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ABSTRACT
An embedded system is a self-contained system that incorporates
elements of control logic and real-world interaction. UML State Ma-
chines constitute a powerful formalism to model the behaviour of
these types of systems. In current industrial environments, the soft-
ware of these embedded systems have to cope with the increasing
complexity and robustness requirements at runtime. One way to
manage these requirements is having the software component’s
behaviour model available at runtime (models@run.time). Thus,
it is possible to enhance the safety of the software component by
enabling verification and adaptation at runtime. In this paper, we
present a model-driven approach to generate software components
(namely, RESCO framework), which are able both to provide their
internal information in model terms at runtime and adapt their be-
haviour automatically when an error or an unexpected situation is
detected. The aforementioned runtime introspection and adaptation
abilities are added automatically to the software component and it
does not require the developer make any extra effort. The solution
has been tested in the design and implementation of an industrial
Burner controller. Results indicate that the software components ge-
nerated by the presented solution provides introspection at runtime.
Thanks to this introspection ability at runtime, the software com-
ponents are able to adapt automatically from their normal-mode
behaviour to a safe-mode behaviour which was defined to be used
in erroneous or unexpected situations at runtime. Therefore, it is
possible to enhance the safety of the systems consisting of these
software components.

CCS CONCEPTS
• Computer systems organization → Dependable and fault-
tolerant systems and networks; Embedded software;
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1 INTRODUCTION
Cyber-Physical Systems (CPSs) integrate digital cyber computations
with physical processes. These CPSs are composed of embedded
systems and networks that monitor and control physical processes
with sensors and actuators [11].

The scope, complexity, and pervasiveness of CPSs continue to
increase dramatically. The consequences of these systems failing
can range from the mildly annoying to catastrophic. As stated in
[1], CPSs include embedded systems, which are inherently self-
adaptive, because they are embedded in an environment and are
meant to observe and/or influence it. Event-driven architecture
is a commonly used pattern to develop these systems, and UML
State Machines (UML-SM) constitute a widely used formalism to
design the behaviour of such systems. In addition, following Model
Driven Engineering (MDE) approach, the final code can be obtained
automatically if assisted by a code generation tool.

However, generating the code automatically is not enough. The
software of these embedded systems increasingly assumes the res-
ponsibility of providing functionality in systems so there is a need
to provide low-cost mechanisms to ensure correct and safe be-
haviour at runtime. Work on models@run.time seeks to extend
the applicability of models produced in MDE approaches to the
runtime environment. Having the model at runtime is the first step
towards the runtime verification; and having the mechanism to
adapt the model at runtime implying a software component change
is the next step once an unexpected situation or an error is detected.
Thus, the safety of the system is enhanced.

In this paper, we present a models@run.time approach to auto-
matically generate UML-SM code with runtime introspection, veri-
fication and adaptation ability. In addition, an externalized runtime
checker and adaptation system is presented. The main contribution
provides the following benefits:
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(1) runtimemonitoring, verification and adaptation abilitywhich
are based on information provided by the software compo-
nents in terms of their model elements at runtime.

(2) the software developer is not involved in instrumenting the
code and thus, can focus exclusively on modelling the be-
haviour of the software components by UML-SMs. Addi-
tional infrastructure for having introspection and adaptation
ability at runtime is automatically generated.

Section 2 presents background concepts of the work, and Section
3 describes a Model-driven approach for automatically generating
software components that are observable and adaptable at runtime.
Section 4 presents the empirical evaluation of the solution. In Sec-
tion 5 related work is detailed and, finally, Section 6 closes the paper
with conclusions and future lines.
2 BACKGROUND
In this section, we will define some concepts that will help to un-
derstand the work presented in this document.

One way to perform runtime verification is to observe the run-
time information (traces) sent by the software controller to the
externalized runtime checker/adapter. Since correct traces will be
finite and predefined in the checker/adapter, when the received
trace is not defined as a correct one, the checker/adapter comes to
a state that a Trace-Violation has been detected.

As the runtime checker needs to receive traces/information from
the monitored software component, we need to instrument the
latter. There are different approaches for instrumentation:

• Source code instrumentation: this technique is used to mo-
dify source code to insert appropriate code (usually con-
ditionally compiled so you can turn it off). Programmers
implement instrumentation in the form of code instructions
that monitor different aspects of a system.

• Model instrumentation: this technique specifies which ele-
ments of the model will be monitored at runtime and it
automatizes the source code instrumentation.

