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Summary  
The development of State-of-Charge (SoC) algorithms for Li-ion batteries involves carrying out different 

laboratory tests with the money and time that this entails. Furthermore, such laboratory labours must typically be 

repeated for each new Li-ion cell reference. In order to minimise this issue, this work proposes a new approach 

for developing SoC algorithms, using a Recurrent Neural Network in combination with a Transfer Learning 

method. The latter technique will make possible to take advantage of the data generated for previously tested cell 

references and use it for the development of a SoC estimation algorithm for a new cell reference. This work 

provides a proof-of-concept for the proposed approach, using synthetic data generated from electrochemical 

models, which describes the behaviour of different Li-ion cell references. 
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1 Introduction 
In order to ensure a safe and optimal use of Li-ion batteries, it is necessary to estimate their State-of-Charge (SoC) 
accurately [1]. The development of SoC estimation algorithms requires performing several tests on Li-ion cells 
at different operating conditions (temperature, current or State-of-Health, SoH), typically in laboratory 
environment, which is time and cost intensive. An important issue in this field of research is that a SoC estimation 
model developed for one particular cell reference is not necessarily adequate for a different cell reference 
(different manufacturer, size, chemistry, etc.). This implies that every time a SoC estimation algorithm have to 
be developed for new cells, all the laboratory testing labours have to be started from scratch, inducing an 
important and periodical waste of time and economical resources [2]. 

The main objective of this research is to propose a new approach for developing SoC estimation algorithms, 
taking advantage of the data and prior knowledge generated from previously tested or deployed cell references. 
In this work, this is tackled using Artificial Neural Networks (ANN) algorithms in combination with Transfer 
Learning (TL) methods. Such methods consist on: i) first, training the ANN with data obtained from a previously 
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tested and/or deployed cell reference, and ii) then retrain the ANN using a reduced amount of data from the new 
cell reference, deriving the corresponding SoC estimation algorithm. This way, the obtained SoC estimation 
algorithms are expected to provide accurate estimations, while reducing the laboratory labours and/or the field 
data gathering period required for the new cell references [3]–[5]. This process is depicted in Figure 1. 

 
Figure 1. Conceptual flowchart summarising the SOC estimation algorithm development method, based on TL. 

In this work, a proof-of-concept of this new SoC estimation algorithm approach is provided, using for that two 
different datasets which represent the cycling behaviour of two different cell references. The first dataset consists 
on synthetic data generated from a widely accepted electrochemical model. The second dataset, used to apply the 
TL method, was generated in laboratory environment by cycling real battery cells. 

2 SoC estimation algorithm 
The SoC estimation algorithms developed in this work are based on ANN. For this application, Convolutional 
Neural Networks (CNN) in combination with Recurrent Neural Networks (RNN) are of especial interest, as CNN 
are good for feature extraction between different inputs and RNN are particularly adequate for time-series data 
[6], [7]. Moreover, CNNs are a type of neural network specialised in reducing the number of parameters in the 
processing data due to their capacity to automatically detect the important features in the input data [8], this is of 
particular interest as it will extract the most important features and look for relationships between the different 
input parameters.  

 
Figure 2. CNN architecture [9] 
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On the other hand, RNNs contain memory units in which they store the states estimated in the previous timesteps 
and take them into account to improve future estimations, as illustrated in Figure 3 [10], this type of neural 
network is of interest for the application as it will extract the temporal relationships of the timeseries that make 
up both the input and output data. More specifically, in this work, Long Short-Term Memory (LSTM) neurons 
will be used, as their memory capabilities are the solidest ones between different recurrent neurons [11].  

 
Figure 3. LSTM architecture [9] 

To develop the cell SoC estimation algorithm, four different input variables were considered, namely the cell 
voltage, current, temperature and previous battery SoC estimation. The output of the algorithm was the SoC of 
the cell. In Figure 4 a scheme of the proposed algorithm is depicted.  

 
Figure 4. Proposed algorithm scheme. 

