17: green pluses, from 18 to 23
magenta stars, and from 24 to 25: yellow squares.
Value for flags in both UDP and ICMP traffic is
considered as a O (red circles). This gives intergs
results because it distinguishes very clearly ifferént
types of packets.

Continuing with DoS attacks, the flag bits of thEF
header gives valuable information for analyzings thi
phenomenon. Every TCP packet has a 6 bit length
control field, consisting of:

* URG: Urgent Pointer

* ACK: Acknowledgment

e PSH: Push Function

* RST: Reset the connection

e SYN: Synchronize sequence numbers

*  FIN: No more data from sender

According to the normal behavior of TCP, any

188 2.9 25

Fig. 8. CMLHL projection of 1-month data - Destiivet port.
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computer that remains passive or does not iniéadiay
connection can expect those combinations of control
bits: SYN, ACK, PSH, FIN. Consequently, any other
control bit combination will indicate the receptiari
DoS activity, at least as a side effect.

If we look at the different flag combinations found
this dataset, we find:

* No flags (0): corresponds to UDP and ICMP

packets.
* SYN(2).
* RST (4).
* ACK (16).

+  PSH+FIN (17).

*  SYN+ACK (18).

+ RST+ACK (20).

+  PSH+ACK (24).

*  PSH+ACK+FIN (25).

Being this said, it can be argued that packetsaboing
SYN+ACK, RST, and RST+ACK flags activated are a
sign of backscatter that honeypot sensors receoa f
the victim. According to Fig. 9 data is clearlyustiured,
but the automatic categorization provided by CMLHL
groups combinations of different flag bits into tkeme
clusters. Being this considered, no concrete ceiuhs
can be obtained, and a more meaningful categasizati
will be provided for the next case study, as theam

of data is bigger providing enough information fbis
issue.

All those visualizations are consequently in gehesay
helpful information for explaining and helping seity
administrators to know the different traffic behavihat
reach their systems.

5.1.2 Comparative Study

1

09

E1 *
08

+

Fig. 9. CMLHL projection of 1-month data - Flags.

The CMLHL projections are compared with those of
other dimensionality-reduction models (PCA, MLHL,
CCA, and SOM). Several experiments were required to
tune the SOM to different options and parameternist g
size, batch/online training, initialization, numberf
iterations and distance criterion, among othersthim
case of CCA, other parameters, such as initiabmati
epochs and distance criterion were tuned. Onlybthst
results (from the standpoint of the projection),ickh
were obtained after tuning the models, are incluihed
this work.

For the sake of brevity, only the best projectidos
each model are shown in this comparative study. The
remaining visualizations are gathered in Appendix A
The different ranges when visualizing a featureo(Sn
output, source/destination port, flags, protoctd,)eare

the same for PCA, MLHL and CCA.
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Fig. 10. PCA projection of 1-month data - Source.por

5.1.2.1 Principal Component Analysis

Fig. 10 shows the PCA projection of the case stuiby
using the source port, and Fig. 11 shows the PCA
projection of the case study 1 by using the tinatuee.
These two first principal components amounts to
84.33% of original data’s variance.

Same security conclusions can be extracted froreetho
projections; there is a very similar distributiorf o
packets in time, and most of them have non-prieiteg
ports as source port numbers.

5.1.2.2 Maximum Likelihood Hebbian Learning

Fig. 12 shows the MLHL projection of the case stddy
by using the destination port, while Fig. 13 shadiws
MLHL projection of the case study 1 by using thadi
feature. The MLHL-training parameter values forsthe
two projections were: number of iterations = 10,000

x 10t
1
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o oo & % ©o © 2 °© & % § i}
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Fig. 11. PCA projection of 1-month data - Time.

"k

Fig. 12. MLHL projection of 1-month data - Destiwat port.

learning rate = 0.0208, amdparameter = 2.1429.

After analyzing these projections, it can be sdwat t
projections using time information are less cldaant
others, while destination port can be clearly ustierd

with the previous explanations given.