In our solution we are using the second approach.
The software components of the presented solution are generated

automatically from the UML-SM model. Even if we apply model
checking methods to the models, due to the complexity of the
systems there may be residual faults. In this scenario, solutions that
support runtime verification are needed.

The faults that can be detected by the solution are:
• random hardware faults such as bit inversions or changing
errors,

• random software faults such as heisenbugs,
• remaining software faults: errors that remain after the vali-
dation and verification in design and development phase

• unanticipated environmental faults: not considered in the
design and development phase.

Runtime Verification can be performed in different ways. One
of them being performed using the information of model elements
(current state, event, next state,. . . ) of the UML-SM model of the
software component under study. This enables using a common
language to design and verify software components at runtime.

In order to maintain the model at runtime, the software compo-
nent has to be observable by the externalized checking and adapting

system. In order to support this characteristic, the software com-
ponents that are monitored need to have the introspection and
reflection ability. Introspection supports runtime monitoring of
the program execution with the goal of identifying, locating and
analyzing errors [23].

Reflection [25] can be defined as the property by which a com-
ponent enables observation and control of its own structure and
behavior from outside. This means that a reflective component
provides a meta-model of itself, including structural and behavioral
aspects, which can be handled by an external component. A reflec-
tive system is basically structured around a representation of itself
or meta-model that is causally connected to the real system.

As explained in [17], there are two main dynamic software adap-
tation approaches using runtime models of the software: planned
and unplanned adaptation. Our solution is based on the unplanned
adaptation approach. This type of adaptation is triggered by unex-
pected events or when a fault is detected at runtime and reactive
decisions are needed to dynamically adapt the system to avoid
system failures.

In our approach, the adaptation of the component follows the
idea presented in [17]. In this work, they modelled a basic adapta-
tion by a state machine with three states: Active (normal-mode of
operation), Passive (stopped the initiated transition and will not
initiate new transitions) and Quiescent (no longer operational).

Our solution is inspired by the work presented in [15] where
the adaptation is externalized. When using an externalized runtime
adaptation, the behaviour of the software component is monitored
by components outside the running system. These external compo-
nents are responsible for determining when a software component’s
behaviour is within the envelope of acceptable system parameters.
When the software component’s behaviour fall outside of the ex-
pected limits, the external components start the adaptation process
(failsafe system). A failsafe device/system is expected to eventu-
ally fail but when it does it will be in a safe way. In figure 1, the
architecture of the solution is shown.

We define as normal-mode of operation the situations in which
all elements of the system are functioning as intended and the soft-
ware component’s behaviour is within the envelope of acceptable
system parameters. When the software component’s behaviour is
not working in the expected limits, the adaptation process starts
and the software component is sent to a safe-mode of operation
(graceful degradation). The safe-mode operation is an aspect of a
fault tolerant software system, where in case of some faults, system
functionality is reduced to a smaller set of services/functionalities
that can be performed by the system [12].

To accomplish the adaptation process, the externalized compo-
nents (1) maintain the model of the monitored running software
component and (2) support reasoning about system problems.
3 GENERATING RUNTIME OBSERVABLE

AND ADAPTABLE STATE MACHINE
SOFTWARE COMPONENTS

This section presents the model-driven approach for generating
runtime observable and adaptable UML-SMs components following
a models@runtime approach.

In the following subsections we will present the details of the
process of generating reflexive software components that provide
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Figure 1: Runtime Architecture: Controller and Externalized Checker/Adapter

information in terms of UML-SM model elements at runtime and
allow adapting their behaviour dynamically when an unexpected
situation or error is detected.

3.1 RESCO infrastructure
The solution is based on the RESCO (REflective State machines-
based observable software COmponents) metamodel. This meta-
model is composed of two packages: (1) a design package corres-
ponding to the component specific UML-SM with observability
information and (2) a runtime package corresponding to the run-
time infrastructure.

As background, and before continuing with the process of gene-
rating the RESCO software components, the infrastructure of the
RESCO is explained. RESCO metamodel has two packages (1) a de-
sign package that is used for modeling the application specific part
and (2) a runtime package that enables a UML-SM based software
component to reflect the model it comes from (models@runtime
approach).