As previously mentioned, a TL method was applied to develop a SOC estimation algorithm able to take advantage 
of the data and prior knowledge generated from previously tested or deployed cell references [12]. In fact, TL is 
a successful method which allows to apply in new task the knowledge and skills acquired in previous tasks [13]. 
In this work, the TL was carried out by completely retraining the neural network, without blocking any of the 
layers, in other words, retraining all the values that compose the different layers of the algorithm. 

3 Datasets 
Two different datasets were used in this work, each one corresponding to a specific cell reference. Both datasets 
include different variables for each input data sample (temperature, voltage, current and previous SoC) to allow 
the ANN to quantify their impact on the underlying SoC of the cell. 

The first dataset was generated using a widely accepted electrochemical model to simulate the behaviour of an 
LCO-based cell, known as the Doyle cell [14]. A specific cycling profile was designed, which consists of different 
types of charging and discharging phases (constant current, constant voltage, or different charging/discharging 
levels), intercalated with pauses of different durations. This cycling profile was especially designed in order to 
facilitate the evaluation of the performances of the developed SOC estimation algorithm, in such a way that the 
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weaknesses of the algorithm could be easily identified. The cycling profile was applied at several temperature 
values from 0ºC up to 45ºC. For each one of these temperatures, charge and discharge cycles were simulated at 
different C-rates, ranging from 0.5C to 4C in discharge and 0.5C to 1C in charge, as 1C is the maximum charging 
current. Table 1 summarises the cycling conditions and the cycling profile is represented in Figure 5. 

Table 1: Cycling conditions involved in the dataset generated using the electrochemical model of 
the Doyle cell. 

Temperature C-rate DCH C-rate CHA 
45ºC 

0.5 – 1 – 2 – 4 0.5 - 1 25ºC 
10ºC 
0ºC 

 
Figure 5. Designed profile: SoC and Voltage vs. Time @ 1C CHA/DCH 

The second dataset was generated in laboratory environment, carrying out different cycling tests on commercial 
NMC-based 58Ah cells, from the manufacturer CALB. These tests included capacity, Hybrid Pulse Power 
Characterization (HPPC) and quasi-OCV tests. The capacity test was performed during three charge/discharge 
cycles at 1C. The HPPC was carried out using current pulses at different currents, varying from 0.5C to 3C in 
different SoC levels. The quasi-OCV test was done discharging and charging the cell at 0.05C.  

In addition, the cells were tested using the above-mentioned designed profile to which WLTC profiles have been 
added to different SoCs at the end of the profile. Three different cells were tested in each condition to ensure the 
repeatability of the results. 

4 Results and Discussion 
As previously mentioned, in this work a baseline ANN model was developed using the data obtained synthetically 
using the electrochemical model of the Doyle cell (hereinafter called “baseline model”), and then the TL method 
was used to retrain such model with the data generated in the laboratory using real commercial cells. 
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In addition, for comparative purposes and in order to evaluate the benefits of applying the TL method, a new 
ANN model with identical configuration was trained using only CALB data (hereinafter called “NMC model”). 
This section depicts the results obtained with each of the models. 

4.1 Baseline model 
As mentioned in Section 2, CNN and LSTM architectures will be combined to develop the SoC estimation 
algorithm. More specifically, a CNN layer using 16 filters and a bidirectional LSTM layer with 5 neurons will 
be used. 

To train, validate and test this model, the data corresponding to the Doyle cell, previously introduced in section 
3, was used. This data was divided as shown Table 2. 

Table 2. Baseline model train/validation/test configuration. 