5.1.2.3 Curvilinear Component Analysis

Fig. 14 shows the CCA projection of the case studly
using the Snort output, and Fig. 15 shows the CCA
projection of the case study 1 by using the prdtoco
Some parameters, such as alpha, lambda, number of
epochs and distance criterion were tuned. The final
selected parameter values were: standardized karclid
distance, lambda = 230,000, alpha = 0.5 and 10h=spoc
Those projections show a visual explanation of the
distribution of packets identified by Snort and gbo
who are not, and if we analyze both of them as aleyh
we observe that Snort could identify all of the IEM

3

Fig. 13. MLHL projection of 1-month data - Time.
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Fig. 14. CCA projection of 5-month data - Snort otitpu

packets in that month (red line in Fig. 15).

5.1.2.4 Self-Organizing Map

Finally, the SOM was also applied to the 1-month
dataset. In order to analyze the resulting maps, th
different ranges of each original feature (seeisect

5.1.1) were numbered.

Fig. 16 shows the U-matrix of the SOM mapping & th

case study 1.

Fig. 17 shows the SOM map of the case study 1 by
using the protocol; 1 represents ICMP, 3 UDP and 5
TCP. Fig. 18 shows the SOM map of the case study 1
by using the Snort output; 1 represents the packets
identified as attacks while 0 represents the umtiede
attacks. For the SOM, the following options and
parameters were tuned: grid size, batch/onlineitrgj
initialization, number of iterations and distanc#ecion
among others. The used parameter values werer linea

5 I I I I
22182 22164 22168 22168 2217

I
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L
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L
22176

I
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it

Fig. 15. CCA projection of 1-month data - Protocol.

edi?

Fig. 16. SOM mapping of 1-month data - U-matrix.

initialization, batch training, hexagonal latticéCut
Gaussian” neighborhood function, and grid size
(determined by means of a heuristic formula) = 15x2

It can be easily seen in Fig. 17 that the SOM ehssthe
data in three big clusters. Each one of them costail
the traffic related with each one of the protod¢@MP:
upper left corner, UDP: upper right corner, and TCP
the rest of the mapping).

After analyzing the mapping in Fig. 18, it can be
concluded that SOM is not able to cluster the data
distinguishing the traffic classification of Snort
(alarm/no alarm). The cluster in the upper leftisecis
the only one identifying traffic of only one class
(packets that triggered an alarm), while the othrees
identify traffic of the two classes.

0
R

mapping of 1-month data - Protocol.

Fig. 17. SO
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detection-based IDS such as Snort is only capable o

0000 N
°‘°‘°‘°0 identifying less than 3,75% (847 packets out of P96
[ .“‘““ of bad-intentioned traffic. Thus, a deeper analgsithe
90000000000 data is needed in order to discover the intermatsire
g@‘ﬂoﬂq.o“ﬂ.‘o‘o..ﬁ of the remaining 96,25% of the traffic data set. iAs
3&&@.0&‘0000000 case study 1, neural unsupervised models are dgplie
Ooﬁoﬂoﬂq‘oﬁ“oﬂoﬁoe‘ﬂ order to explain the behavior of the unknown tcaffi
0009000600
oooe%q‘uo‘o“oeu Table 3. Characterization of traffic data capturgdEbskalert,
G‘oo%ﬁ‘ﬁoﬂaﬁo.aﬂ from February to June, 2010.
“Oo%q‘%‘oﬂ‘ﬂoﬂ Signature # Packet %
099080000080 Unknown TCP packet 19096 84,49183664
9900800000 Reserved IP Space Traffic|- 1071 4,738728375
) ) Bogon Nets
Fig. 18. SOM mapping of 1-month data - Snort output Unknown packet 741 3,27861599
Unknown UDP packet 397 1,756559444
. ICMP ping 290 1,283129065
5.2 Casestudy 2: a 5-month dataset WORM Allaple ICMP Swee 251 1,110570329
For this experiment, it has been analyzed the logs Ping Inbound
coming from Euskalert and Snort gathered during fiv Wormledge, KRPC Protocgl 99 0,438033715

(Kademlia RPC), BitTorrent

months starting from February 2010. Fig. 19 shdwves t : ) "
information exchange:ping

traffic volume in terms of number of packets reeeliv

uer
for that period of time. Wormledgeq, Slgmmer Worfn 62 0,274324145
The dataset contains a total of 22601 packets,diiroy Wormledge, Microsoftis, sm 62 0,274324145
TCP, UDP and ICMP traffic received by the distrexlit directory packet (port 445
honeypot sensors. The characterization of theidradf Wormledge, MS-SQL- 58 0,256625813
this dataset is shown in Table 3, which shows which [Service(port tcp 1433). Pay|
alerts have been triggered in that period of timd a 1.4.3.3.0.D.B.C.