The application specific part of the model is modeled using the
design package and it includes the StateMachine and Executor con-
cepts. The StateMachine describes an hierarchical state machine
along with a description of the Reactions defined in each of the
States. The Executor has the implementation of the Actions that
need to be triggered and the Conditions that need to be evaluated.
The Reactions have the references to them. The StateMachine and
the Executor are generated automatically from the UML-SM model
defined by the designer.

The runtime part, that is generic for all the components and
applications, is modelled using the runtime package. It includes
generic elements used for providing models@run.time observation
capabilities: the Dispatcher, the Observer and the EventReceiver.
The runtime elements are used for implementing the execution
semantics of state machines.

Using this two packages, an object structure that reflects the
model is generated. Thus, it is possible to adapt the model without
recompiling the solution.

Figure 2: State Machine, guiding example

Figure 3: Guiding Example: Transformation of the Design
package of RESCO metamodel

Let us consider the state machine of figure 2 as a guiding example.
The representation of this state machine developed by means of
RESCO is illustrated in figure 3. The state definition part is a tree-
like composite object-structure that reflects the state structure of the
model and each state has the specification of the behavior attached
to its different elements so that changing this object structuremeans
model modification and vice-versa. Later in the document, figure 6
shows how this structure is transformed to C++ code.
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Figure 4: Model-driven workflow

3.2 Generating software components using
RESCO

In this subsection we are going to present the different steps of the
Model-driven workflow shown in figure 4.

First, the behaviour of the components is modelled using UML-
SMs by Papyrus [18] and the states to be observable at runtime are
annotated using the defined observability profile. This first step
is performed by the designer and in order to have the adaptation
ability at runtime, the designer has to design two or more annotated
UML-SM models: normal-mode UML-SM and one or more safe-
mode (degraded-mode) UML-SM. Thus, when an error is detected,
the software component will adapt from normal-mode UML-SM to
the safe-mode (degraded-mode) UML-SM.

In a second step, a RESCO metamodel conformant model (instru-
mented model) is generated automatically by ATL [4] model-to-
model (M2M) transformations. Note that the model generation
corresponds mainly to the (1) design package as the (2) runtime
package remains the same for any component. In the last step, the
model conforming to the RESCO metamodel is transformed to code
by means of a model to text (M2T) transformation using Acceleo
[20].
3.2.1 1st step: Behaviour design of the software component. The first
step is to model the behaviour of software components by UML-SM
models using Papyrus [18] modeling tool. In the presented solution,
runtime adaptation is one of the main contributions and for that, in
this first step the software designer has to design also the alterna-
tive safe-mode behaviour(s) of the software component. All these
models will be transformed by the RESCO M2M transformation
rules. In addition, the designer has to define for each of the original
state the initial state in the safe-mode model to be adapted.

Different types of systems and operation-modes require different
monitoring needs. Although it is possible to obtain information
about all the states, events and transitions, due to reduced proce-
ssing resources, it may be desirable to monitor only a subset of
available monitoring information that will be verified. We have
defined an observability profile that provides an « Observable »
stereotype to select at design level those parts of the controllers
which need to be observed. The designer defines which of the states
of the UML-SM models will be « Observable ».
3.2.2 2nd step: Automatic generation of the RESCO Model. Once
the designer finishes the first step, RESCO framework continues

with the work. First, it takes the annotated UML-SMs and performs
a M2M transformation. As a result, it generates an instrumented
model for each of the designed UML-SM. For doing this, we defined
some platform-independent transformation rules.

Our approach is based on a platform-independent model instru-
mentation process. As in [5], our approach uses M2M transforma-
tion techniques for creating an instrumented version of the user-
defined model supporting introspection, checking and adapting
activities at runtime. This support is added by adding reflection and
adaptation capability to the model in the (2) runtime package (run-
time infrastructure). Thus, without having to instrument the code,
we are able to generate applications providing advanced capabilities
such as component introspection by themselves.

To formalize our approach, we considered only the computations
that occur in actions and conditions attached to transitions.

Figure 5 shows how a transition chain between two states is
instrumented in order to provide debugging and observation ability
at runtime. The left side of the figure shows the original transition
when event EvA happens being the software component in S1.
The right side shows the equivalent version of the transition after
model instrumentation. The new model introduces a choice point
and a composite state that will get the observed information and
share/log it. In our case, this composite state will be shared by all the
transitions. We do not have to implement different Observer States
for each of the transitions. The (2) runtime package is an application
independent solution that provides the infrastructure that enables
observing the current information of the states at runtime.