Dataset Conditions 

Training data 

0ºC - 0.5C CHA - 0.5C DCH 
10ºC - 0.5C CHA - 0.5C DCH 
10ºC - 1C CHA - 4C DCH 
25ºC - 0.5C CHA - 0.5C DCH 
25ºC - 1C CHA - 1C DCH 
25ºC - 1C CHA - 4C DCH 
45ºC - 1C CHA - 4C DCH 

Validation data 0ºC - 1C CHA - 2C DCH 
10ºC - 1C CHA - 1C DCH 

Test data 

0ºC - 1C CHA - 1C DCH 
10ºC - 1C CHA - 2C DCH 
25ºC - 1C CHA - 2C DCH 
45ºC - 1C CHA - 2C DCH 

The algorithm was trained using the “training data” for 500 epochs, in order to determine the optimal weights of 
the developed ANN model. The model with the minimum Mean Absolute Error (MAE) in the validation data  
during training phase was saved. The algorithm was then evaluated using the “test data” to verify the accuracy 
of the algorithm on never observed data. Table 3 shows the MAE as well as the maximum error achieved for the 
training, validation and test datasets. 

Table 3. MAE and maximum errors achieved with the baseline model, for the training, 
validation and test datasets (Doyle dataset). 

Dataset Mean Absolut Error (MAE) Maximum Error 

Training data 0.113% 1.435% 

Validation data 0.097% 1.512% 

Test data 0.077%  1.459% 

Figure 6 depicts the SOC estimation obtained at 25ºC, 1C charge and 2C discharge. In this case the MAE is 
0.225% and the maximum error is 1.418%. It could be observed that the SOC estimation algorithm follows the 
real SoC curve with high accuracy. 
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Figure 6. Estimation of the baseline model for de designed profile at 25ºC, 1C CHA and 2C DCH. 

4.2 NMC model 
The NMC model was developed for comparative purposes, in order to evaluate later on the benefits of using TL 
method. Therefore, the ANN model used to train this model was identical to the baseline, i.e. composed of a CNN 
layer with 16 filters and a bidirectional LSTM layer with 5 neurons.  

4.2.1 Model trained with reduced training data 
To train the ANN, the data from the capacity test, qOCV and HPPC of one of the cells tested at 25ºC was used. 
To validate this model, data corresponding to three other cells was used, which involved the same profiles at 
10ºC, 25ºC and 45ºC. Finally, to test the SoC estimation algorithm, the data from the additional cells was used. 
In addition, the designed profile explained in section 3 was also included in the test phase. 

Table 4. Reduced training data model train/validation/test configuration. 

Dataset Conditions Tests 

Training data CELL1: 25ºC 

Capacity 
Quasy-OCV 
HPPC 
 
 

Validation data 
CELL2: 10ºC 
CELL3: 25ºC 
CELL4: 45ºC  

Test data 

CELL5: 10ºC 
CELL6: 10ºC 
CELL7: 25ºC 
CELL8: 45ºC 
CELL9: 45ºC  

CELL10: 25ºC Designed profile 
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Table 5 indicates the MAE and the maximum error achieved for the training, validation and test datasets. 

Figure 7 depicts the SOC estimation of the algorithm on the designed profile. The MAE of the algorithm in this 
profile is 2.48% with a maximum error of 12.294%.  

 
Figure 7. Estimation of the SoC made by the model trained with reduced training data for the designed profile at 25ºC and 

1C CHA/DCH. 

4.2.2 Model trained with increased training data 
In order to obtain more accurate results and complementary information for later comparison, a new training was 
carried out including more data in the training dataset. In this case data from CELL5 and CELL10 (Table 4) was 
added to the algorithm training. Therefore, the validation dataset remain constant and test dataset was reduced as 
CELL5 and CELL10 were used to train. In the Table 5 the MAE and the maximum error achieved during the 
training, validation and testing is depicted.  

It is noteworthy that the MAE decreased by more than 1% compared to the results achieved in Section 4.2.1, and 
that the maximum error was also reduced. Figure 8 shows the designed profile, and it could be observed that the 
estimations followed more accurately the real SOC value. The MAE of the algorithm in this profile was 0.941% 
and the maximum error was 2.895%. 
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Figure 8. Estimation of the SoC made by the model trained with increased training data for the designed profile at 25ºC and 

1C CHA/DCH. 