) . . . ICMP PING speedera 40 0,176983319
their percentage. Those signatures starting with Wormledge, NetBios Namé 35 0154860404
“Wormledge” are automatically generated and not | Query (udp port 137). Paylo
present in the default Snort signature databasé. s CKAAAAAAAAAAAAAAA
be seen, the biggest group of signatures are those | AAAAAAAAAAAAAAA.
generated for unknown packets (both TCP, UDP and | Wormledge, Possible SQL 34 0,150435821

Snake/Spida Worm (port tg

©

ICMP), and also the automatically generated sigeatu

¢ . e 1433).

rom a previous work. _ _ Wormledge, NetBios Session 34 0,150435821
From this dataset, it may be said that a misuse Service (port 139)

SIP TCP/IP message floodj 33 0,146011238
directed to SIP proxy r

5.2.1 CMLHL Projections

CMLHL was applied in order to analyze the dataset
O U STO———. described above and to identify its inner structure

R PR
& S S S
&
LSRR

R R R R )

S ST Fig. 20 shows the CMLHL projection by considering
the output generated by Snort. Packets that trégher
Fig. 19. Temporal distribution of the traffic volenm terms of any alarm are depicted as black crosses while pmcke

number of packets captured by Euskalert from Fegrioa that were not identified as anomalous are depieted
June, 2010. red circles.

S & &

h
¢
&

W 0 (P
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Fig. 20. CMLHL projection of 5-month data - Snortout.

Visualization of packets using Snort output shots t
detection rate of the most used misuse-based IRSkB
crosses are the only ones detected by Snort, velileoé
the records constitute a suspicious activity byadkf It

is therefore important to use additional supporting
systems, such as the visualization aids proposékisn
study, to show a more comprehensive picture of wghat
actually happening and how an IDS is performing.

Fig. 21 shows the CMLHL projection by considering
the time to depict the packets; from 0 to 27044t re
circles, from 27045 to 54089: black crosses, frefa%®

to 81134: green pluses, from 81135 to 108179: ntagen
stars, from 108180 to 135224: yellow squares, aoih f
135225 to 162267: cyan diamonds.

It can be observed that clusters are highly oveddp
which means that temporal distribution of attacks i
very homogenous, so they constantly repeat oves.tim
If we look some of the attacks at detail, we siie very

P

Fig. 21. CMLHL projection of 5-month data - Time.

Fig. 22. CMLHL projection of 5-month data - Protacol

old worm instances such as Slammer or Blaster (see
Table 3).

Fig. 22 shows the CMLHL projection by considering
the protocol to depict the packets; ICMP: red eiscl
UDP: black crosses, TCP: green pluses.

The visualization of data focusing on the protaafothe
packets, shows the volume of attacks received by th
honeypot sensors. Most of the attacks target TCP
protocol, followed by UDP and ICMP. This informatio

is not valuable by itself, but helps understandsoge
other situations that will be explained later.

Fig. 23 shows the CMLHL projection by considering
the IP length to depict the packets; from 28 to:326
circles, from 327 to 625: black crosses, from 62624:
green pluses, from 925 to 1223: magenta stars, from
1224 to 1522: yellow squares, and from 1523 to 1816
cyan diamonds.

The visualization of the length field data gives a
valuable sight to analyze the traffic and focuslange

4

3

N
T

Fig. 23. CMLHL projection of 5-month data - IP lehgt
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packets in order to identify both traffic sendinglmare
and also traffic containing large payloads, usutiling
either buffer overflow attacks or certain kinds @6S
attacks. Moreover, if we compare this graph with th
protocol representation, it can be concluded thHaclks
with the biggest length belong to TCP, medium langt
belong to TCP and UDP, and smallest length to ICMP.
This assumption is coherent since ICMP traffic is
composed of echo and reply packets in the dataftet
very small. In fact, if we see large ICMP packets w
should consider them as Ping of Death type attacks
(consisting of packets of 64 Kbyte size).