Summarizing, this is the overall behaviour of RESCO-SMs: when
an event is sent to the state machine based software component, the
dispatcher analyzes the current status and calculates if a transition
has to be performed. If the transition is going to be performed,
and the current, next or parent state is annotated as Observable,
the current state information is observed and sent to the externali-
zed checker. Having this observed information at runtime, we can
localize bugs analyzing execution traces in model terms.
3.2.3 3rd step: C++ reflective UML-SM based software components
generation (CRESCO). In this section we will present the concrete
implementation of RESCO approach for C++: CRESCO framework.
As we have mentioned, the RESCO metamodel is platform indepen-
dent.

In order to generate an application with Observable software
components in terms of model elements at runtime, CRESCO frame-
work includes: (1) M2T transformations of the elements of the de-
sign package part of the RESCO metamodel into C++ code by the
Acceleo [20] tool, and (2) an implementation in C++ of the run-
time infrastructure. In figure 6 an excerpt of the result of the State
Machine M2T transformation is shown.

This specific solution addresses embedded and resource limited
systems. In this vein, for CRESCO, we performed a M2T transfor-
mation to C++ code and we did not use dynamic memory allocation.

3.3 RESCO Software components’
Self-Adaptation

In the presented solution, an externalized adaptation system is ob-
serving the system behaviour in model terms at runtime. When
an error or an unexpected situation is detected by this external
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Figure 5: Model Instrumentation: Transformation Rule of the runtime package of RESCO metamodel. Thanks to the (2) run-
time package, the same ObserverState State object is used in all the transitions.

Figure 6: CRESCO: RESCO State Machine M2T Transformation to C++ code

adaptation system it activates the adaptation mechanism sending a
safeAdapt event to the affected software component. Once the soft-
ware component receives this safeAdapt event, the current active
UML-SM is sent to Passive mode. Once the system is controlled and
all the pending activities of the last transition are processed/stopped,
it is sent to the Quiescent mode. At this moment, the safe-mode
UML-SM is initialized and sent to the corresponding initial state of
the new SM (defined in the first step of the process) and finally this
alternative safe UML-SM is Activated.

The next code fragment (listing 1) shows the runtime adaptation
infrastructure added to the automatically generated code.
void Dispatcher :: processEventinError(Event ev)

{ ...

cresc::State *activeState;

...

this ->context ->getOwnerSm()->setActive (0);
this ->context ->getOwnerSm()->reinit ();
this ->context ->getOwnerSm()->id=1;
activeState=this ->context ->getWorkingState ();
...

this ->context ->getOwnerSm()->setActive (1);
...}

Listing 1: Fragment of codemanaging the CRESCO software
component’s adaptation ability

4 EMPIRICAL EVALUATION
4.1 Case Study Description
The selected case used for evaluation is an industrial software
component that controls a micro-generation device: the Burner
controller of the Whispergen commercial device [29]. It covers elec-
trical generation, heat generation as well as micro CHP (Combined
Heat and Power). Additionally, we generated 6 synthetic controllers
to evaluate the effects on performance and timewhenwe have UML-
SMs with different size and complexity levels. We defined the 6
synthetic cases based on the original Burner’s controller UML-SM.

For evaluation purposes, the Burner controller shown in figure 7
was implemented in the CRESCO framework, in the SinelaboreRT
version 3.7.2.2 [27] tool (specific tool for real time systems), and
in the Sparx Systems Enterprise Architecture (EA) version 11 tool
[19] (generic tool). The selected Burner controller’s normal-mode
UML-SM had 13 simple states, 2 composite states, 13 transitions and
13 events. The safe-mode UML-SM had 7 simple states, 2 composite
states, 9 transitions and 9 events.
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Figure 7: Burner’s Normal and Safe state machine models

4.2 Research Questions
One of the objectives of the experiments was to show how it is
possible to observe the information of the running system in model
terms at runtime (RQ1). Another objective was to demonstrate the
runtime verification and adaptation ability of the software com-
ponents generated by the RESCO framework (RQ2). Finally, the
overhead of the solution was measured (RQ3). We have defined the
following research questions:

RQ1. Is it possible to obtain themodel of the software component
by analyzing observed information at runtime?

RQ2. Can this runtime information be employed for runtime
verification and adaptation?

RQ3. Is the performance of SW components generated byCRESCO
framework as good as the SW components generated by other
existing tools (EA v11 and SinelaboreRT v3.7.2.2)?