4.3 TL model 
The last step in the development of the SoC algorithm was to apply the TL to the model trained with the synthetic 
Doyle cell data in section 4.1.  

The training data defined in section 4.2.1 was used here to retrain the algorithm (Table 4). For the validation 
dataset, the data from three other cells cycled at 10ºC, 25ºC and 45ºC was used. Data from the remaining cells, 
as well as the data corresponding to the designed profile, was included in the test dataset. 

Table 5 shows the errors obtained after applying the TL method. It could be observed that the error is reduced by 
more than 1.2% compared what the model trained with reduced training data achieved in section 4.2.1 and 0.25% 
compared what the model trained with increased training data achieve in section 4.2.2. 

Table 5. MAE and maximum errors achieved with the different models, for the training, validation 
and test datasets (CALB dataset). 

Model Dataset Mean Absolut Error (MAE) Maximum Error 
Model trained with 
reduced training 
data 

Train 1.497% 16.787% 
Validation 2.653% 17.458% 
Test 3.168%  18.369% 

Model trained with 
increased training 
data 

Train 0.487% 2.083% 
Validation 0.486% 2.102% 
Test 0.494%  2.504% 

TL model 
Training dataset 0.251% 4.045% 
Validation dataset 0.243% 4.086% 
Test dataset 0.243%  3.411% 
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Figure 9 depicts the SOC estimation obtained for the designed profile, using the model updated by TL. The SOC 
estimation significantly improved compared to the results depicted in Figure 7. For this profile, the MAE is 0.450% 
and the maximum error is 1.408%. 

 
Figure 9. Estimation of the SoC made by the TL model for the designed profile at 25ºC and 1C CHA/DCH. 

5 Conclusions and Future works 
This work introduced a proof-of-concept of a new approach for the development of SOC estimation algorithm, 
based on the TL method. The main objective of such approach was to reduce the need for exhaustive laboratory 
testing, typically required for SOC algorithm development each time a new cell reference is desired to be 
deployed. This was possible by leveraging the data previously available for different cell references, already 
tested or deployed, which could encode useful information usable for the new cell reference. 

In this work, a SoC estimation algorithm was developed using a neural network composed of a CNN layer and a 
LSTM layer. This network was trained with four different training datasets, leading to four different models: i) 
the “baseline model” was trained only with LCO-based synthetic data, generated using a previously validated 
electrochemical model, ii) the “NMC model #1” was trained exclusively with a reduced number of NMC-based 
data, generated in laboratory by cycling commercial cells, iii) the “NMC model #2” was trained exclusively with 
of NMC-based data (higher amount of training data), also generated in laboratory by cycling commercial cells, 
and iv) the “TL model” was trained combining LCO-based synthetic data and a reduced number of NMC-based 
data. 

Comparing the performances of these models, the benefits of the proposed TL-based approach were highlighted: 
the number of data to be generated in laboratory and required to train the algorithm is significantly reduced, and 
at the same time, the accuracy of the SOC estimations is improved considerably. This could be explained by the 
fact that, during the first training phase based on LCO synthetic data, the neural network was able to learn about 
the cell behaviour at different conditions of C-rates or temperatures. Part of this knowledge was also relevant for 
NMC cell’s SOC estimation, and was then exploited by the TL during the retraining phase, making possible to 
reduce the amount of NMC cell data required from laboratory testing. Compared to an analogue algorithm 
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developed from scratch for NMC cells (NMC model #2), the error was reduced a 50% and the training dataset 
required from laboratory was reduced a 40%. 

However, it should be noted that the developed model does not take into account the degradation of the cell. This 
model can be extended, and an algorithm capable of estimating the SoC of the battery can be developed by 
including the actual SoH of the battery as an input variable.  

Finally, the two cells used in this work have similar behaviour, so it would be interesting to analyse how the TL 
behaves when data from a different chemistry is applied during retraining, such as data from LFP-based cells. 
Further research should be carried out to identify the limitations of the proposed TL-based approach. 
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