However UDP protocols typically use small packetsi
(i.e. DNS, etc.) and only tend to use large paciétsn
used for Network File System protocol (NFS) foefil
sharing or for video or audio streaming. The lattamot
possible in a honeynet, as it never starts stregmin
applications. We may found NFS packets, as
vulnerabilities have been found in the past fort tha
service.

Fig. 24 shows the CMLHL projection by considering
the source port to depict the packets; from 3 19240
red circles, from 10925 to 21846: black crossesnfr
21847 to 32768: green pluses, from 32769 to 43690:
magenta stars, from 43691 to 54612: yellow squares,
and from 54613 to 65529: cyan diamonds.

Fig. 25 shows the CMLHL projection by considering
the destination port to depict the packets; fronto3
10924: red circles, from 10925 to 21846: black sess
from 21847 to 32768: green pluses, from 32769 to
43690: magenta stars, from 43691 to 54612: yellow
squares, and from 54613 to 65534: cyan diamonds.
Once again, prevalence of red circles in Fig. 1 fig.

16 shows that most connections are established &rom
port under 10924 to a destination port in the seange.

Fig. 24. CMLHL projection of 5-month data - Souraetp

Having this said, a new categorization for bothrseu

Y
ol
@
=
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Ed

Fig. 25. CMLHL projection of 5-month data - Destiloat
port.

and destination ports have been done. The new
categorization helps on understanding the data faom
logical viewpoint; source and destination ports te&n
naturally categorized into privileged and non-gdeged
ports. Doing this traffic patterns can be underdtoo
Finally, the flags were considered to depict thekpés
(Fig. 26); from 0 to 11: red circles, from 12 to: 28ack
crosses, from 24 to 35: green pluses, from 36 to 47
magenta stars, from 48 to 59: yellow squares, amuh f

60 to 68: cyan diamonds.

Fig. 26 results on a very useful visualization for
analyzing backscatter. Once again default categiboiz

of flag bit numbers does not permit a deeper arsmabfs
the phenomenon.

For further analysis, some other visualizationsthe
CMLHL  projection were generated. Those
visualizations have new categories calculated for
features source port, destination port and flags.

Fig. 27 shows the CMLHL projection by considering
different ranges of the source port to depict taekpts;
from 3 and 8: red circles, from 0 to 1023 (exclgd®
and 8): black crosses, and from 1024 to 54612:ngree
pluses. This new categorization shows a better
perspective of what is happening on the honeypetl R
circles show ICMP packets, while green pluses ekhib
the normal behavior for source port numbers in ptck
arriving to Euskalert. The honeypot acts as an
application server, so different hosts in the Imgtr
connect to the offered services using a source port
above 1023. Instead, black crosses show source port
below 1023. The most provable explanation to thit f

is, once again, backscatter. We are receiving resgs

of a spoofed probe, scan or DoS from a remote sarve
the Internet. This responses use a privileged nurabe



Fig. 26. CMLHL projection of 5-month data — Flags.

source port. We can observe these packets in
combination with Fig. 20.

Fig. 28 shows the CMLHL projection by considering
different ranges of the destination port to deplat
packets; 3 and 8: red circles, from 0 to 1023 (ediclg

3 and 8): black crosses, and from 1024 to 5461&ergr
pluses.

This visualization shows that Euskalert receivecskpts
and connection attempts to ports above 1023. W& fin
two possible explanations of this observation. e o
hand, there are attack attempts to applicatiomsnliisg

on ports above 1023. In this case we should focus o
this ports and if we find any prevalence then @eat
new simulated service for that application. In ttker
hand, we receive backscatter, being this port thece
port of the attacker.

Fig. 29 shows the CMLHL projection by considering
different ranges of the flags to depict the packé&
and 28: red circles, all the remaining values: blac
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Fig. 27. CMLHL projection of 5-month data - SouraatR/2.
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Fig. 28. CMLHL projection of 5-month data - DestioatPort
V2.

crosses.
Flags 18 and 28 correspond to SYN+ACK and
RST+PSH+ACK flag combinations respectively. In
combination with Fig. 18, it can be argued thatsthe
packets are related with responses from attackmact
rather than from infected machines or attackers.
Therefore we are capable of graphically detecting
probes, scans or DoS attacks directed to remoterser

5.2.2 Comparative Study

As in the case study 1, the CMLHL projections are
compared with those of other dimensionality-redarcti
models (PCA, MLHL, CCA, and SOM).