4.3 Experimental Setup
All the experiments were executed as a standalone application over
a Linux virtual machine configuredwith a 1 Core processor, 2196MB
of RAM, 20GB SSD, and running 64-Bit Ubuntu 16.4 LTS. We have
used Eclipse IDE for C/C++ Developers version Oxygen.1a Release
(4.7.1a) for generating the executable state machines using the code
generated by both CRESCO framework, SinelaboreRT (v3.7.2.2) and
EA tool (v11).

To analyse RQ1, RQ2 and RQ3, we defined 10 experiments. In
order to have more reliable results, each experiment was repeated
1000 times. Table 1 shows the characteristics of each of the expe-
riments. The state machine SM1 is the original Burner Controller.
SM2 to SM7 are the synthetic state machines created for testing
purposes to perform experiments with different size and complexity
level state machines. To that purpose, we added different number
of states to the original one: some of them in a flat way and others
hierarchically. Thus, we experimented with state machines that
have different size and complexity levels.

Considering the works in [9] and [16], to measure the size and
complexity of state machines, we used the next metrics: Number

of Simple States (NSS- Size metric), Number of Composite States
(NCS- Size metric) and Cyclomatic Number of McCabe (Structural
Complexity metric) adapted to state machines.
4.4 Results
4.4.1 RQ1 Results. To answer RQ1, first we initialized the con-
troller of SM1, sent to it 10.000 random events and the externalized
monitoring and adapter system received and stored the internal
status information in model terms of the software component at
runtime. Analyzing the runtime observed information, the externa-
lized system was able to represent the structure and behaviour of
the software component under study (SCUS). In this experiment,
all the states were annotated as observable.

Listing 2 shows a fragment of the logged information at runtime.
In the figure 7 (original state machine) we can see the interpretation
of the received information (numbers) that represent the name of
states and events.

EvId 4; CurrentState 2; NextState 4; FatherState 1;

EvId 6; CurrentState 5; NextState 6; FatherState 4;

EvId 7; CurrentState 6; NextState 7; FatherState 4;

EvId 8; CurrentState 7; NextState 11; FatherState 4;

Listing 2: Fragment of the logged information at runtime
4.4.2 RQ2 Results. Regarding RQ2, in order to answer this ques-
tion, we used the externalized runtime verification and adaptation
system. This system was developed inspired by the solution defined
in [3] (the CoMA runtime monitor) and it compares the current
running SCUS’s logged information at runtime with the correct
information of the SCUS it (externalized system) has previously con-
figured. This correct information is based on the designed UML-SM
model elements. We used trace-violation checking techniques.

We evaluated the failsafe detection by fault injection campaigns
modifying the source code with the libfiu tool [24]. In this first
evaluation we measured the detected number of faults but we did
not activate the adaptation process.

We injected 6 faults using the libfiu tool emulating the effect
of random hardware, software and unanticipated environmental
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Table 1: Experiments Setup

State Machine Applied to RQ Observ. % NSS NCS McCabe Fault Injection
SM1 RQ1, RQ3 100 13 2 13 No
SM1 RQ2 100 13 2 13 Yes
SM1 RQ3 50 13 2 13 No
SM1 RQ3 0 13 2 13 No
SM2 RQ3 0 25 4 26 No
SM3 RQ3 0 49 4 52 No
SM4 RQ3 0 113 9 117 No
SM5 RQ3 0 25 5 26 No
SM6 RQ3 0 49 11 52 No
SM7 RQ3 0 113 26 117 No

faults. In order to emulate the random hardware and software faults
we injected 2 faults using the fiu_enable_random() (Random) option
of the libfiu library. This option enables the point of failure in a
non-deterministic way, which will fail with the given probability.

Concerning the remaining software faults, we emulated them
inserting another 4 faults using the fiu_enable() (Unconditional)
option of the libfiu library. This option enables the point of failure
in an unconditional way, so it always fails.

As a result, the externalized runtime verification system de-
tected all the faults injected in the SCUS before the transition was
performed and, thus, the runtime verification applicability of the
solution was demonstrated.

Listing 3 shows two of the faults that the externalized runtime
verification system detected at runtime.

EvId 8; CurrentState 7; NextState 8; FatherState 4;

EvId 8; CurrentState 8; NextState 7; FatherState 4;

Listing 3: Fragment of the logged information at runtime

Both of the faults, were injected in the fault injection campaigns
and, if we check the UML-SM of the SCUS, we can conclude that
these transitions are faulty because they are not represented in the
UML-SM model.