5221

Fig. 30 shows the PCA projection of the case sty
using the Snort output. Packets that triggeredadaym
are depicted as black crosses while packets theg we

Principal Component Analysis
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Fig. 29. CMLHL projection of 5-month data - Flags v2
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Fig. 30. PCA projection of 5-month data — Snort atitp

not identified as anomalous are depicted as retesir

Fig. 31 shows the PCA projection of the case sfiby
using the time feature to depict the packets; fibno
27044: red circles, from 27045 to 54089: black sess
from 54090 to 81134: green pluses, from 81135 to
108179: magenta stars, from 108180 to 135224: wello

squares, and from 135225 to 162267: cyan diamonds.

The two first principal components amount to 96.87%
of original data’s variance.

After analyzing these visualizations it can be dhiat
Fig. 30 does not provides a clear idea of the Sinas
there is not a clear distinction of groups. On the
contrary, Fig. 31 offers a clear representationtrof
observed conclusions, were the packet distribution
time is constant.

5.2.2.2 Maximum Likelihood Hebbian Learning
The

it
7 T

MLHL-training parameter values for the
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. 31. PCA projection of 5-month data - Time.

Fig. 32. MLHL projection of 5-month data - Snorttput.

projections in this section were: number of itemas =
35,000, learning rate = 0.02, apgharameter = 0.9.

Fig. 32 shows the MLHL projection of the case st@dy
by using the Snort output.

Fig. 33 shows the MLHL projection by considering th
source port to depict the packets; from 3 to 1092d:
circles, from 10925 to 21846: black crosses, frdrd4r
to 32768: green pluses, from 32769 to 43690: magent
stars, from 43691 to 54612: yellow squares, ancfro
54613 to 65529: cyan diamonds.

Those two visualizations show sharply the conchsio
extracted before, according to Figs. 20 and 24.

5.2.2.3 Self-Organizing Map

For the SOM, the following options and parameters
were tuned: grid size, batch/online training,
initialization, number of iterations and distanc#erion

Fig. 33. MLHL projection of 5-month data - Souraartp



20

among others. The used parameter values werer linea
initialization, batch training, hexagonal lattice,
“Gaussian” neighborhood function, and grid size
(determined by means of a heuristic formula) = Z2x2

Fig. 34 shows the U-matrix of the SOM mapping & th
case study 1.

Fig. 35 shows the SOM map of the case study 2 by
using the protocol; 1 represents ICMP, 3 UDP and 5
TCP. It can be seen in this mapping that the SOM
clusters the data in three big clusters. Each dribemn
contains all the traffic related with each one bé't
protocols, as occurred for the case of study o@#A:
upper left corner, UDP: upper right corner, and TCP
the rest of the mapping).

Fig. 36 shows the SOM map of the case study 2 by
using the Snort output; 1 represents the packets
identified as attacks while O represents the umtiede
attacks. As pointed out for the case study 1, S©ONbt
able to cluster the data distinguishing the traffic
classification of Snort (alarm/no alarm).

6 Conclusions and Future Work

Apart from the previously stated conclusions, rdgay
each one of the analyzed dataset, some other (more
general) conclusions are gathered in this section.

After comparing the different projections obtainied

this study, it can be concluded that CMLHL proviges
more sparse and clearer representation than the oth
applied projection methods. This enables the it
visualization of the Honeynet data, where the ganer
structure of these data can be seen and interpréked
visualizations obtained through CMLHL give an irttig

59

hacores

Fig. 34. SOM mapping of 5-month data - U-matrix.

Fig. 35. SOM mapping of 5-month data - Protocol.

of the captured honeynet data, providing useful

knowledge about the attacks a network could face.

It has been shown how CMLHL provides a helpful

technique to identify backscatter attacks, as veall

identifying those attacks that overflow a bufferdan

malware downloads.

From a general perspective, it can be seen frorthall

visualizations the high classification error rafeSoort.

In keeping with this idea, it can be concluded #hagry

IDS needs to be tuned and that default signatuseaat

enough to detect and identify every single attack.