In the second part of the experiment, we activated the adaptation
process and reinitialized the system. After that, we started injecting
the same faults as in the first experiments but in this case, when the
first error was detected, the original state machine was deactivated
and the alternative safe-mode state machine was activated. There-
fore, the behaviour of the controller was changed automatically at
runtime. The externalized runtime checker continued logging and
analyzing the runtime information. Once the experiment was fini-
shed we analyzed the logged information and concluded that after
the runtime error detection the safe-mode state machine started
working.

Listing 4 shows the logs of the safe-mode state machine. Com-
paring with the state machine of the figure 2 we can conclude that
its behaviour was correct and system failure avoided.

EvId 3; CurrentState 2; NextState 3; FatherState 1;

EvId 7; CurrentState 6; NextState 11; FatherState 4;

Listing 4: Fragment of the logged information at runtime

4.4.3 RQ3 Results. In RQ3, performance was evaluated in terms
of execution time (milliseconds) and percentage of CPU usage. To

Figure 8: RQ3 results: CPU usage % results for SinelaboreRT,
EA and CRESCO tools (when observability level 0%).

Figure 9: RQ3 results: Timing results for SinelaboreRT, EA
and CRESCO tools (when observability level 0%).

measure the execution time, we used the gettimeofday instruction.
This instruction was launched at the beginning and the end of the
execution.

Figures 8 and 9 illustrate the results for RQ3. In these experiments
we used 1.000 input events and the observability level of the states
in RESCO was 0%. We also launched the original state machine
(SM1) generated by CRESCO when 50% and 100% of the states were
observed. When the observability level was 50%, the time response
in milliseconds was 272, and when all the states were observed the
result was 411. In all the experiments we used 1.000 input events.

In terms of time response, SinelaboreRT is the tool (specific
for real time systems) that achieves the best results. However,
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CRESCO’s results are similar or even better when the state ma-
chines’ complexity is low. Concerning the CPU usage percentage,
all the results are similar and this is because the experiments were
performed in very similar situations and with the same size and
complexity levels of the software controllers. So, the time was the
parameter that was affected by the different experiments scenarios.
If we consider the synthetic UML-SM (SM2 to SM7) for CRESCO
and EA tools, when the size and complexity of the state machine
increase, the performance of the tools is affected negatively and it
decreases: the execution time increases although the percentage of
the CPU resource used is only slightly affected. As for SinelaboreRT,
when the complexity and size of the state machines is increased, the
execution time also increases but to a lesser extent. We have to add
that the SinelaboreRT tool is specific for designing and developing
real-time systems and Enterprise Architecture tool is a generic tool
for different type of systems.

4.5 Discussion
The results of the RQ1 show that the solution that we are presenting
is able to provide the internal status information in model terms.
This runtime information can be employed for various purposes,
e.g., fault detection and localization, runtime adaptation/reconfigu-
ration, runtime enforcement and observation of software runtime
behavior.

In this work, we performed experiments for the observation of
the software component runtime behaviour and the fault detection,
localization and adaptation. The results of RQ2 were positive and
the solution, in addition to detecting the fault, indicated in which
state and transition of the SCUS the fault was happened and if the
adaptation ability was activated the system was adapted automati-
cally to a predefined safe-mode state machine at runtime. When the
observability level of the states of UML-SMs of the SCUS was 100%,
CRESCO detected the faults and executed the adaptation before
the next state transition was performed. Additionally, the solution
allows the runtime externalized checker and adapter to ask the
SCUS about its internal status at any time. Thus, the robustness of
the system is increased.

One of the strong points of the presented approach is that, in
this case, the developer does not need to be bothered about these
issues. The behaviour, adaptation and the introspection ability are
developed orthogonally. The developer only has to focus the efforts
on the behaviour of the SCUS, and there is no need to instrument
code manually, thereby avoiding new points of introduction of
faults.

The general objective of RQ3 was to evaluate the CRESCO frame-
work’s performance comparedwith commercial tools.We compared
the performance of the CRESCO framework (0% observability level)
with the SinelaboreRT v3.7.2.2 and EA v11 tool results. We conside-
red seven different state machines of different size and complexity.
The results show that SinelaboreRT was the tool with best time
response results but CRESCO was the next best. We have to con-
sider that we are adding some more infrastructure and logic to
enable the solution to have introspection and adaptation ability at
runtime. This will be one of the main reasons for achieving worse
results than SinelaboreRT. The results with different observability
level show that the performance of the solution decreases when
increasing the percentage of states observed at runtime.