After getting a general idea of the dataset strectan

in-deep analysis was carried out to comprehensively

analyze each one of the points in the groups ifiedti

by CMLHL. As a result, the following conclusionsrca

be stated for each one of the destination ports:

« 8: We identify the type of ICMP packet by inserting
its code into the field destination port. ICMP type

28!
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Fig. 36. SOM mapping of 5-month data - Snort output
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corresponds to ICMP echo or ping, used for
probing the Internet, looking for victim hosts.

e 22: SSH. It seems to be a traffic flow with many
packets coming from one source to one of the
honeypot. They correspond to connection attempts
by attackers or infected machines.

» 80: HTTP. Attackers try different vulnerabilities
against web applications.

» 135: DCE endpoint resolution, used by Microsoft
for Remote Procedure Call protocol. It has always
been and still is one of the most exploited sesvice
by virus and worms.

» 139: NETBIOS Session Service. Plenty of attacks
to this Microsoft Windows service can be found.

e 443: HTTP protocol over TLS SSL connection
attempts.

*  445: SMB directly over IP. As most of the traffit i
the biggest group identified by CMLHL is aimed at
this destination port, we can conclude that thia is
widely exploited service.

» 1433: Microsoft-SQL-Server, used by the old SQL
Slammer worm.

» 1521: Oracle TNS Listener. It seems that attackers
try to connect to the honeypot via Oracle service.

e 2967: Symantec System Center. Vulnerabilities
have been found on Symantec service, and it is
being expiated in the wild.

 3128: Proxy Server // Reverse WWW Tunnel
Backdoor, where the MyDoom worm operates.

* 3389: MS Terminal Services, used for Remote
Desktop.

»  4444: This port is a common return port for the rpc
dcom.c buffer overflow vulnerability and for the
msblast rpc worm.

* 4899: Remote Administrator default port. There is a
known remotely exploitable vulnerability in radmin
server versions 2.0 and 2.1 that allows code
execution.

* 5061: SIP-TLS. Used for VolP communications.

* 5900: Virtual Network Computer or VNC, used
also as a remote desktop solution.

» Port 8080: HTTP Alternate port, also used as an
HTTP proxy.

» Port 19765: Used in Kademlia (Bittorrent protocol).

This deeper analysis remains necessary in ordsgtter

understand some of the visualized attacks, but CMLH

projections seem enough to obtain a fast understgnd
of Internet attacks.

Further work will focus on the application of difént

projection/visualization models as well as studyihg

visualization with different metrics instead of ngithe
original features of the data.

More analysis can be done with the data, like
visualization of this attack traffic by each of the
honeynet infrastructure sensors. This way, onedcoul
compare the pattern of attack behavior distingaighi
the Internet space placement.

Another interesting improvement of CMLHL
visualization could be providing interactive capiies;

a user or analyst could select one or more pornots f
the projections and the system may give detailsuabo
the data behind them. In a further approach, tiséeay
could automatically generate signatures for usectsd
clusters, giving a solution to the big amount obSis
undetected packets.

Enrichment of the attack dataset may also be asfo€u
attention. Researchers are correlating networkfidraf
data with exploits collected during simulated
vulnerability exploitation. Malware is also obtathér
those attacks that aim to spread the infection.tiil
data needs a deeper analysis, and neural projection
techniques will help in that task.
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Appendix A - Remaining Visualizations Lo 5 |
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Fig. 38. PCA projection of 1-month data - Protocol. 2

Fig. 41. PCA projection of 1-month data - Flags.
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6.1.1.2 Maximum Likelihood Hebbian Learning 3

3 T T

Fig. 46. MLHL projection of 1-month data - Flags.

Fig. 44. MLHL projection of 1-month data - IP Lehgt
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6.1.1.3 Curvilinear Component Analysis g \
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Fig. 49. CCA projection of 1-month data - Source port
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6.1.1.4 Self-Organizing Map

- Source port
Destinatjant.

month data - Flags.

month data

month data -

Fig. 54. CCA projection of 1
Fig. 55. CCA projection of 1
Fig. 56. CCA projection of 1

month data - Time.
month data - IP length.

Fig. 52. SOM mapping of 1
Fig. 53. SOM mapping of 1
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