4.6 Threats to validity
This section identifies threats that could invalidate the empirical
evaluation performed. An external validity threat could arise due
to considering only one industrial controller. We have configured
different state machines for the different experiments but all of
them were based on the initial Burner controller. Different state ma-
chine controllers might lead to different results. However, this first
experiment was valid to check the correctness of the design and
development of the solution since the main objectives were: (1) to
show how the software components generated by CRESCO frame-
work were able to provide internal status information in model
terms at runtime; (2) to demonstrate the applicability of this infor-
mation for runtime verification and adaptation; and (3) to measure
the CRESCO software components’ performance. The experiment
employs 7 different state machines, 4 different observability levels
and fault injection campaigns. A conclusion validity threat could
possibly arise due to the way the execution time and percentage
of the CPU usage was measured. To mitigate this threat, each exe-
cution is repeated 1000 times and results are statistically tested.

5 RELATED WORK
5.1 Runtime Software Adaptation
Gomaa et al. propose an approach for dynamic software adaptation
using runtime models of the software architecture. In [17] they
describe software adaptation patterns that consist of interaction
models and state machine models. In this solution, they describe the
pattern to perform the adaptation: a Genelarized Adaptation State
Machine. This pattern has been used as a basis in the presented
work to define how to execute the adaptation in UML-SM based
software components when an error or an unexpected situation is
detected.

In [15] Garlan et al. describe a model-based adaptation for self-
healing system. In this work they identified the challenging research
problems and defined an architecture of an adaptation framework.
They also implemented an specific solution in Acme language in
the control side.

The architecture and behaviour of our solution is based in the
aforementioned works but our approach is more holistic starting
from the software components design to runtime adaptation ability.

5.2 Tracing UML State Machines
Mazak et al. propose an execution-based model profiling as a con-
tinuous process to improve prescriptive models at design-time
through runtime information in [26]. In order to have runtime
information and logs, in model terms, they defined a observation
language which determines the runtime changes to be logged. The
code generator provides the appropriate logging line to that. Com-
paring with the presented solution, Mazak’s solution instruments
the code and not the model. In this sense, our solution is more
general, less dependent of the specifics of code generators or de-
ployment configurations.

In the same vein, in [10] Das et al. present their solution based
on instrumenting the code (not the model) to monitor real-time
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Table 2: Tools and methods for code generation
Tools UML-SM Code Generators Model at Runtime Addressed Systems

MOCAS [6] Java Yes (automatically instrumented) Not resource limited systems
EA [19] Java, C++,. . . No Not resource limited systems

SinelaboreRT [27] C++/Python/... No Embedded Systems
Quantum (QP/C++) [30] C++ No Embedded Systems

Yakindu [22] C++/C/Java No Embedded Systems
Papyrus-RT [13] C++ No Embedded Systems

IBM Raphsody [21] C++, Java,. . . No Embedded Systems
Pham [28] C++ No Embedded Systems
CRESCO C++ Yes (automatically instrumented) Embedded Systems

embedded systems at runtime. They combine the use of MDE, run-
time monitoring, and animation for the development and analysis
of components in real-time embedded systems.

The solution presented in [2] defines a textual language for
trace specification of state machines. As the aforementioned works,
this approach is also based on code instrumentation. They define
different commands to trace different specifications at runtime but
the solution does not provide information at model level and the
logged information is not related to model elements: it is not a
model centered solution.

In [31] Saadatmand et al. propose a solution for runtime verifica-
tion of state machines based on model-based testing. Their solution
is not generating automatically the final code and, as the previous
solutions, they instrument the code manually to have the software
components information in model terms at runtime.

In [5] they present a platform-independent model-level debu-
gger. The solution is focused on real-time embedded systems. This
approach, like ours, relies on model transformation to instrument
themodel to be debugged. Both approaches are in the same direction
but the implementation and the model-to-model transformation
rules are different. The main difference with our solution is that
this one [5] is applicable to models expressed in UML for Real-Time
(UML-RT). Our approach is applicable to models expressed in UML-
SM. Additionally, in their solution, they add new objects to debug
or trace the execution in all the transition chains. In our case, the
same object that is in the (2) runtime package, the ObjectObserver,
is reused in all the transitions. This way, the number of objects in
the model is independent of the size and number of transitions of
the state machine.

5.3 Reflective UML State Machines
In [6], [8] and [14] they propose a component model that carries
models at runtime, focusing on UML state machines. So, like our,
the frameworks of [6] and [14] also provide a runtime state-based
component model. The main difference regarding [6] and [14] is
that our solution can be oriented to different type of systems. In the
last step of the model-driven workflow, we can decide which M2T
transformation rules to use. In the presented work, we implemented
the transformation to C++ language. Thus, the specific solution of
the presented work is oriented to embedded software.

Moreover, CRESCO is an extension of the framework proposed in
[14] and, in addition to code-generation capabilities, the presented
model-driven approach provides the RESCO metamodel. The latter
is able to represent RESCO models that are platform independent.

Additionally, the RESCO models are able to add different obser-
vability levels by the observability profile. This last characteris-
tic enables software components generated by this model-driven
approach to have runtime verification and adaptation capability as
demonstrated in the presented work. For doing that, the solution
also provides an externalized runtime checker and adapter.

5.4 State Machines embedded in code
In [7] authors show how state machine logic can be embedded in
object-oriented code. A runtime environment extracts the state
machine information at runtime and executes it. In this way the
runtime environment provides control of the application, enables
the logging of its workflow and debugging of events. In the im-
plementation, Java code is connected to the state charts by means
of special classes, interfaces and annotations. Rather than being
created and manipulated at design time, the statemachine model is
extracted from code at runtime.

This approach inverts the traditional direction of model-to-code
generators. There is no model that is manipulated at design time
and transformed into source code from time to time. Instead there
is a permanent model representation in the source code, which is
extracted for analysis within modelling tools from time to time.
On the one hand, this eliminates any effort to maintain and merge
different abstraction layers. On the other hand, the chosen approach
is not independent from programming languages and execution
environments, in this case JAVA, as it is when using other model-
driven development technologies.

The solution presented in this work also maintains the model at
source code level and in addition it is platform independent.

5.5 Automatic UML-SM to Code Generation
Tools

Table 2 shows the different solutions to generate code and their
characteristics. As we can see in table 2, there is a lack of solutions
able to generate UML-SM based software components that provide
runtime information in model terms and that address embedded
systems.

MOCAS is the only one that provides the model of the software
component at runtime but it is not a solution for embedded systems
and it does not provide the externalized system verification and
adaptationmodule. The rest of the tools, such as EA or SinelaboreRT
do not provide the model at runtime. Most of them are solutions for
embedded systems but we need to instrument the code manually
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if we want to have internal information of the UML-SMs in model
terms at runtime.
6 CONCLUSIONS
The paper first presents a model-driven approach to automatica-
lly generate software components based on UML-SMs with the
ability to provide their internal status in terms of model elements
and adapt their behaviour at runtime. We defined a platform inde-
pendent metamodel called RESCO to represent the model of these
software components based on UML-SM models annotated by the
observability profile. Finally, the CRESCO framework, a concrete
implementation of the RESCO approach for embedded and resource
limited systems in C++ code, was presented.

In order to demonstrate the characteristics of the presented work,
we performed an empirical evaluation of how a software compo-
nent generated by CRESCO was able to represent the software
components’ UML-SM model elements at runtime. Additionally,
a specific application to detect faults and adapt the behaviour of
the software component when needed at runtime (runtime verifica-
tion and adaptation) was presented. The results of the experiments
showed that the solution is able to detect the errors and adapt the
behaviour if the errors are in observed states at runtime. Further-
more, the solution also enables interrogating the internal status of
the software component in model terms at runtime if required.

We empirically evaluated the performance of the framework
(in terms of execution time and percentage of CPU usage) using
state machines of different size and complexity. Some experiments
were also implemented using different commercial tools (EAv11
and SinelaboreRT) in order to compare their results with those of
the CRESCO framework.

In the future, we would like to expand the empirical evaluation
using other real industrial cases and projects. More commercial
tools will also be compared.

As another future line, as the solution enables having adaptation
and intercession ability at runtime, we will integrate approaches for
runtime model adaptation in uncertain environments generating
new models and behaviour to be adapted also at runtime. Thus,
the system will be able to redesign the behaviour and not to use
a predefined safe-mode. In this vein, inspired by the work in [26],
one of the future research lines is to combine the Process Mining
(PM) techniques with runtime models.
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